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Abstract
The global stabilization of the Camassa-Holm equation with a distributed feedback
control of the form –(λu – βuxx – λ[u]) is investigated. The existence and uniqueness
of global strong solutions and global weak solutions to the closed loop control
system are obtained. The exponential asymptotical stabilization of weak solutions to
the problem is established. Namely, the weak solutions to the problem exponentially
uniformly decay to a constant. The main novelty in this paper is that the effects of the
coefficients λ and β on the global existence and exponential asymptotical
stabilization of solutions are given.

MSC: 35G25; 35L15; 35Q58

Keywords: Camassa-Holm equation; feedback control; strong solutions; weak
solutions; exponential asymptotical stabilization

1 Introduction
This paper is concerned with the distributed feedback control problem for the Camassa-
Holm equation

⎧
⎪⎨

⎪⎩

ut – uxxt + kux + uux = uxuxx + uuxxx – (λu – βuxx – λ[u]), t > , x ∈ S,
u(t, ) = u(t, ), ux(t, ) = ux(t, ), uxx(t, ) = uxx(t, ), t ≥ ,
u(, x) = u(x), x ∈ S,

(.)

where k ∈ R, λ,β ≥  are constants, S = [, ] ⊂ R, [u] =
∫

S
u(t, x) dx denotes the mean

value of u(t, x) on S, (t, x) ∈ [,∞)×S and u ∈ Hs(S) with s ≥ . The action of the feedback
–(λu – βuxx – λ[u]) consists in balancing the level of water.

Let us give a brief overview of several related works. For the classical Camassa-Holm
equation []

ut – uxxt + kux + uux = uxuxx + uuxxx, (.)

where u(t, x) is the height of water free surface above a flat bottom (or the fluid velocity in x
direction) and k is a constant related to critical shallow water wave speed. The alternative
derivation of (.) as a model for the unidirectional propagation of shallow water waves is
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found in []. Equation (.) has attracted attention of many researchers due to several re-
markable features. The first one is the presence of solutions in the form of peaked solitary
waves for k = . The solitary waves are the peakons, known to be stable []. The peakon
u(t, x) = ce–|x–ct| with c �=  is smooth except at its crest and the tallest among all waves of
fixed energy. It is traveling waves of the largest amplitude, which is the Stokes waves of the
greatest height (see the discussions in []). The stability here is in the sense of orbital sta-
bility. That is, the shape is stable under small perturbations. For k > , the solitary waves
are smooth stable solitons []. Another feature is that the equation has breaking waves [].
In other words, the solutions remain bounded while their slopes become unbounded in
finite time. A further important property is that of integrability, in the sense of an infinite
dimensional Hamiltonian system. That is, for a large class of initial data for which the solu-
tion is global in time. By means of an associated isospectrum problem, one can show that
the flow is equivalent to a linear flow (see [, ]). Li and Olver [] not only obtained the
local well-posedness for the problem but also gave the conditions which lead to some solu-
tions blowing up in finite time in the Sobolev space Hs(R) (s > 

 ). It is possible to continue
the solutions after blow-up, either as conservative or as dissipative global weak solutions
(see [, ]). Novruzova and Hagverdiyev [] obtained the global existence and unique-
ness of strong solutions to Cauchy problem of the Camassa-Holm equation in H(R). For
other methods to establish the local well-posedness for the Cauchy problem and global
existence of solutions to the Camassa-Holm equation or other shallow water models, the
reader is referred to [–] and the references therein. The global weak solutions to the
Cauchy problem of equation (.) have been studied extensively [–]. For the case k = 
in equation (.), Xin and Zhang [] obtained the global existence of weak solutions in
H(R) by using the vanishing viscosity method. Xin and Zhang [] proved the unique-
ness of global weak solutions obtained in [] with the condition that m = u – u,xx is a
positive Radon measure. Coclite et al. [] investigated the global existence and unique-
ness of weak solutions to the hyperelastic-rod wave equation in H(R), which is similar to
equation (.) in the structure of equation. Lai and Wu [] studied the global existence
of weak solutions to the generalized hyperelastic-rod wave equation in H(R).

Recently, much literature was devoted to the study of control problem for the water
wave equations. In [, ], the exact boundary control problems for the Korteweg-
de Vries equation were considered. Komornik [] studied the feedback control prob-
lem for the Korteweg-de Vries equation in H(S) (s ≥ ), where the feedback control is
f (t, x) = –λ(u – [u]). They obtained the existence of solutions to the problem by using the
Galerkin method. The exponential asymptotical stabilization of strong solutions to the
problem was investigated. In [], the exact controllability and stabilization of solutions
to the Korteweg-de Vries equation were established. Rosier and Zhang [] proved the
unique continuation property of solutions to the Benjamin-Bona-Mahony equation with
small initial data in H(S). Zong and Zhao [] investigated the feedback control problem
for the Degasperis-Procesi equation with feedback control f (t, x) = –λ(u – uxx – [u]). They
obtained the global existence of solutions to the control problem in Hs(S) (s ≥ ) by using
Kato’s theory and energy estimates. It is worth pointing out that the obtained solutions in
[, ] are strong solutions. Glass [] investigated the exact controllability and global
asymptotical stabilization of solutions to the Camassa-Holm equation on S by means of a
distributed control. It was shown in [] that the constant k in equation (.) was related to
the equilibrium point of solutions. Perrollaz [] studied the initial boundary value prob-
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lem and asymptotical stabilization of solutions to equation (.) on S. The local existence
result and weak-strong uniqueness of solutions were obtained. The global asymptotical
stabilization of solutions to the problem was established by means of a boundary feed-
back law.

Integrating (.) with respect to the time variable from  to t and using integration by
parts, we get

d
dt

∫

S

u dx = –
(

λ

∫

S

u dx – λ[u]
)

,

from which one derives [u(t)] = [u], for all t > . Let a = [u] and v = u – [u] = u – a, then
v = u – a. We still denote v by u for convenient and rewrite the problem (.) as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut – uxxt + (k + a)ux + a(ux – uxxx) + uux + λu – βuxx

= uxuxx + uuxxx, t > , x ∈ S,
u(t, ) = u(t, ), ux(t, ) = ux(t, ), uxx(t, ) = uxx(t, ), t ≥ ,
u(, x) = u(x), x ∈ S

(.)

or
⎧
⎪⎨

⎪⎩

ut + (u + a)ux = –∂xP, t > , x ∈ S,
u(t, ) = u(t, ), ux(t, ) = ux(t, ), uxx(t, ) = uxx(t, ), t ≥ ,
u(, x) = u(x), x ∈ S,

(.)

where ∂xP = ∂x( – ∂
x )–[u + (k + a)u + 

 u
x – βux] + ( – ∂

x )–(λu).
Motivated by the work in [, , , , ], we study the global stabilization of problem

(.). Our main results are the existence and uniqueness of global strong solutions, global
weak solutions and the exponential asymptotical stabilization of solutions to the problem.
Due to the presence of feedback control term, the conserved law which plays an important
role in studying the problem disappeared. This difficulty has been dealt with by establish-
ing the energy inequality and using the estimates of solutions to the transport equation.
For the low regularity of space in which we study the weak solutions and weakly com-
pact priori estimates of the approximate solutions, we use the method in [] to improve
the weak convergence to strong convergence. The uniqueness of global weak solutions is
established with certain assumptions.

We write the space

Es
p,r(T) =

{
C([, T]; Bs

p,r(S)) ∩ C([, T]; Bs–
p,r (S)),  ≤ r < ∞,

L∞([, T]; Bs
p,∞(S)) ∩ Lip([, T]; Bs–

p,∞(S)), r = ∞,

where T > , s ∈ R, p ∈ [,∞], r ∈ [,∞].
The main results of this paper are stated as follows.

Theorem . Let  ≤ p, r ≤ ∞, s > max( 
 ,  + 

p ) and u ∈ Bs
p,r(S). Then there exists a time

T >  such that the problem (.) admits a unique solution u ∈ Es
p,r(T). If s′ < s, r = ∞

or s′ = s, r < ∞, the map u → u is continuous from a neighborhood of u in Bs
p,r(S) into

C([, T]; Bs′
p,r(S)) ∩ C([, T]; Bs′–

p,r (S)).
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Theorem . Let u ∈ Hs(S) (s > 
 ) and T >  be the maximal existence time of corre-

sponding solution u to problem (.). Then the solution u blows up in finite time if and only
if

lim
t→T–

inf
x∈S

ux(t, x) = –∞. (.)

We obtain the global existence of strong solutions to problem (.).

Theorem . Let u ∈ Hs(S) (s ≥ ), ( – 
coth 


)β < λ < ( + 

coth 


)β , m = u – u,xx, and

‖m‖L(S) ≤ 
 (β – (coth 

 )|β – λ|). Then the corresponding strong solution u to problem
(.) exists globally.

We present the global existence of weak solutions to problem (.). First of all, we give
the definition of weak solutions.

Definition . The function u(t, x) is a weak solution to problem (.) if:
(i) u(t, x) ∈ C([,∞); C(S)) ∩ L∞([,∞); H(S)) and

∥
∥u(t)

∥
∥

H(S) ≤ ‖u‖H(S), for all t > . (.)

(ii) u(t, x) satisfies problem (.) in the sense of distributions.

Theorem . Let u ∈ H(S). Then problem (.) admits a weak solution in the sense of
Definition .. Moreover, the weak solution u(t, x) has the following properties.

(i) There exists a positive constant C depending only on ‖u‖H(S) and the coefficients
in problem (.) such that

∂xu(t, x) ≤ 
t

+ C, for all t > . (.)

(ii) Let δ ∈ (, ), T > , [a, b] ⊂ S. There exists a positive constant C such that

∫ T



∫ b

a

∣
∣∂xu(t, x)

∣
∣+δ dx dt ≤ C. (.)

(iii) The corresponding solution u(t, x) to problem (.) is exponentially asymptotically
stable. Namely, there exists a positive constant C = C(‖u‖H(S)) such that

∥
∥
(
u(t), ut(t)

)∥
∥

H(S)×L(S) ≤ Ce–λt , for all t > , (.)

where λ = min{λ,β}.

We present the uniqueness of the global weak solutions to problem (.).

Theorem . Let u ∈ H(S) and m = u – u,xx be a positive Radon measure. Then prob-
lem (.) has a unique global weak solution u(t, x) ∈ C([,∞); H(S)).

Remark . The existence and uniqueness of global strong solutions in Hs(S) (s ≥ ) and
global weak solutions in H(S) to problem (.) are obtained. The exponential asymptotical
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stabilization of solutions is established. Similar to [], we deduce that the coefficient β

in (.) is related to the blow-up rate of solutions. Theorem . in this paper contains
Theorem  in [] as a special case. The problem (.) studied in this paper contains the
problems studied in [, , , ].

The remainder of this paper is organized as follows. In Section , the definition of the
Besov space and priori estimates of solutions to the transport equation are reviewed. Sec-
tion  is devoted to the proofs of Theorems ., ., and .. The proofs of Theorems .
and . are presented in Section .

Notation Let ∗ be the convolution on S. ‖ · ‖Lp(S) stands for the norm in the Lebesgue
space Lp(S) ( ≤ p ≤ ∞). ‖ · ‖Hs(S) stands for the norm in the Sobolev space Hs(S) (s ∈ R).
‖ · ‖Bs

p,r (S) stands for the norm in the Besov space Bs
p,r(S) (s ∈ R). For a � b, we mean that

there exists a uniform constant C, which may be different on different lines such that a ≤
Cb. We assume a+ = a + ε, where ε >  is a sufficiently small number. Since the functions
in all spaces are over S, for simplicity, we drop S in our notations if there is no ambiguity.

2 Preliminary
We recall some basic facts in the Besov space. One may check [] for more details.

Lemma . [] Let s ∈ R,  ≤ p, r ≤ ∞. The nonhomogeneous Besov space is defined by
Bs

p,r(S) = {f ∈ S′(S) | ‖f ‖Bs
p,r < ∞}, where

‖f ‖Bs
p,r =

{
(
∑∞

j=– jrs‖�jf ‖r
Lp ) 

r , r < ∞,
supj≥– js‖�jf ‖Lp , r = ∞.

Moreover, Sjf =
∑j–

q=– �qf .

We present two related lemmas for the Cauchy problem of the transport equation
{

ft + d · ∇f = F ,
f |t= = f,

(.)

where d : R×R
n → R

n stands for a given time dependent vector field, f : Rn → R
m and

F : R×R
n →R

m are known data.

Lemma . [] Let  ≤ p ≤ p ≤ ∞,  ≤ r ≤ ∞, p′ = p
p– . Assume s > –n · min( 

p
, 

p′ ) or
s > – – n · min( 

p
, 

p′ ) if ∇ · d = . Then there exists a constant C depending only on n, p,
p, r, s such that the following estimate holds:

‖f ‖L̃∞
t ([,t];Bs

p,r) ≤ eC
∫ t

 Z(τ ) dτ

[

‖f‖Bs
p,r +

∫ t


e–C

∫ τ
 Z(ξ ) dξ

∥
∥F(τ )

∥
∥

Bs
p,r

dτ

]

, (.)

where

Z(t) =

⎧
⎨

⎩

‖∇d(t)‖
B

n
p
p,∞∩L∞

, s <  + n
p

,

‖∇d(t)‖Bs–
p,r

, s >  + n
p

or s =  + n
p

, r = .

If f = d, then for all s >  (∇ · d = , s > –), (.) holds with Z(t) = ‖∇d(t)‖L∞ .
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Let us state the existence result for the transport equation with initial data in the Besov
space.

Lemma . [] Let p, p, r, s be as in the statement of Lemma .. f ∈ Bs
p,r and

F ∈ L([, T]; Bs
p,r), d ∈ Lρ([, T]; B–M∞,∞) is a time dependent vector field for some ρ > ,

M > . If s <  + n
p

, then ∇d ∈ L([, T]; B
n

p
p,∞ ∩ L∞). If s >  + n

p
or s =  + n

p
, r = ,

then ∇d ∈ L([, T]; Bs–
p,r). Thus, problem (.) has a unique solution f ∈ L∞([, T]; Bs

p,r) ∩
(
⋂

s′<s C([, T]; Bs′
p,)) and (.) holds true. If r < ∞, then f ∈ C([, T]; Bs

p,r).

3 The proofs of Theorems 1.1, 1.2, and 1.3
3.1 The proof of Theorem 1.1
Applying Lemmas ., . and using the Littlewood-Paley theory, one may follow sim-
ilar arguments to [] to establish the local well-posedness for problem (.) with suit-
able modifications. Here we omit the detail proof. For problem (.) with initial value
u ∈ Bs

p,r (s > max( + 
p , 

 )), we see that the corresponding solution u ∈ C([, T]; Bs
p,r) ∩

C([, T]; Bs–
p,r ). This completes the proof of Theorem ..

3.2 The proof of Theorem 1.2
We investigate the blow-up mechanisms of strong solutions to problem (.). Applying
Theorem . and a simple density argument, we only need to show that Theorem . holds
with s ≥ . Here we assume s =  to prove the theorem.

Multiplying the first equation in (.) by u and integrating by parts yield




d
dt

∫

S

(
u + u

x
)

dx +
∫

S

(
λu + βu

x
)

dx = . (.)

On the other hand, multiplying (.) by uxx and integrating by parts again yield




d
dt

∫

S

(
u

x + u
xx

)
dx +

∫

S

(
λu

x + βu
xx

)
dx = –




∫

S

ux
(
u

x + u
xx

)
dx. (.)

Assume T < ∞ and there exists M >  such that

ux(t, x) ≥ –M, for all (t, x) ∈ [, T] × S. (.)

We have

d
dt

∫

S

(
u

x + u
xx

)
dx ≤ (M – λ)

∫

S

(
u

x + u
xx

)
dx, (.)

where λ = min{λ,β}. Applying the Gronwall inequality to (.) yields

∥
∥u(t)

∥
∥

H ≤ ‖u‖
H e(M–λ)T , for all t ∈ [, T], (.)

which contradicts the assumption that the maximal existence time T < ∞.
Conversely, using the Sobolev embedding theorem Hs ↪→ L∞ (s > 

 ), we derive that if
condition (.) in Theorem . holds, then the corresponding solution blows up in finite
time. This completes the proof of Theorem ..
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3.3 The proof of Theorem 1.3
Bearing in mind m(t, x) = u – uxx, we rewrite the first equation in (.) as

mt + umx + uxm + amx + (k + a)ux + (λ – β)u + βm = . (.)

Multiplying (.) by m and integrating by parts yield




d
dt

∫

S

m dx +
∫

S

βm dx

= –



∫

S

uxm dx +
∫

S

(β – λ)u(u – uxx) dx

≤ –



∫

S

uxm dx + |β – λ|‖u‖L‖m‖L . (.)

If g(x) = cosh(x–[x]– 
 )

 sinh 


, x ∈ S, where [x] stands for the integer part of x, then ( –∂
x )–f = g ∗ f .

Using the relation u = g ∗ m and Young’s inequality, we have ‖ux‖L∞ ≤ ‖gx‖L‖m‖L ≤

‖m‖L and ‖u‖L∞ ≤ ‖g‖L‖m‖L ≤ 

 (coth 
 )‖m‖L . From (.), we obtain

d
dt

‖m‖
L + λ‖m‖

L ≤ 

(‖m‖

L
) 

 , (.)

where λ = β – (coth 
 )|β – λ|. Multiplying both sides of (.) by eλt gives rise to

d
dt

(
eλt‖m‖

L
) ≤ 


e– 

 λt(eλt‖m‖
L

) 
 . (.)

Then we have

d
dt

(
eλt‖m‖

L
)– 

 ≥ –



e– 
 λt . (.)

Integrating (.) with respect to time variable from  to t yields

(
eλt‖m‖

L
)– 

 ≥ 
‖m‖L

+


λ

(
e– 

 λt – 
) ≥ 

‖m‖L
–


λ

. (.)

Using the assumption ‖m‖L ≤ λ
 , we have

‖m‖L ≤ e– 
 λt

(


‖m‖L
–


λ

)–

. (.)

Applying the Sobolev embedding theorem gives rise to ‖ux‖L∞ ≤ ‖m‖L ≤ C(T). Using
Theorem ., we complete the proof of Theorem ..

4 The proofs of Theorems 1.4 and 1.5
4.1 The proof of Theorem 1.4
We are in the position to prove the global existence of weak solutions to problem (.).
Let u(x) ∈ H and uε(x) = jε(x) ∗ u(x), where jε(x) is the mollifier. We construct the
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approximate solution sequence (uε)ε> = (uε(t, x))ε> as a solution to problem (.) with a
viscous term ε(uxx – uxxxx). Namely

⎧
⎪⎨

⎪⎩

uε,t + (uε + a)∂xuε = εuε,xx – ∂xPε , t > , x ∈ S,
uε(t, ) = uε(t, ), uε,x(t, ) = uε,x(t, ), uε,xx(t, ) = uε,xx(t, ), t ≥ ,
uε(, x) = uε(x), x ∈ S,

(.)

where ∂xPε = ∂x( – ∂
x )–[u

ε + (k + a)uε + 
 u

ε,x – βuε,x] + ( – ∂
x )–(λuε).

We establish the following global well-posedness result for problem (.).

Lemma . Let uε ∈ Hs (s ≥ ). Then there exists a unique solution uε ∈ C([,∞); Hs) to
problem (.). Furthermore, for all t > , we have

∥
∥uε(t)

∥
∥

H + 
∫ t



∫

S

[
λu

ε + (β + ε)u
ε,x + εu

ε,xx
]

dx ds = ‖uε‖
H . (.)

Proof of Lemma . Following the standard arguments for the nonlinear parabolic equa-
tion and using Theorem . in [], we deduce that the problem (.) admits a unique
solution uε ∈ C([,∞); Hs) (s ≥ ). Multiplying (.) by uε and using integration by parts
yield




d
dt

∫

S

(
u

ε + u
ε,x

)
dx +

∫

S

(
λu

ε + βu
ε,x

)
dx + ε

∫

S

(
u

ε,x + u
ε,xx

)
dx = ,

which completes the proof. �

Using Lemma . and the Sobolev embedding theorem, we have ‖uε‖L∞ ≤ √
‖uε‖H ≤

√
‖uε‖H ≤ √

‖u‖H . Differentiating the first equation in (.) with respect to x and
denoting qε = ∂uε

∂x . Then qε(t, x) satisfies

⎧
⎪⎨

⎪⎩

∂qε

∂t + (uε + a) ∂qε

∂x – ε
∂qε

∂x + 
 q

ε + βqε = Qε(t, x), t > , x ∈ S,
qε(t, ) = qε(t, ), qε,x(t, ) = qε,x(t, ), t ≥ ,
qε(, x) = qε(x), x ∈ S,

(.)

where Qε(t, x) = [u
ε + (k + a)uε] – ( – ∂

x )–[u
ε + (k + a)uε + 

 q
ε – βqε + λqε].

We bear in mind ( – ∂
x )–f = g ∗ f . Using (.) and Young’s inequality yields

∥
∥Qε(t, x)

∥
∥

L∞([,∞);L∞) � ‖uε‖
L∞([,∞);L∞) + ‖uε‖L∞([,∞);L∞)

+
∥
∥
∥
∥u

ε + (k + a)uε +



q
ε – βqε + λqε

∥
∥
∥
∥

L∞([,∞);L)

≤ L, (.)

where L is a constant depending on ‖u‖H . Using (.), we obtain

∂qε

∂t
+ (uε + a)

∂qε

∂x
– ε

∂qε

∂x +



q
ε + βqε = Qε(t, x) ≤ L. (.)
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Let f = f (t) satisfy

df
dt

+



f  = L, if t >  and f () = max{, uε,x}.

From the comparison principle of the parabolic equations, we deduce qε(t, x) ≤ f (t), for
all t > , x ∈ S. Taking F(t) = 

t +
√

L, we have dF(t)
dt + 

 F(t) – L = 
√

L
t > . Using the

comparison principle of the ODEs yields f (t) ≤ F(t), for all t > . Thus we have

∂xuε(t, x) ≤ 
t

+ C, for all t > , (.)

where C is a constant depending on ‖u‖H and the coefficients in problem (.).

Lemma . Let  < δ < , T > , and [a, b] ⊂ S. Then there exists a positive constant C

depending only on ‖u‖H , T , a, b and the coefficients in (.), such that
∫ T



∫ b

a

∣
∣∂xuε(t, x)

∣
∣+δ dx dt ≤ C, (.)

where uε = uε(t, x) is the unique solution to problem (.).

Proof of Lemma . Let χ (x) ∈ C∞
c be a cut-off function such that χ (x) = , x ∈ [a, b].

Similar to the proof of Lemma . in [], we consider the map θ (ξ ) = ξ ( + |ξ |)δ , ξ ∈ R,
 < δ < . Then

θ ′(ξ ) =
(
 + ( + δ)|ξ |)( + |ξ |)δ–,

θ ′′(ξ ) = δ sign(ξ )
(
 + |ξ |)δ–( + ( + δ)|ξ |)

= δ( + δ) sign(ξ )
(
 + |ξ |)δ– + ( – δ)δ sign(ξ )

(
 + |ξ |)δ–, (.)

∣
∣θ (ξ )

∣
∣ ≤ |ξ | + |ξ |+δ ,

∣
∣θ ′(ξ )

∣
∣ ≤  + ( + δ)|ξ |, ∣

∣θ ′′(ξ )
∣
∣ ≤ δ,

ξθ (ξ ) –


ξ θ ′(ξ ) =

 – δ


ξ ( + |ξ |)δ +

δ


ξ ( + |ξ |)δ– ≥  – δ


ξ ( + |ξ |)δ .

Multiplying (.) by χ (x)θ ′(qε) and integrating the resultant equation over �T = [, T]×S

yield
∫

�T

χ (x)qεθ (qε) dx dt –



∫

�T

q
εχ (x)θ ′(qε) dx dt

=
∫

S

χ (x)
[
θ
(
qε(T , x)

)
– θ

(
qε(, x)

)]
dx –

∫

�T

(uε + a)χ ′(x)θ (qε) dx dt

+ ε

∫

�T

∂xqεχ
′(x)θ ′(qε) dx dt + ε

∫

�T

(∂xqε)χ (x)θ ′′(qε) dx dt

+ β

∫

�T

qεχ (x)θ ′(qε) dx dt –
∫

�T

Qε(t, x)χ (x)θ ′(qε) dx dt. (.)

Using (.), we have
∫

�T

χ (x)qεθ (qε) dx dt –



∫

�T

q
εχ (x)θ ′(qε) dx dt

≥ ( – δ)


∫

�T

χ (x)q
ε

(
 + |qε|

)δ dx dt (.)



Ming et al. Boundary Value Problems  (2016) 2016:67 Page 10 of 20

and
∣
∣
∣
∣

∫

�T

(uε + a)χ ′(x)θ (qε) dx dt
∣
∣
∣
∣

≤
∫

�T

(|uε| + |a|)∣∣χ ′(x)
∣
∣
(|qε|+δ + |qε|

)
dx dt

≤ CT
(∥
∥χ ′∥∥

L


–δ
‖u‖+δ

H +
∥
∥χ ′∥∥

L‖u‖H
)
. (.)

It follows from some calculations that
∣
∣
∣
∣

∫

�T

βqεχ (x)θ ′(qε) dx dt
∣
∣
∣
∣

�
∫

�T

|qε|
∣
∣χ (x)

∣
∣
[
(δ + )|qε| + 

]
dx dt

�
∫ T



∫

S

[
(δ + )|qε|

∣
∣χ (x)

∣
∣ + |qε|

∣
∣χ (x)

∣
∣
]

dx dt

�
∫ T



(‖χ‖L∞‖qε‖
L + ‖χ‖L‖qε‖L

)
dt

� ‖χ‖L∞([,T];L∞)‖qε‖
L([,T];L) + ‖χ‖L([,T];L)‖qε‖L∞([,T];L)

� C
(‖u‖H

)
. (.)

The estimates of other terms are the same as the estimates in [], we omit the details for
simplicity. This completes the proof of Lemma .. �

Lemma . There exists a positive constant C depending only on ‖u‖H and the coeffi-
cients in (.) such that ‖∂xPε(t)‖L∞ ≤ C.

Proof of Lemma . Applying the Sobolev embedding theorem and Young’s inequality
yields

∥
∥∂xPε(t)

∥
∥

L∞

�
∥
∥
∥
∥∂x

(
 – ∂

x
)–

[

u
ε + (k + a)uε +




u
ε,x – βuε,x

]

+
(
 – ∂

x
)–(λuε)

∥
∥
∥
∥

H

 +

�
∥
∥
∥
∥u

ε + (k + a)uε +



u
ε,x – βuε,x

∥
∥
∥
∥

H–+( 
 +)

+ ‖λuε‖
H–+( 

 +)

� ‖uε‖
L∞([,∞);L∞) + ‖uε‖L∞([,∞);L∞) + ‖uε‖

L∞([,∞);H) + ‖uε‖L∞([,∞);H), (.)

which combined with (.) completes the proof. �

Lemma . There exists a sequence {εj}j∈N∗ →  and a function u ∈ L∞([,∞); H) ∩
H([, T] × S) for all T > , such that

uεj ⇀ u in H([, T] × S
)
, uεj → u in L∞(

[,∞) × S
)
, (.)

where uε = uε(t, x) is the unique solution to (.).
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Proof of Lemma . Using (.) and Lemmas ., ., we obtain

‖∂tuε‖L([,T]×S) =
∥
∥(uε + a)∂xuε – εuε,xx + ∂xPε

∥
∥

L([,T]×S)

≤ C
(
 + C‖u‖

H
)
. (.)

Hence, {uε} is uniformly bounded in L∞([,∞); H) ∩ H([, T] ×S). Applying the weakly
compactness lemma yields the weak convergence result in (.). For each  ≤ s, t ≤ T , we
have

∥
∥uε(t) – uε(s)

∥
∥

L =
∫

S

(∫ t

s
∂tuε(τ , x) dτ

)

dx ≤ |t – s|
∫

S

∫ T



(
∂tuε(τ , x)

) dτ dx.

Moreover, bearing in mind H ↪→↪→ L∞ ↪→ L and using the Aubin compactness lemma,
we deduce the strong convergence result in (.). �

Lemma . Let  < p < ∞. There exists a sequence {εj}j∈N∗ →  and a function Q ∈
L∞([, T] × S) such that Qεj → Q in Lp([, T] × S).

Proof of Lemma . We fix T > . Using (.), (.), and (.), we deduce that
‖∂tQε‖L([,T];L) is bounded. Applying (.), we see that Qε is uniformly bounded in
W ,([, T] × S). Using the Aubin compactness lemma, we complete the proof. �

We use over-bars to denote the weak limits.

Lemma . Let  < p < ,  < r < 
 . Then there exists a sequence {εj}j∈N∗ → , q ∈

Lp([,∞) × S), and q ∈ Lr([,∞) × S) such that

qεj ⇀ q in Lp([,∞) × S
)
,

qεj
�

⇀ q in L∞(
[,∞); L), (.)

q
εj

⇀ q in Lr([,∞) × S
)
.

Moreover,

q(t, x) ≤ q(t, x), for a.e. (t, x) ∈ [,∞) × S, (.)

∂u
∂x

= q in the sense of distributions on [,∞) × S. (.)

Proof of Lemma . Using Lemmas . and ., we obtain (.) immediately. From (.),
we get (.). Finally, (.) is a consequence of the definition of qε , (.), and Lem-
ma .. �

We denote the sequences {uεj}j∈N∗ , {qεj}j∈N∗ , and {Qεj}j∈N∗ by {uε}ε>, {qε}ε>, and
{Qε}ε>, respectively. Let η ∈ C be convex and η′ be Lipschitz continuous on R. Using
(.), we get

η(qε) ⇀ η(q) in Lp([,∞) × S) ( < p < ), (.)

η(qε)
�

⇀ η(q) in L∞(
[,∞)

; L). (.)
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Multiplying (.) by η′(qε) yields

∂

∂t
η(qε) +

∂

∂x
[
uεη(qε)

]
– qεη(qε) + a∂x

[
η(qε)

]
– ε

∂

∂x η(qε) + εη′′(qε)
(

∂qε

∂x

)

= –βqεη
′(qε) –



η′(qε)q

ε + Qε(t, x)η′(qε). (.)

Lemma . Let η ∈ C be convex and η′ be Lipschitz continuous on R. Then we have

∂η(q)
∂t

+
∂

∂x
(
(u + a)η(q)

) ≤ qη(q) –



qη′(q) – βqη′(q) + Q(t, x)η′(q), (.)

in the sense of distributions on [,∞)×S. Here η(q), qη(q), qη′(q), qη′(q), and η′(q) denote
the weak limits of η(qε), qεη(qε), q

εη
′(qε), qεη

′(qε), and η′(qε) in Lr([,∞) × S) ( < r < 
 ),

respectively.

Proof of Lemma . Using Lemmas . and ., the convexity of η, and taking the limits
as ε →  in (.) give rise to (.). �

Remark . From (.), we obtain

q = q+ + q– = q+ + q–, q = (q+) + (q–), q = (q+) + (q–), (.)

a.e. in [,∞) × S, where ξ+ = ξχ[,∞)(ξ ), ξ– = ξχ(–∞,)(ξ ) for ξ ∈ R. From (.) and Lem-
ma ., we have

qε(t, x), q(t, x) ≤ 
t

+ C, for all (t, x) ∈ [,∞) × S, (.)

where C is a constant depending only on ‖u‖H and the coefficients in (.).

Lemma . In the sense of distributions on [,∞) × S, we obtain

∂q
∂t

+
∂

∂x
[
(u + a)q

]
+ βq =




q + Q(t, x). (.)

Proof of Lemma . Using Lemmas ., ., and . and taking the limits as ε →  in (.)
yield (.). �

The following lemma contains a generalized formulation of (.).

Lemma . Let η ∈ C. We have

∂η(q)
∂t

+
∂

∂x
[
(u + a)η(q)

]

= qη(q) +
(




q – q
)

η′(q) – βqη′(q) + Q(t, x)η′(q), (.)

in the sense of distributions on [,∞) × S.
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Proof of Lemma . Let {wδ}δ be a family of mollifiers defined on S and qδ(t, x) = (q(t, ·) �

wδ(·))(x). From (.), one derives

∂η(qδ)
∂t

= η′(qδ)
∂qδ

∂t

= η′(qδ)
[

–(u + a)
∂q
∂x

� wδ – q ∗ wδ +



q � wδ – βqδ + Q(t, x) � wδ + ρδ

]

, (.)

where ρδ →  as δ →  in L([,∞) × S). Using the boundedness of η′ and letting δ → 
in (.) yield (.). �

Strong convergence of qε

Following the ideas in [] and [], we improve the weak convergence of qε in (.) to
strong convergence. We prove that if the defect measure of q – q is zero initially, then it
continues to be zero at all later times.

Lemma . [] Let u(x) ∈ H. Then we deduce

lim
t→

∫

S

q(t, x) dx = lim
t→

∫

S

q(t, x) dx =
∫

S

u
,x dx (.)

and

lim
t→

∫

S

(
η±

M(q)(t, x) – η±
M(q)(t, x)

)
dx = , (.)

where ηM(ξ ) = 
ξ  if |ξ | ≤ M, ηM(ξ ) = M|ξ | – 

 M if |ξ | > M and η+
M(ξ ) = ηM(ξ )χ[,∞)(ξ ),

η–
M(ξ ) = ηM(ξ )χ(–∞,)(ξ ), ξ ∈R, M > .

Lemma . [] Let M > . Then for all ξ ∈R,

ηM(ξ ) =


ξ  –



(
M – |ξ |)

χ(–∞,–M)∪(M,∞)(ξ ),

η′
M(ξ ) = ξ +

(
M – |ξ |) sign(ξ )χ(–∞,–M)∪(M,∞)(ξ ),

η+
M(ξ ) =




(ξ+) –



(M – ξ )χ(M,∞)(ξ ),
(
η+

M
)′(ξ ) = ξ+ + (M – ξ )χ(M,∞)(ξ ),

η–
M(ξ ) =




(ξ–) –



(M + ξ )χ(–∞,–M)(ξ ),
(
η–

M
)′(ξ ) = ξ– – (M + ξ )χ(–∞,–M)(ξ ).

(.)

Lemma . Let u(x) ∈ H. For all t > , we have




∫

S

(
(q+) – (q+))(t, x) dx ≤

∫ t



∫

S

Q(s, x)
[
q+(s, x) – q+(s, x)

]
dx ds. (.)
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Proof of Lemma . Let M be sufficiently large and  < t < T (T > ). Subtracting (.)
from (.) and using Lemma . yield

∂

∂t
(
η+

M(q) – η+
M(q)

)
+

∂

∂x
(
(u + a)

[
η+

M(q) – η+
M(q)

])

≤ (
qη+

M(q) – qη+
M(q)

)
–



(
q

(
η+

M
)′(q) – q(η+

M
)′(q)

)

–


(
q – q)(η+

M
)′(q) – β

(
q
(
η+

M
)′(q) – q

(
η+

M
)′(q)

)

+ Q(t, x)
((

η+
M

)′(q) –
(
η+

M
)′(q)

)
. (.)

Using the increasing property of η+
M(q) and (.), we derive

–


(
q – q)(η+

M
)′(q) ≤ . (.)

It follows from Lemma . that

qη+
M(q) –




q(η+
M

)′(q) = –
M


q(M – q)χ(M,∞)(q), (.)

qη+
M(q) –




q
(
η+

M
)′(q) = –

M


q(M – q)χ(M,∞)(q). (.)

Let M > C and �M = ( 
M–C

,∞) × S. Applying Remark . and (.) gives rise to

qη+
M(q) –




q(η+
M

)′(q) = qη+
M(q) –




q
(
η+

M
)′(q) = 

and

η+
M(q) =

(q+)


,

(
η+

M
)′(q) = q+, η+

M(q) =
(q+)


,

(
η+

M
)′(q) = q+, q

(
η+

M
)′(q) = (q+).

(.)

Applying (.) yields β(q(η+
M)′(q) – q(η+

M)′(q)) ≥ . From (.)-(.), in �M , we have

∂

∂t
(
η+

M(q) – η+
M(q)

)
+

∂

∂x
(
(u + a)

[
η+

M(q) – η+
M(q)

])

≤ Q(t, x)
((

η+
M

)′(q) –
(
η+

M
)′(q)

)
. (.)

Integrating (.) over ( 
M–C

, t) × S yields




∫

S

(
(q+) – (q+))(t, x) dx ≤

∫

S

[

η+
M(q)

(


M – C
, x

)

– η+
M(q)

(


M – C
, x

)]

dx

+
∫ t


M–C

∫

S

Q(s, x)
[
q+(s, x) – q+(s, x)

]
dx ds. (.)

Taking M → ∞ in (.) and using Lemma . complete the proof. �
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Lemma . For all t >  and M > , we have

∫

S

(
η–

M(q) – η–
M(q)

)
(t, x) dx

≤ M



∫ t



∫

S

(M + q)χ(–∞,–M)(q) dx ds

–
M



∫ t



∫

S

(M + q)χ(–∞,–M)(q) dx ds

+ M
∫ t



∫

S

[
η–

M(q) – η–
M(q)

]
dx ds +

M


∫ t



∫

S

(
(q+) – (q+))dx ds

+
∫ t



∫

S

Q(s, x)
((

η–
M

)′(q) –
(
η–

M
)′(q)

)
dx ds. (.)

Proof of Lemma . Subtracting (.) from (.) and using Lemma ., we deduce

∂

∂t
(
η–

M(q) – η–
M(q)

)
+

∂

∂x
(
(u + a)

[
η–

M(q) – η–
M(q)

])

≤ (
qη–

M(q) – qη–
M(q)

)
–



(
q

(
η–

M
)′(q) – q(η–

M
)′(q)

)

–


(
q – q)(η–

M
)′(q) – β

(
q
(
η–

M
)′(q) – q

(
η–

M
)′(q)

)

+ Q(t, x)
((

η–
M

)′(q) –
(
η–

M
)′(q)

)
. (.)

Since –M ≤ (η–
M)′(q) ≤ , we get

–


(
q – q)(η–

M
)′(q) ≤ M


(
q – q). (.)

Using Lemma . yields

qη–
M(q) –




q(η–
M

)′(q) = –
M


q(M + q)χ(–∞,–M)(q), (.)

qη–
M(q) –




q
(
η–

M
)′(q) = –

M


q(M + q)χ(–∞,–M)(q), (.)

η–
M(q) – η–

M(q) =


(
(q–) – (q–)) +




(M + q)χ(–∞,–M)(q)

–



(M + q)χ(–∞,–M)(q). (.)

If –M ≤ q < , q(η–
M)′(q) = (q–), then β(q(η–

M)′(q) – q(η–
M)′(q)) ≥ . If q < –M, q(η–

M)′(q) =
–q–M, then β(q(η–

M)′(q) – q(η–
M)′(q)) = M(–q– – (–q–)) ≥ . From (.)-(.), we have

∂

∂t
(
η–

M(q) – η–
M(q)

)
+

∂

∂x
(
(u + a)

[
η–

M(q) – η–
M(q)

])

≤ –
M


q(M + q)χ(–∞,–M)(q) +
M


q(M + q)χ(–∞,–M)(q)

+
M


(
q – q) + Q(t, x)

((
η–

M
)′(q) –

(
η–

M
)′(q)

)
. (.)
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Integrating (.) over [, t] × S, we obtain
∫

S

(
η–

M(q) – η–
M(q)

)
(t, x) dx

≤ –
M


∫ t



∫

S

q(M + q)χ(–∞,–M)(q) dx ds +
M


∫ t



∫

S

q(M + q)χ(–∞,–M)(q) dx ds

+
M


∫ t



∫

S

(
q – q)dx ds +

∫ t



∫

S

Q(t, x)
((

η–
M

)′(q) –
(
η–

M
)′(q)

)
dx ds. (.)

Hence
∫

S

(
η–

M(q) – η–
M(q)

)
(t, x) dx

≤ –
M


∫ t



∫

S

q(M + q)χ(–∞,–M)(q) dx ds +
M


∫ t



∫

S

q(M + q)χ(–∞,–M)(q) dx ds

+ M
∫ t



∫

S

[
η–

M(q) – η–
M(q)

]
dx ds +

M


∫ t



∫

S

(M + q)χ(–∞,–M)(q) dx ds

–
M


∫ t



∫

S

(M + q)χ(–∞,–M)(q) dx ds +
M


∫ t



∫

S

(
(q+) – (q+))dx ds

+
∫ t



∫

S

Q(t, x)
((

η–
M

)′(q) –
(
η–

M
)′(q)

)
dx ds. (.)

Using M(M + q) – Mq(M + q) = M(M + q), we obtain (.). �

Lemma . We deduce that

q = q, for a.e. (t, x) ∈ [,∞) ×R. (.)

Proof of Lemma . Applying Lemmas . and . gives rise to
∫

S

(


[
(q+) – (q+)] +

[
η–

M(q) – η–
M(q)

]
)

(t, x) dx

≤ M



(∫ t



∫

S

(M + q)χ(–∞,–M)(q) dx ds –
M



∫ t



∫

S

(M + q)χ(–∞,–M)(q) dx ds
)

+ M
∫ t



∫

S

[
η–

M(q) – η–
M(q)

]
dx ds +

M


∫ t



∫

S

[
(q+) – (q+)]dx ds

+
∫ t



∫

S

Q(s, x)
(
[q+ – q+] +

[(
η–

M
)′(q) –

(
η–

M
)′(q)

])
dx ds. (.)

Bearing in mind ‖Q(t, x)‖L∞([,∞);L∞) ≤ L,

q+ +
(
η–

M
)′(q) = q – (M + q)χ(–∞,–M)(q), (.)

q+ +
(
η–

M
)′(q) = q – (M + q)χ(–∞,–M)(q), (.)

and using the convexity of the map ξ → ξ+ + (η–
M)′(ξ ), we obtain

 ≤ [q+ – q+] +
[(

η–
M

)′(q) –
(
η–

M
)′(q)

]

= (M + q)χ(–∞,–M)(q) – (M + q)χ(–∞,–M)(q). (.)
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Thus

Q(s, x)
(
[q+ – q+] +

[(
η–

M
)′(q) –

(
η–

M
)′(q)

])

≤ –L
(
(M + q)χ(–∞,–M)(q) – (M + q)χ(–∞,–M)(q)

)
. (.)

Noting that ξ → (M + ξ )χ(–∞,–M)(ξ ) is concave and choosing M large enough yield

M


(
(M + q)χ(–∞,–M)(q) – (M + q)χ(–∞,–M)(q)

)

+ Q(s, x)
(
[q+ – q+] +

[(
η–

M
)′(q) –

(
η–

M
)′(q)

])

≤
(

M


– L

)
(
(M + q)χ(–∞,–M)(q) – (M + q)χ(–∞,–M)(q)

) ≤ . (.)

From (.)-(.), we obtain

 ≤
∫

S

(


[
(q+) – (q+)] +

[
η–

M(q) – η–
M(q)

]
)

(t, x) dx

≤ CM
∫ t



∫

S

(


[
(q+) – (q+)] +

[
η–

M(q) – η–
M(q)

]
)

(s, x) dx ds. (.)

Using the Gronwall inequality and Lemma ., we have

 ≤
∫

S

(


[
(q+) – (q+)] +

[
η–

M(q) – η–
M(q)

]
)

(t, x) dx = , for all t > . (.)

Applying the Fatou lemma and taking M → ∞ in (.) yield

 ≤
∫

S

(
q – q)(t, x) dx = , for all t > , (.)

which completes the proof. �

Proof Theorem . Using Lemmas . and ., we deduce that the condition (i) in Def-
inition . is satisfied. We need to prove the condition (ii) in Definition .. Applying
Lemma . gives rise to

qε → q in L([,∞) × S
)
. (.)

Applying Lemma . and (.), we deduce that u(t, x) is a distributional solution to prob-
lem (.). Using (.) and bearing in mind λ = min{λ,β}, we have

∥
∥u(t)

∥
∥

H ≤ ‖u‖
H e–λt , for all t > .

Using (.) and (.) yields

∥
∥ut(t)

∥
∥

L ≤ C
(‖u‖H e–λt + ‖u‖

H e–λt) ≤ Ce–λt , for all t > .

Thus, we derive (.). This completes the proof of Theorem .. �
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4.2 The proof of Theorem 1.5
First, we present two lemmas which are used to prove the uniqueness of weak solutions
to problem (.).

Lemma . [] Let u(t, x) ∈ C(R+ × S) ∩ L∞(R+; H) with ∂xu ≤ p
t + C, t > ,  ≤ p < .

Then the problem
{

d
dt ρ(t, x) = u(t,ρ(t, x)), t > , x ∈ S,
ρ(t, x)|t= = x, x ∈ S,

(.)

admits a unique solution ρ(t, x) ∈ L∞(R+; C– p
 ). Moreover, if p =  and limt→ ‖u(t) –

u‖H = , the problem (.) admits a unique solution ρ(t, x) ∈ L∞(R+; C).

Lemma . [] Let u(t, x) satisfy all the conditions in Lemma .. Assume f (t, x) ∈
L∞(R+; H), g(t, x) ∈ L(R+; L∞) or f (t, x) ∈ L∞(R+; W ,), g(t, x) ∈ L(R+; Lp) for all p ≥ p

(p is a sufficiently large number) and limt→ ‖∂xu(t) – ∂xu‖L = , where
{

ft + u∂xf = g, t > , x ∈ S,
f |t= = f(x), x ∈ S.

(.)

Then we have

∥
∥f (t)

∥
∥

L∞ ≤ ‖f‖L∞ +
∫ t



∥
∥g(s)

∥
∥

L∞ ds. (.)

Proof of Theorem . From [] and the assumption that m = u –u,xx is a positive Radon
measure, we deduce that there exists a weak solution u(t, x) ∈ C([,∞); H) to problem
(.) and  ≤ m = u – uxx is also a Radon measure. Now we use the duality arguments
to give a L∞ boundedness for ∂xu(t, x). Taking φ(x) ∈ C∞

c with ‖φ‖L ≤  and using ( –
∂

x )–φ(x) =
∫

S
g(x – y)φ(y) dy, we have

∣
∣
∣
∣

∫

S

∂xuφ dx
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

S

u∂xφ dx
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

S

∫

S

g(x – y) dm(t, y)∂xφ(x) dx
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

S

∫

S

gx(x – y)φ(x) dx dm(t, y)
∣
∣
∣
∣

≤ 

‖φ‖L

∫

S

dm(t, y), (.)

from which one derives
∥
∥∂xu(t)

∥
∥

L∞ ≤ 


∫

S

dm(y). (.)

Let u, u be two weak solutions to problem (.) with the same initial value u, w = u –u,
and m ∈ M+(S), where M+(R+ × S) is the nonnegative Radon measure space. Then

⎧
⎪⎨

⎪⎩

∂tw + (u + a)∂xw = G(t, x), t > , x ∈ S,
w(t, ) = w(t, ), wx(t, ) = wx(t, ), wxx(t, ) = wxx(t, ), t ≥ ,
w(t, x)|t= = , x ∈ S,

(.)
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where G(t, x) = –∂xuw – ∂x(P – P) – ∂x( – ∂
x )–[(k + a)w – βwx] – ( – ∂

x )–(λw) and
Pi = ( – ∂

x )–[u
i + 

 u
i,x] (i = , ). Using (.) and Lemma ., the problem

{
d
dt ρ(t, x) = u(t,ρ(t, x)) + a, t > , x ∈ S,
ρ(t, x)|t= = x, x ∈ S,

(.)

admits a unique solution ρ(t, x) ∈ L∞(R+; Lip). Thus, for problem (.), using Lem-
ma . yields

‖w‖L∞ ≤
∫ t



∥
∥G(s)

∥
∥

L∞ ds. (.)

From the proof of Corollary in [], we obtain

‖–∂xuw‖L∞ ≤ C‖∂xu‖L∞‖w‖L∞ ≤ C‖w‖L∞ ,
∥
∥–∂x(P – P)

∥
∥

L∞ ≤ C‖w‖L∞ ,
∥
∥∂x

(
 – ∂

x
)–w

∥
∥

L∞ ≤ C‖w‖L∞ , (.)
∥
∥∂x

(
 – ∂

x
)–(–βwx)

∥
∥

L∞ ≤ C‖w‖L∞ ,
∥
∥
(
 – ∂

x
)–

λw
∥
∥

L∞ ≤ C‖w‖L∞ ,

where the constant C depends on ‖mi‖L∞([,t];L) and ‖ui‖L∞([,t];H), i = , . Hence

∥
∥w(t)

∥
∥

L∞ ≤ C

∫ t



∥
∥w(s)

∥
∥

L∞ ds. (.)

Applying the Gronwall inequality to (.) yields w = . This completes the proof of The-
orem .. �
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