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Abstract

In this paper, we discuss the existence of two positive solutions for an infinite
boundary value problem of third-order impulsive singular integro-differential
equations on the half-line in Banach spaces by means of the fixed point theorem of
cone expansion and compression with norm type.
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1 Introduction

The theory of impulsive differential equations has been emerging as an important area
of investigation in recent years (see [1-21]). In papers [22] and [23], we have discussed
two infinite boundary value problems for nth-order impulsive nonlinear singular integro-
differential equations of mixed type on the half-line in Banach spaces. By constructing
a bounded closed convex set, apart from the singularities, and using the Schauder fixed
point theorem, we obtain the existence of positive solutions for the infinite boundary value
problems. But such equations are sublinear, and there are no results on existence of two
positive solutions. In a recent paper [24], we discussed the existence of two positive so-
lutions for a class of second order superlinear singular equations by means of different
method, that is, by using the fixed point theorem of cone expansion and compression
with norm type, which was established by the author in [25] (see also [26—29]). Now, in
this paper, we extend the results of [24] to third-order equations in Banach spaces. The
difficulty of this extension appears in two sides: we must introduce a new cone such that
we can still use the fixed point theorem of cone expansion and compression with norm
type, and, on the other hand, we need to introduce a suitable condition to guarantee the
compactness of the corresponding operator. In addition, the construction of an example
to show the application of our theorem to an infinite system of scalar equations is also
difficult.
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Let E be a real Banach space, and P be a cone in E that defines a partial ordering in E
by x < y if and only if y — x € P. P is said to be normal if there exists a positive constant N
such that 0 < x < y implies ||x|| < N||y|, where 6 denotes the zero element of E, and the
smallest N is called the normal constant of P. If x < y and x # y, then we write x < y. Let
P, = P\{0}, thatis, P, = {x € P: x > 6}. For details on cone theory, see [27].

Consider the infinite boundary value problem (IBVP) for third-order impulsive singular

integro-differential equation of mixed type on the half-line in E:

u”(t) = f(t,u(t), u'(t), u" (), (Tu)(t), (Su)(t)), Vte],,

Attley = L' (£))  (k=1,2,3,...),

AU | = LW (8) (k=1,2,3,...), (1)
Aoy, = L' (&) (k=1,2,3,..),

u(0) =9, u'(0) =0, u’(00) = pu”(0),

where J = [0,00), J; = (0,00), 0 <t < -+ < fp < -+, tg = 00, Ji = J\{t,.. b}

feClJ, xP, x P, x P, x P x P,P], oI, I € C[P,,P) (k=1,2,3,...), B > 1, u'(c0) =

lim;_, o #”(£), and

(Tu)(t) = /OtK(t,s)u(s) ds, (Su)(t) = /OOOH(t,s)u(s) ds, (2)

K eC[D,JI,D={(t,s) e] xJ:t=s},H e C[J x],J1. Att|s=g,, Att|4=y, and Au|;-;, denote
the jumps of u(t), u/(¢), and u”(¢) at ¢ = t, respectively, that is,

Ml = t) () Al = ()1 (6), AWy () -1 (67),
where u(t}) and u(t;) represent the right and left limits of u(t) at ¢ = t, respectively, and

u' () (u”(t})) and u/(t;) (u”(t;)) represent the right and left limits of 2//(¢) (1" (¢)) at t = ,

respectively. In the following, we always assume that

lim Hf(t, U, v, W, %,2) || =00, VYu,v,weP,yz€eP, (3)
t—0t
lim Hf(t, u,v, w,y,z)” =00, Vte],,v,weP,,y,z€P, (4)

u€Py,|ul—0

lim |ftuwv,w,y,2)| =00, Vte],uweP,,yz€eP, (5)

vePy,|v]|—0

and

lim Hf(t, u,v, ,¥,2) H =00, Vte],u,veP,,y,zeP, (6)

wePy,|w[—0

thatis, f(¢,u,v,w,,2) issingularat t = 0, u =6, v = 0, and w = 6. We also assume that

lim  [|Lw)| =00 (k=1,2,3,..), (7)

wePy,|lw||—0

lim |L(w)| =00 (k=1,2,3,...), (8)

wePy,|w|—0
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and

lim  [Lw)| =00 (k=1,2,3,..), 9)

wePy,|w[—0

that is, It(w), I(w), and I(w) (k = 1,2,3,...) are singular at w = 0. Let PC[],E] =
{u : uisa map from J into E such that u(¢) is continuous at ¢ # t, left-continuous at ¢ =
tx,and u(]) exists, k = 1,2,3,...} and PC'[J,E] = {u € PC[J,E] : #/(¢) is continuous at ¢
t,and u/(¢}) and o' (¢;) exist for k = 1,2,3,...}. Let u € PC'[J,E]. For 0 < h < ty — tx_1, by

the mean value theorem ([30], Theorem 1.1.1) we have
u(ty) —u(ty —h) € hﬁ{u’(t) h—-h<t< tk}; (10)

hence, it is easy to see that the left derivative of u(t) at ¢ = #, which is denoted by ' (¢),

exists, and

u(ty) — ultx — h) _

; ' (£). (11)

u (t) = lim

h—0*

In what follows, it is understood that #/'(t;) = u’ (). So, for u € PCY[J, E], we have u’ €

PC[J,E]. Let PC?[J,E] = {u € PC[J,E] : u’(t) is continuous at ¢ # t;,and u"(t5) and " (£;)
exist for k =1,2,3,...}. For u € PC?[J, E], we have

tx—h
ute—h)=u'(t) + / u'(s)ds, Vui<t<ti—h<ty (h>0),
t

so, observing the existence of #”(;) and taking limits as # — 0" in this equality, we see
that /(¢ ) exists and

73
u'(t,:) =u(t) + / u'(s)ds, Vtiq<t<ty.
t

Similarly, we can show that #'(£{) exists. Hence, u € PC![],E]. Consequently, PC*[J,E] C
PC[],E]. For u € PC2[J,E], by using #'(t) and u"(¢) instead of u(t) and #/(¢) in (10) and
(11) we get the conclusion: the left derivative of /() at t = #, which is denoted by u” (¢),
exists, and u” (¢) = u”(¢;). In what follows, it is understood that " () = u” (). Hence, for
u € PC?[],E], we have ' € PC'[J,E] and u” € PC[],E].

A map u € PC*[J,E] N C3[J.,E] is called a positive solution of IBVP (1) if u(t) > 6 for
t € J, and u(¢) satisfies (1). Now, we need to introduce a new space DPC?[J,E] and a new

cone Q in it. Let

t (¢t
DPC?[J,E] = {u € PC?[J, E] : sup ”ut(Z)” < 00, sup ||M£ Il

< 00, sup||u”(t) || < oo}.
tes tefy te]

It is easy to see that DPC?[J, E] is a Banach space with norm

llellp = max{||ulls, |||

s ||B}’
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where

(20l

el == = sup @]

s = sup 140
s =
te/y t2

Let W = {u € DPC?[J,E] : u(t) > 6,u/(t) > 0,u"(t) > 6,Vt € J} and

Q= {ue W ﬂf) > (2,3—1)-1@,w,se]+;

: u'(£) >l u'(s)

52 t s

,Vi,s€ ],
u'(t) > B (s), Ve, s e]}.

Obviously, W and Q are two cones in the space DPC?[J,E],and Q C W.Let Q, = {u € Q:
lullp >0} and Qpg = {u € Q:p < |lullp < g} forg>p>0.

2 Several lemmas

In the following, we always assume that the cone P is normal with normal constant N.

Remark 1 For u € DPC?[J, E], we have u(0) = 6 and #'(0) = 6. This is clear since u(0) # 6
implies

[[(2)l
sup =

tey t2

’

and #/(0) # 0 implies

[l (D)l
sup

tey 1

Lemmal Foru € Q, we have

N8B -0l < P < gy, v, 12)

N7ZB2B lulp < M <lulp, Vtel., (13)
and

NZB72B lullp < " @ < llulp, Ve, (14)
where

g’ =min{2(28 -1)"',1}. (15)

Proof The method of the proof is similar to that of Lemma 1 in [24], but it is more com-

plicate. For u € Q, we need to establish six inequalities:

! 1
lualls = SN u [ ]y = 2N BT B ~ 1) udls, Naels = SN ||

B’ T’
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[l = 2N 8728 =) ulls, w2 N7 u" 5 ||y = N7 |-

For example, we establish the first one. By Remark 1, #(0) = 6 and #'(0) = 6, so

t 5l t1 s
L;) = th/ u'(s)ds = tl_Z/ ds/ u'(r)dr.
) 0 0 0

Since
u'(r)> B (t), Vrte],

we have

t i L
a l)znzﬁl(/ Sds)u”(t)zgﬁlbt”(t)» vie),
0
and hence
1y
lulls = SN w5

From these six inequalities it is easy to prove inequalities (12)-(14). For example, we prove
(12). We have

t
14Ol Nrp - 1Oy
12 s?
s0,
u(t
I t(2)|| >NQB - 1) Mulls, Vtel,

and therefore

lu@l _ )N 2B =D~ " l15,

>13 viel,
2 INZ2BB - 1), '
and hence, (12) holds. O

Corollary For u € Q,, we have u(t) >0 and u'(t) >0 fort € J, and u”(t) >0 fort € ].
This follows from (12)-(14).

Let us list some conditions.
(Hy) sup,; fot K(t,s)s* ds < 00, sup,.; [, H(t,s)s* ds < 00, and

oo
lim / |H(¢,s) - H(t,s)|s*ds=0, Vte].
0

t'—t

In this case, let

t [ee]
k* = sup / K{(t,s)s* ds, h* = sup / Hi(t,s)s* ds.
0 0

te] te]
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(Hy) There exist a,b € C[],,]],g € C[J, x P,,]],and G € C[J, x J x J,J] such that

lf &, v,w,9,2) || < aOg(llul, 1) + &G, Iyl 1211,

Vte],u,v,weP,,y,z€P,
and
o0
a;q = /0 a(t)gyq(t) dt < 0o

for any g > p > 0, where
Zq(t) = max{g(sl,SQ) : %N‘Z,B_I(Zﬂ ~1)7pt? <5y <qt?>, N2B2B'pt <s, < qt},
viel.,
and
b* = /Owb(t)dt< 0.
In this case, let (for g > p > 0)
Gp.q = max{Glx1,x2,%3) : N>B2B'p <1 < q,0 <x, <k*q,0 <x3 <h*q},
where 8’ is defined by (15).
(Hs) It(w) < txLi(w) and Ii(w) < tdi(w), Vw € P, (k =1,2,3,...), and there exist y; € J
(k=1,2,3,...) and F € C[/J,,]] such that
1Lcw)| < wE(Iwll), YweP, (k=1,2,3,...),
and

y = t,%yk < 00,

00
k=1

and, consequently,
oo oo
Y =Y WS <o, =Y b <t'P<oo.
k=1 k=1
In this case, let (for ¢ > p > 0)

Ny, = max{F(s) (N2 2Bp<s< q}.

(Hy)Foranyt eJ,,r>p>0,andg > 0,f(t, Por, Pors Por, Py Py) = {f (t, 4, v, w,9,2) 1 1, v, w €
Py, 3,z € Py}, I(Pyy) = {Ix(w) : w € Py}, jk(Ppr) = {jk(w) :w € Py}, and jk(Ppr) = {jk(w) :
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we Py} (k=1,2,3,...) are relatively compact in E, where P,, = {w e P: p < ||w| < r} and

Py={weP:|w| <q}
(Hs) There exist wy € P,, c € C[],,]], and T € C[P,,]] such that

ft,u,v,w,9,2) > ct)t(wywo, Vte],,u,v,weP,,y,z€P,
and
7(w)

ﬂ—>oo asw e Py, ||w| — oo,
w

and
o0
= / c(t) dt < 00.
0
(Hg) There exist w; € P, d € C[J,,]], and o € C[P,,]] such that

f&u,v,w,y,2) > d(t)o(Wywy, Vtej,,u,v,weP,,y,zeP,
and

o(w)—>o00 asweP,|w|—0,
and

d* :/ d(t) dt < oo.
0

Remark 2 It is clear: if condition (H;) is satisfied, then the operators T and S defined
by (2) are bounded linear operators from DPC?2[J,E] into BC[J, E] (the Banach space of
all bounded continuous maps from J into E with norm ||u||p = sup,; lu(?)]]), and || T|| <
k*, |IS|| < h*; moreover, we have T(DPC?[J,P]) C BC[J,P] and S(DPC?[J,P]) C BC|[J,P],
DPC?[J,P] = {u € DPC?[],E] : u(t) > 0,Yt € J} and BP[J, P] = {u € BP[J,E] : u(t) > 0,Vt €

T}

Remark 3 Condition (Hs) means that the function f(¢, u, v, w, y, z) is superlinear with re-

spect to w.

Remark 4 Condition (Hg) means that the function f (¢, #, v, w, 5, 2) is singular at w = 6, and

it is stronger than (6).

Remark 5 If condition (Hj) is satisfied, then (7) implies (8), and (8) implies (9).
Remark 6 Condition (H,) is satisfied automatically when E is finite-dimensional.

Remark 7 In what follows, we need the following three formulas (see [6], Lemma 2):

(a) If u € PC[J,E] N C'[J, E], then

u(t) = u(0) + /: u'(s)ds + Z [u(ef) —u(t;)], Vveel.

O<ty<t

(16)
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(b) If u € PC'[],E] N C?[J,, E], then

ult) = u(0) + 1/(0) + / (= syu(5)ds
0

o 30 Aled) - ()] ¢ - () - () Ve, 7)

O<ty<t

(c) If u € PC?[J,E] N C3[J,, E], then

u(t) = u(0) + tu'(0) + gu”(O) + % ft(t —8)%u"(s)ds + Z {[u(t,j) - u(t,:)]
0 O<tg<t
+ (=t )[u (&) -/ (8)] + %(t -0 [u (8) - " (&)] } vie]. (18)

We shall reduce IBVP (1) to an impulsive integral equation. To this end, we first consider
the operator A defined by

t2

(Au)(t) = 26 -1) {/0 S (s, u(s), 1 (), u” (), (Tu)(s), (Su)(s)) ds + ;jk(u”(t,:))}

+ % /t(t —8)*f (s, u(s), ' (s), u”(s), (Tu)(s), (Su)(s)) ds
0

£y {Ikw(tk» + (- 0l (1))

O<ty<t
1 -
e L L (1) } veel. (19)
In what follows, we write J; = [0, £ ], Jx = (¢_1, &) (k= 2,3,4,...).

Lemma 2 If conditions (H;)-(Ha) are satisfied, then operator A defined by (19) is a contin-
uous operator from Q, into Q; moreover, for any q > p > 0, A(Qy,) is relatively compact.

Proof Letu € Q, and |u||p =7. Then r > 0, and, by (12)-(14) and Remark 1,

%N*Zﬂfl(zﬁ -7 < |u@)|| <rf?, Vee],

and

N72B2Bre< |u@)| <rt, N?B?Br=|u'(t)|<r, Vte],

so, conditions (H;) and (Hy) imply (for k*, i, a(t), g, 4(£), a,
(H1) and (Hy))

. Gpa b(£), b™, see conditions

If (& u(e), ' (&), u” (2), (Tu) (2), (Su) (D)) | < a(t)gr,(t) + G,rb(2), VEE],, (20)

where g, ,(f) and GJ, are g, ,(¢) and G,, for p = r and g = r, respectively. By (20) and con-
dition (H;) we know that the infinite integral fooo St ue), v (8), u”(t), (Tu)(t), (Su)(2)) dt is
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convergent and

/ |Lf(t, u(t), ' (t), " (t), (Tu)(t), (Su)(t)) || dt <aj,+G,,b". (21)
0
On the other hand, by condition (H3) we have

[ (" () | = Newwe (k=1,2,3,...), (22)

where N, is N,,, for p = r and g = r, which implies the convergence of the infinite series
S0 (@ (£)) and

ZHIk ")) < Noy™. (23)

From (19) we get

Aw)@ 1
T 2B-1

:/0 S (s,u(s), 4/ (s), u” (s), (Tu)(s), (Su)(s)) ds + Z L(«"(£))
k=1

vie],. (24)

Moreover, by condition (Hs) we have

< (1) + gu -l (1)

<t i (v () + %(t - 6) L (' (£))

- %(tz + ) Le(u' (8)) < CL(u' (&), YO <ti<t,
50, (19) gives

(Au)() _ 1
2 T 28-1)

:/0 S (s,u(s), 1/ (s), u"(s), (Tu)(s), (Su)(s)) ds

I (u /(t,:))} + %/0 S (s, uls), o/ (s),u” (s), (Tu)(s), (Su)(s)) ds

M8 zw

(' (£))

>
Il

1

< g(ﬁ_l)ifo‘”f(s,u(s),u/( ), (s), (Tu)(s), (Su)(s ds+Z1k "))

+ /0 S (s,u(s), 4/ (s), u” (s), (Tu)(s), (Su)(s)) ds + Z Li(«'(£))

k=1
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_28-1
S 2(B-1)

: /o Oof (s, 14(s), ' (s), " (5), (Tu)(s), (Su)(s)) ds
+i7k(u”(ti))}, veel.. (25)
=
On the other hand, by (19) we have
(Au)'(t) = ﬁ {/Ooof(s, u(s), u'(s), u"(s), (Tu)(s), (Su)(s)) ds + iik(u”(t,:))}

+ /0 (t = 8)f (s, u(s), ' (), 1" (), (Tue)(s), (Su)(s)) ds + Z {Ie (v (%))

e
+(t -t (8))}, Vtel, (26)
o,
e, ﬁ { /0 " s uls) (9) (), (Tu)(s), (Su)(s)) s + gljik(u”(t;)) }
vte],, (27)
and, by condition (Hs),
Ay _ 1

. ,3— {/ S (s, uls),u(s),u (s), (Tu)(s), (Su)(s)) ds + ka («" (%)) }
k=1

+/0 f(s, (s), 4/ (s), 1 (s), (Tu)(s), (Su)(s) ds + Z[k tk

k=1

P / S (s, u(s), ' (), u” (), (Tu)(s), (Su)(s)) ds + ka(u”(t,;)) ,
B-11Jo k=1

Vte],. (28)

In addition, (26) gives

k=1

(Au)"(t) = 5o ! 1 {/ S (s, uls),u(s),u (s), (Tu)(s), (Su)(s)) ds + ij («" (%)) }

/f s, u(s u”(s), (Tu)(s), (Su)(s )) ds + Z ik(u”(t,:)),

O<ty<t

Vi e, (29)

SO,

(Au)”(t)Zﬁ{ /O f(s,u(s), 1/ (5), " (5), (Tu)(s), (Sw)(s)) ds + > T(u" (&) ¢
k=1

Ve, (30)
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and

(Aw)" () < /3% :/0 S (s,0u(s), 1/ (), 1" (), (Tu)(s), (Su)(s)) ds + ka (' (£)) }

1 k=1
+ /Ooof(s, u(s), ' (s), u"(s), (Tu)(s), (Su)(s)) ds + ka(u”(t,:))
k=1

B

= ﬂ {/(; f(s, M(S), u’(s), u//(S), (Tu)(S), (Su)(s)) ds + ij(u”(t/:)) },

k=1

vie]. (31)

It follows from (25), (28), (31), (21), and (23) that Au € DPC?[J, E] and

N(28-1)

lAulls < = gy (@5, + Gryb™ + Ny 7)), (32)
N

], = 55, + Gt +Ny), @)
N

l(Aw)"| , < ﬁ—_‘i(a;i, + G b* + Nyyy*). (34)

Moreover, (24), (25), (27), (28), (30), and (31) imply

Vt,se],,

(Abtt)(t) (A )(S) (Au)(®) _ p1 (An)'(s)

-1
=@28-1) = ,

and
(Auw)"(t) = B~ (Aw)"(s), Vts€],

and hence, Au € Q. Thus, we have proved that A maps Q, into Q.

Now, we are going to show that A is continuous. Let u,,# € Q, and |u, — u|p — 0
(n — 00). Write | u#|p = 27 (¥ > 0), and we may assume that 7 < |lu,|p <3r (n=1,2,3,...).
So, (12)-(14) imply

51\1-2,6-1(25 -7 < ua®)| <378, %N‘zﬂ‘l(w -7 < |y | < 37,
Vte] n=1,2,3,...), (35)
N7Z2B2 it < ||u,(t)| <37t,  N2B2Brt < | (8)] <37,

Vie](n=1,2,3,...), (36)
and

N7?2B2Br < ||uj(e)| <37,  N2B2BFr<|u'@)| <37,

VieJ](n=1,2,3,...). (37)
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By (19) we have

[l (Au,)(8) — (An) @)l
t2

< 2(/3 ) {/ f (5, 2 (s), 24, (5), 6" (5), (Tt ) (5), (S (s))

—f (s, (), W (s), & (), (T)(s), (St)(s)) | ds + Z |2 () (20)) - I (@ (£)) |
k=1
1 ! / 4
‘s fo (S, 1), 12,50, 1), (Titn5), (S18)())

—f(s i(s), @ (), (), (Tia)(s), (Tn)(s)) | ds

lelk (&) ||+—Z||1k o) = (@ ()|

O<tk<t O<ty<t
+ 5 () - L@ ()|, Vee . (n=1,2,3,...). (38)
O<ty<t

When 0 < ¢ < t;, we have

Z | 2 (£)) = L@ () | = 0 Z |2k (o (8)) = L@ (5)) | = 0

O<ty<t O<ty<t

S0,
sup Y ) k@ @) = swp 5 3 [ (e6) 1@ (17))|
te]+ O<ty<t i< <00 t O<t1<<t
1 o0
< 2 D () - (@ (5) | (39)
1 k=1
and

It follows from (38)-(40) that

Au,)(t) — (Ai)(t 1 & e (e
sup 1N BN < 2 5o 1)) - (1)

1 k=1

R % SR 6)) - T@ ()|

Aw, — Aulls =

ﬂ - / "
* Z(ﬁ - 1) {\/0 ”f(S, Un (S), u”(s)’ un(s))
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(Tun)(5), (Suan)()) = f (s, 1 (s), ' (s), " (s), (Tw)(s), (Si)(s)) | s

+ i!!ik(u;:(t,:)) -L(#@' (&)t (n=1,23,..). (41)

k=1

It is clear that

S (& un(®), 1, (), (0), (Tt (2), (Sun)(2)) — f (&, (2), & (2), & (¢), (Tw)(t), (S)(2))

asn— oo, vVt e/,
and, similarly to (20) and observing (35)-(37), we have

f (& 1 (0), 1, (2), 1455 (2), (o) (2), (S (2)) = f (£ 2(2), &' (2), " (2), () (2), (Si) (2)) |
<2[a(O)gr3#(t) + Grab(t)| =0 (1), Vte], (n=1,2,3,...),

and by condition (H) we see that foooa(t) dt < co. Hence, the dominated convergence

theorem implies

n—00

lim /0 1 (6 16, 2,6), 16), (T )0, (S) ()

—f (&, u(e), @ (£), " (¢), (Tw)(t), (Si)(2)) | dt = 0. (42)
On the other hand, similarly to (22) and observing (37), we have
|17 (4 (£0)) || < Nisivio [Ze(@" (£))|| < Nigive (kon=1,2,3,...). (43)

By (43) and condition (H3), using a similar method in the proof of Lemma 2 of [24], we

can prove

tim S () - K@ ) =0, Tim S (e () - K@ (5)) =0 @)
k=1

k=1

and

tim SN (65) R (1) ] = o (45)
k=1
It follows from (41), (42), (44), and (45) that
lim | Au, — Aits = 0. (46)

On the other hand, similarly to (41) and observing (26) and (29), we easily get

/ =\/ 1 - T 1" 41— T (7 +— :B *©
i = 4| = & 3 Vo) - TG ) + 5 _1{ [ Vs

(), 14 (5), (Tuty) (), (S)(5))
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—t(s,u(s), ' (s), " (s), (T)(s), (Sit)(s)) | ds

+Z||Ik "(t)) (tk))”} (n=1,2,3,...),

and

[(Au,)" - (Aw)"| , < i{ / If (5, 20 (5), 24;,(5), 4,5 (5), (Tea)(5), (Sttn)(s))
B-11Jo

—f (s, u(s), & (s), " (s), (Tw)(s), (S)(s)) || ds

+Z”Ik 2 (80) 1@ (£)) | ¢-
So, (47), (48) and (42), (44), (45) imply

lim ” (Au,) - (An) ||T =

n—0o0
and
i () - (47, =0

Page 14 of 31

(47)

(48)

(49)

(50)

It follows from (46), (49), and (50) that ||Au, — Ait||p — 0 as n — oo, and the continuity

of A is proved.

Finally, we prove that A(Q,,) is relatively compact, where g > p > 0 are arbitrarily given.

Let 4, € Qpy (n=1,2,3,...). Then, by (12)-(14) and Remark 1, we have

%N‘Zﬂ‘l(z,ﬁ ~1)7p < a0 < g, NTBBpr< |, 1) <at,

N?2B2Bp<|uy®)|| <q Vte](n=1,23,..).
Similarly to (20), (22), (32)-(34) and observing (51), we get

If (2 (2), i, (2), 2,(8), (Tin)(2), (Sitn)(0)) | < A(2)gp,g(£) + Gpgh(2),

Vte], n=1,2,3,...),

|Te (@, ()| < Npave (n=1,2,3,...),

N@2B -1)

lAs,lls < —o— 26 1) (a5, + Gpgb* + Npgy™) (n=1,2,3,..)),

- \/ N * * *
l(A) ||T§ﬂ—_ﬁl(ap,q+ep,qb eNpy") (1=1,2.3,..),
and

N
||(Ab_tn)//||3_ ; :31( pq+qub + N, v* ) (n=1,2,3,...).

(51)

(55)

(56)
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From (54) we see that the functions {(A«,)(¢)} (n =1,2,3,...) are uniformly bounded on
[0, 7] for any r > 0. Consider J; = (¢;_1,¢;] for any fixed i. By (19) we have

(Aitn)(t') — (Au,)(2)

£
f (s, (s), 84,(5), #,,(5), (Tthy,(s), (Sun s) ds + Ik T t ]
=i S
1 ! / 2 =/ -
ts fo (= 5)" = (e = 51 (5, 0(5), 0, (5), 5 (), (Tr) ), (Sitn)(s)) s

+ % / (¢ - s)zf(s, (), 4,,(), 1), (5), (T i) (5), (Sikn)(s)) ds

+Z{ (¢ - 6) () () + 2[(t - ) (t—tk)z]fk(ﬁ”(tk))},
Vit €t >t (n=1,2,3,...). (57)

Since

(£ =s)’ = (=)= ({ =) ({ +t—-25) < (£ —0) (¢ +£) = (¢)* - 2,

Vt,t eJ,t >t,0<s<t
and, similarly,
(¢ -t) - <) -2 Vot et >t(k=12,...,i-1),
(57) implies

0 < (Au,)(t') - (Am,)(t)

L -r / (5,009, 260, )9 (T, SN0 s + 3 e (5)
_2(,3—1) 0 »yBn\o ) Uy \o) Uy \S)s n ’ " K%

k=1

+ %[(t,)z -+ (¢ - t)z] /Oocf(s, (), 14,,(), 1, (5), (Tia)(5), (Sikn)(s)) ds

’ = T (== 1 / > T o= =
+ (¢ =0) YTl () + S [(0) =21 T (1)),
k=1 k=1
Vt,t eJ,t' >t(n=1,2,3,..), (58)

and, consequently, by (52), (53), condition (H3), and (58) we get
(A (¢) — (Aa) (@)
N[()* -] N,
<SG oD) Gat Crab” + NogyT) + 5 L) =2+ (0 =0")(a, + Gogh?)

+N(t' = t)N,q7 + %[(t/)2 —PINpgv*, Vot €]t >t(n=1,2,3,..). (59)
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From (59) we know that the maps {w, ()} (n=1,2,3,...) defined by

e (6) - {(Aan)(t) Veeki= o (60)

(An,)(tf 1) V=t

((Aw,)(t] ;) denotes the right limit of (Au,)(¢) at t = ¢;,_;) are equicontinuous onJ; = [t1,4].
On the other hand, for any € > 0, choose a sufficiently large 7 > 0 and a sufficiently large
positive integer j such that

oo o0
/ a(t)g,,(t)dt + G, / b)dt<e, Ny, Z Vi <€. (61)
T T k=j+1

We have, by (60), (19), (52), (53), and (61),

w,(t) = 2B 1){ f S (s, 54(s), 11,,(5), 1), (5), (T i), (Sin) (5)) ds + / oof(&itn(s),ﬁ;(s),

j o0
it (5), (Titn)(s), (Situ)(s)) ds + > Te(iy () + Y Te(i (tk))}

k=1 k=j+1

(&= 8)°f (s, (), 10, (5), @' (5), (Ty)(5), (Sikn)(s)) s

0

+Z{ )) + (¢ — 1T (it (& ))+§(t—tk)27k(ﬁ”(t;))}»

Vte];(n=1,2,3,...), (62)
and
/Oof(s, (), 10,,(), 1), (5), (Tian)(s), (Sity)(s)) ds| <€ (n=1,2,3,..), (63)
Zlk i (t))| <e (1=1,2,3,...). (64)
k=j+1

It follows from (62)-(64) and [30], Theorem 1.2.3, that

2

«(W) = 557

: /T ot(f(s, V(s), V'(s), V'(s), (TV)(s), (SV)(S))) ds + 2¢
j ~

+ Za(lk(V”(t,:))) + 26}
k=1

+ / (t -9 (f(s, V(s), V'(s), V(5), (TV)(s), (SV)(s))) ds

N Z{ (I(v + (6 - e (V'(%)))

e tk)za(ik(v"(t,;)))}, veel, (65)
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where W (t) = {w,(t) : n = 1,2,3,...}, V(s) = {u,(s) : m =1,2,3,...}, V'(s) = {u,(s) : n =
1,2,3,...}5, V'(s) = {u)(s) : m = 1,2,3,...}, (TV)(s) = {(Tut,)(s) : m = 1,2,3,...}, (SV)(s) =
{(Su,)(s) : m=1,2,3,...}, and a(U) denotes the Kuratowski measure of noncompact-
ness of a bounded set U/ C E (see [30], Section 1.2). Since V(s), V'(s), V"(s) C Py,
for s € J, and (TV)(s) C Py, (SV)(s) C Py for s € ], where p* = min{N2871 (28 -
1) ps?, N~2B728'ps, N2 B2 8'p}, r* = max{gs?,qs,q)}, and ¢* = max{k*q, h*q}, we see that,
by condition (Ha),

a(f (s, V(s), V'(s), V'(5),(TV)(s), (SV)(5))) =0, Vs€J,, (66)
and
a(l(V'(£))) =0, a@(V'(£))) =0, a(l(V'(4)))=0 (k=1,2,3,.). (67)

It follows from (65)-(67) that

2t%¢

a(W(t)) < 51

) Vit eji;

which implies by virtue of the arbitrariness of € that a(W/(t)) = 0 for ¢ € J;. Hence, by
Ascoli-Arzela theorem (see [30], Theorem 1.2.5) we conclude that W = {w,,: n=1,2,3,...}
is relatively compact in C[J;, E], and therefore, {w,(t)} (n = 1,2,3,...) has a subsequence
that is convergent uniformly on J;, so, {(4i,)(t)} (n =1,2,3,...) has a subsequence that is
convergent uniformly on J;. Since i may be any positive integer, by the diagonal method,
we can choose a subsequence {(Aitn/)(t)} (7=1,2,3,...) of {(Au,)(t)} (n=1,2,3,...) such
that {(Aitnj)(t)} (/=1,2,3,...) is convergent uniformly on each J; (i=1,2,3,...). Let

lim (Ait,)(t) = w(t), Veel. (68)
I%OO
By a similar method, we can prove that {(Aitn/)’(t)} (=1,2,3,...) has a subsequence that is
convergent uniformly on each J; (i =1,2,3,...). For simplicity of notation, we may assume
that {(Aﬁn/)’(t)} (=1,2,3,...) itself converges uniformly on each J; (i=1,2,3,...). Let
lim (Az,,))'(£) = y(2), Vee]. (69)
J—> 00
Again by a similar method, we can prove that {(Au, ].)” (®)} (G=1,2,3,...) has a subsequence
that is convergent uniformly on each J; (i =1,2,3,...). Again for simplicity of notation,
we may assume that {(Azft,,l.)”(t)} (j=1,2,3,...) itself converges uniformly on each J; (i =
1,2,3,...). Let
lim (Aitnj)”(t) =Zz(¢). (70)
Jj—00

By (68)-(70) and the uniformity of convergence we have

W (t) = y(¢), ¥(t) =z(), Vte], (71)
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and so, w € PC?[], E]. From (54)-(56) we get

NQ2B-1)

171 = 55— (@ha

Gpgb”™ + Npgy )

and

Np
171, < 527
— Np
71, = 55

( pq+Gqu +Npqv )

( Apg T Gpqb® + Npgy )
Consequently, w € DPC2[J, E], and
lwlp < ﬂN—_'Bl(a;q + Gpgb* + Npgv™).
Let € > 0 be arbitrarily given. Choose a sufficiently large positive number 7 such that

/ a(t)gpq(t)dt+qu/ b()dt + Npg Y " yi<e. (72)
n

te=n
For any n < t < 0o, we have, by (29),
(At )'(6) - (A / F (50 (51, (9, ) (), (Tt )(9), (578, (5)) s

+ Z Ik(ﬁ:’:j(t/:)) 0:1’2’3»~-);

N=<ty<t

so, from (52) and (53) we get

t t
a0 A0 = [ al5)ga6)d5+ G [ 0051
n n

+Npq Z vie (=1,2,3,..),

N=<ti<t

which implies by (72) that
[ (A)" () - (M) )] <& VE>n(=1,23,...),
and, letting j — oo and observing (70) and (71), we get
W@ -w"(m)| <€, VE>n.

On the other hand, since {(Ait,,,.)”(t)} converges uniformly to w”(£) on [0, 7] as j — oo,
there exists a positive integer jy such that

|4, (0) - 0)] <&, Ve € 10,017 > o,
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and hence

(At (0) - @) < (i) () = (A" ()] + || At (1) = 7 1)

+ ') - W' (@)] <3, VE>n,j>jo.

Consequently,

|(Am,)" = w"| , <3¢, Vj>jo,
and hence

jlirglo |(Am,)" - w"| ;= 0. (73)
It is clear that (19) and (26) imply

(Aity,) (8) — (At (8) = Ik(it;’/ (%)) (kj=1,2,3,..) (74)
and

(Atty) (6) = (Atty) (6) = I (i () (kij=1,2,3,...). (75)
By the uniformity of convergence of {(Aii,)(£)} and {(Ait,)'(£)} we see that

lim (At (t7) = (%), lim (Aw,) () =w(ty) (k=1,2,3,...)
and

Jim (A, (t) = W (), Jim (Am,) (8) =w'(tr) (k=1,23,..),

50, (74) and (75) imply that limits limjﬁoolk(ﬁ’,:j(t,:)) (k=1,2,3,...) and limjﬁoolk(ﬁ;;j(t,;))
(k=1,2,3,...) exist and

() - v(er) = lim (i (65)), (20) — W (5) = lim D () (K=1,2.3,..).
Let

Jlim I, (&) =26 lim L(it () =2 (k=1,2,3,...).

j—
Thenz, >0,z >0 (k=1,2,3,...), and
w(tf)-w(t) =z, W()-W(t) =2z (k=1,2,3,..)). (76)

By (53) and condition (Hsz) we have

| 7ty (£6)) | < NN gt v |7, () | < NNpgtire (kij=1,2,3,...),  (77)
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50,
llzell < NN4i v Izl < NNpgtivi (k=1,2,3,...). (78)

For any given € > 0, by condition (H3) we can choose a sufficiently large positive integer
ko such that

oo o0
Npq Z LYk <€, Npq Z Vi <€, (79)
k=ko+1 k=ko+1

and then, choose another sufficiently large positive integer j; such that
|2 (@ (60)) - e < ki 1Te(@, (5)) - 2 < ki Visj (k=1,2....k). (80)
0 0

It follows from (77)-(80) that
oo ko
2 Nty (50)) — el < 3 ity () - 2|
k=1 k=1

+ Y nlk(ﬁ;;j(t,;))||+ > Nzl <3¢, V>,

k=ko+1 k=ko+1

and
I ) -3 = 3 )5

[o¢] [o¢]
+ Y i ity (8)) || + > Nzl <36, V>,

k=ko+1 k=ko+1
and hence
o0 o0 _
Jim D ) - =0 fim S () 5] <o s

By (16), (17), and (74)-(76) we have

(Aty) (t) = f (Aiy)"(S)ds+ Y (i, (&), Yee] (=1,23,..),
0

O<ty<t

t
Ww(t) = f W'(s)ds+ Yz, Vte],
0

O<tg<t

and

(Aty)(8) = /0 (t - 5)(Ay)" (s) ds + Z {Ik(ﬁ’,;j(t,:))+(t—tk)7k(12’,:i(t,;))},

O<ty<t

Vie] (7=1,2,3,...),
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w(t) = / t(t—s)v_v”(s)ds+ > e+ -z}, vee],
0

O<ty<t
which imply
|(Az) @) - w @) < ¢ (Ady)" - w" !I 5
+ > (i, ~z|, VteJ(i=1,2,3,..), (82)

O<ty<t

and

|Aaw,)@) - W) | < 2 |Aimy) = w"| 5+ Y |

|t (2)) = 2

O<ty<t
+t| I, () ~ 2|}, veel. (83)
Since
Yo () -zl =0, Y L@ (&) -z] =0, Yo<t<n(=123,..)
O<ty<t O<ty<t

(82) and (83) imply

oo
|7, =1 < [ = |+ SO () -E] G=123,..) (80
k=1

and

[e¢]
Ay, —wlls < | (A ="+ 67> | (i (5)) = 2|

k=1
+t112 I, () - 2] G=123,.... (85)
By (84), (85), (73), and (81) we get
lim |[(A#,) - W, =0, lim [|Az, —w|s = 0. (86)
j—o0 Jj—>o0

It follows from (73) and (86) that Azt —wlp — Oasj— oo, and the relative compactness
of A(Q,,g) is proved. O

Lemma 3 Let conditions (H;)-(Ha) be satisfied. Then u € Q, N C3[J., E] is a positive so-
lution of IBVP (1) if and only if u € Q. is a solution of the following impulsive integral
equation:

2 00
u(t) = ﬁ{/o S (s,u(s), 4/ (s), " (s), (Tu)(s), (Su)(s ds+21k "( tk

+ %/t(t—s)2f(s,u(s),u/(s),u”(s),(Tu)(S)’ (Su)(s)) ds
0
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Py { L( () + (¢ - 80T (' (57))

O<ty<t

+

%(t ~ ) I (v (£)) } Vte], (87)

that is, u is a fixed point of the operator A defined by (19).

Proof The method of the proof is similar to that of Lemma 3 in [24], the difference is in
using formula (18) instead of formula (17) with discussion in a Banach space. We omit the
proof. O

Lemma 4 (Fixed point theorem of cone expansion and compression with norm type; see
[25], Corollary 1, or [26], Theorem 3, or [27], Theorem 2.3.4; see also [28, 29]) Let P be
a cone in a real Banach space E, and 1, Qy be two bounded open sets in E such that
0 € Q1, Q1 C Q,, where 6 denotes the zero element of E, and Q; denotes the closure of Q;

(i =1,2). Let an operator A : P N (Q,\Q1) — P be completely continuous (i.e., continuous
and compact). Suppose that one of the following two conditions is satisfied:

(@ |lAx|| < |»ll, VxePNay; lAx| > |lxll, Yxe€ PNy,
where 9<2; denotes the boundary of Q; (i = 1,2);

(b) lAx[l > llxll, Vxe€PNou; Axll < [lxll, VYxePNa.
Then A has at least one fixed point in PN (S_Zz\Ql).

3 Main theorem
Theorem Let conditions (H;)-(He) be satisfied. Assume that there exists r > 0 such that

N
,B——Ii (af}, + G b+ N,,,y*) <r, (88)
where a;,, G, and Ny, are a, ,, Gpq, and Ny, for p =r and q = r, respectively (for a, ,

Gp,g» Npg» b*, and y*; see conditions (Hy) and (H3)). Then IBVP (1) has at least two positive
solutions u*,u*™* € Q, N C*[J., E] such that

. u*(t u*(t
S Gl A CI
tey t2 tey t2

@Y @ | () @)l
< inf < sup <r
te/s t tel, t

’

0

’

0 <inf || (u*)"(®) < sup | («*)" @l <7,
te] te]

[l (@)l [l (@)l
2 = sup 2
t tely t

1
N2 -1)""r<inf <00,
2 te],

’

) (1 ) (¢
N72,372,3/r<inf I (@Y @l < sup [l (™) @) <00
tels t tef, t
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and
N72B728r< inf|| (u**)”(t)” <sup|| (u**)”(t) | < oo
te] te]

Proof By Lemma 2 and Lemma 3 the operator A defined by (19) is continuous from Q,
into Q and we need to prove that A has two fixed points #* and ™ in Q, such that 0 <
lu*llp <7< [lu™lp.

By condition (Hs) there exists r; > 0 such that

N°B*(-1)
ftu,v,w,y,2) > —————c(t) | wllwo,
cHlwoll
vtel,u,v,weP,|wl|>r,y,zeP. (89)
Choose
> max{Nz,Bz(,B’)flrl,r}. (90)

For u € Q, ||ul|p = r2, we have, by (14) and (90), ||«” ()| > N™28728'ry > r1, Vt €], s0, (29)
and (89) imply

(Au)”(t)zﬁ [ s e)09),0'9), (1009, (50 s
NSﬂZ(IB/)—l oo B
= e wol </o C(S)||”(S)”ds>w°

Ni o0 Ni
> 2 (/ c(s)ds)wo = lwo, Vte],
c*lwoll \Jo llwoll

and, consequently, ||(Au)"(2)|| > ra, Vt € J; hence,
lAullp = llullp, VYueQllullp =ra. 91)

By condition (Hg) there exists r3 > 0 such that

N(B-1
f(t,M,V,W,y,Z)Z %d(t)wl) Vt€]+,M,V,W€P+,O< ”W” <7”3;)/,Z€P~ (92)
Choose
0 < r4 <min{rs, r}. (93)

For u € Q, ||ullp = r4, we have, by (14) and (93), 3 > r4 > ||[u”(¢)|| > N72872'r4 > 0, s0, we
get, by (29) and (92),

(Aw)"(t) > ﬁ /(;oof(s, u(s), u'(s), u (s), (Tu)(s), (Su)(s)) ds

Ni o Ni
> 4 </ d(s)ds>w1=—rW1, vVie],
d*”Wl” 0 ”Wl”
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and, consequently, ||(Au)"(t)|| = r > ra, YVt € J; hence,

lAullp > llullp,  Vue Qllullp =ra.

On the other hand, for u € Q, ||u||p =7, (32)-(34) imply

lAullp <

N
ﬁl (@}, + Gppb* + Nypy™),
so, (88) implies

lAullp < llullp, VueQ,llullp=r.
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(94)

(95)

By (90) and (93) we know that 0 < r4 < r < rp, and, by Lemma 2 the operator A is com-

pletely continuous from Q,,,, into Q; hence, (91), (94), (95), and Lemma 4 imply that A

has two fixed points u*, u™ € Qy,», such that ry < ||u*||p < r < |[u™*||p < rp. The proof is

complete.

O

Example Consider the infinite system of scalar third-order impulsive singular integro-

differential equations of mixed type on the half-line:

2t

M/r:/(t) — e B { 1 + 1 B
30n2t5  2un()+6u2,-1(+ Y501 thm ()] 6luh,, 1 (O oy Uy (£)]5
+ &1;[ n+1(t) + Zm 1 m(t)]z 004,4//(0}

{(f e t2sy (5) ds)?

|

4'[ // ]2+\/Zm 14 Wl
AU |k = rz‘zk‘l?')‘k‘4
nli=k 2uf, (k- 12+sz L (k)

12+¢2m:l upp (k™)

40n3t5
+(fy° ?125Hs4)3} VO<t<oo,t#k(k=1,2,3,...;n=1,2,3,...,
Atty|eg = n723754 (k=1,2,3,...;n=1,2,3,...),

(k=1,2,3,...;n=1,2,3,...),
AUk = n2k™ 2:«;k4 (k=1,2,3,...;n=1,2,3,...),
u,(0) = 0, u,(0) = o, ul(00) =2u(0) (n=1,2,3,...).

(96)

Conclusion The infinite system (96) has at least two positive solutions {u(¢)} (n =

1,2,3,...) and {&"(t)} (n=1,2,3,...) such that

%k (t %y (t
0< 0inf 42”“12 n(®) < sup 72’”:12 ) <1,
<t<00 t 0<t<oo t
o (uk)(t t
0< inf 72”“1( m) @) < sup 42”’ 106,)'(©) <1,
0<t<0o t 0<t<co t

0< inf ( )'() < sup Z )" <1,

0=t<oo o 0st<oo -

e} Kk e} Kk
_u, (L _u (L
— < inf Zm_l2 m( ) < sup Zm_l2 m( )
12 O<tcoo t 0<t<oo t

oo EEAV o] *k)/
u t U t
Z< mf Zm:l( m) ( ) E Sllp Zm:l( m) ( ) < ,
6  O<t<oo t 0<t<0o t

<00,
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and

oo

l< inf (ufj)/ (t) < sup Z ** "(£) < oo

6 0st<co O<t<oo

Proof LetE=1"={u=(uy,...,uy,...): Y ooy |thy| < 00} with norm [Ju|| =Y o2, |u,| and P =
{u=(u,...,u,..) €E:u,>0,n=1,2,3,...}. Then P is a normal cone in E with normal
constant N =1, and the infinite system (96) can be regarded as an IBVP of the form (1) In
this situation, u = (uy,..., Uy, ...), V=V, s Voo ), W= (Wi, oo, Wiy oo ), = Osee 3 Vs -

2=z 0zm. ) e =k (k=1,2,3,...), K(t,8) =" @2, H(t,s) =1+t +s)™*, B=2,8 =2

F=eirfire- DIk = Wetseoor D )y I = Uity oo Dy - ), and I = (I, + .., Iy . . .), in which

1 0 5
o <V2n+l +> vm)
m=1

S
—

e |1 nd B
fult,u,v,w,9,2) = 15 Uy + 66Uy, 1 + Zum

3On2t5 m=1
1 g A -
+ §<wn+1+2wm) + §<ZWW,) }
m=1 m=1
o3t
+ —l(yfl +z§n), vte],u,v,weP,,y,zeP, (97)
40m3¢t5

-1
o0
ZWWI) 5 VW€P+ (k=112)31--';n=172)3)"’)7 (98)

Tin(w) = 723754 <4w§n +

Tin(w) = n2k 713754 <2w§” +

VweP, (k=1,2,3,...;n=1,2,3,...), (99)

and
-1
Ten(w) = 2k 2375 4<w2n Zwm) ,

YweP, (k=1,2,3,...;n=1,2,3,...). (100)

Itis easy to see that f € C[J, x P, x P, x P, x P x P, P], Ik,fkjk e C[P,,P] (k=1,2,3,...),
and condition (H;) is satisfied with k* < 4e~? (by using the fact that the function ¢(s) =

2e™ (0 < 5 < 00) attains its maximum at s = 2) and #* < 1. We have by (97)

e /1 1 1 11 s 1.
0 <fult,u,v,w,y,2) < T (—Ilull S+ —[vl7s + < (20wl)” + < lwll 1)
30m2¢5 \2 6 8 9

e—3t ) 3 e—2t 1 ) 1 4
+ ——(Iy1? + l1z0%) < — (—IIMII S il + —IIWII + oo~ llwll™
407525 245 180 270

Loz Zpap), vees €P,yzeP (101)
+ + Z b ,M,V,W b 7Z b
20" T30 + +)
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so, observing the inequality Y -, nLZ <2, we get

2] = S tenm) < o (ol o el o
S ULV, W, Z) | = UV, W z) < — | —||lu + —||lv + —||w
il ¢5 \30 90 30

Lol s S e S pal?), vees P yzeP
+ w + + — Iz ) YU, Vv, W ), Z )
135 20" 50 + #)

which implies that condition (H,) is satisfied for

0= b0 = & (8= o 4 oo
a = = —, 81,82) = —S§ + —S
I T T
and
1 1 1 1
G, %0, %3) = — X7 + —— X[ + —X2 + —x3 102
(1, %, x3) 30" T 135%1 T 0% T 0™ (102)
with (for g > p > 0)
1 -1 1 -1 p? , Dt
gp,q(t)zmax{%sf+%525:1—551§qt,3552§qt
1 /12 %_g 1 /6\5 1
=—\| — 5+ —|— t’5, Vte,
30\ p 90 \ ¢q
1 1
00 1 /12\5 [ 2t 1 (6\5 [®e?
a;q:/ a(t)g,,,q(t)dtz—(—> / e—gdt+—<—> / e—zdt<oo, (103)
’ 0 30\ p 0 t5 90\ q 0 5
and
ooe—2t
b*:/ ——dt<o0. (104)
0 t5

By (98)-(100) it is obvious that

0 < ltuW) < kItuw),  Liuw) <Iiu(w), VYweP, (k=1,2,3,...;n1=1,2,3,...),
SO,

Lw) <kIi(w),  Li(w) <kl(w), VweP, (k=1,2,3,...).

Moreover, from (100) we get

. 1
0<liw)<n 223+ 4 —, vweP, k=1,2,3,...;n=1,2,3,...),
! VWl !

SO,

[o¢]

1) =3 Talw) < k—23-k-4ﬁ, YweP, (k=12,3,..),
w

n=1
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which implies that condition (Hs) is satisfied for y; = k"237%~% and

1

F(s)=2s72 (105)
with
oo 1 oo
=Y Kyi=—, *= <y 106
7= Ky e Y =Y w<7 (106)
k=1 k=1
On the other hand, (97) implies
=y
St u,v,w,y,2) > - lwl?, Vtel,uv,weP,,yzeP,
40n%t5
and
o2t
Sl wv,wy,2) > ———Iwl™, Vtel,u,v,weP,,yz€eP, (107)
270n2¢t5
so, we see that condition (H;) is satisfied for
1 1 e 1,
W0=<17§,OH;E7“'>! C(t)zt_%’ T(W)zm”W” ’
and condition (Hg) is satisfied for
1 1 e 1
wm=(L—=,...,—=,...), dlt) = —, w) = — ||w| %
1 (22 > ) O="7 o=
In addition, by (97) we have
2t 1 o2t .
f;’l(tru, V;W,)/,Z) > 1 (8||M||) > = ﬁ”u”_gr
0n?ts 60(85)n2t5
Vte],u,v,weP,,y,zeP, (108)
and
o2 1 —2t .
St w,v,w,9,2) > ———(2|vll) > = ——— vl "5,
180m2t5 180(25)nt5
vte],u,v,weP,,y,zeP. (109)

It follows from (108), (109), and (107) that

* 1 et 1 et 1
feuvwya|= (D = | —lul™s > ——llul5,
n® | 60(85)t5 60(85)¢5

n=1

Vte],u,v,weP,,y,z€ P,
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ay 1 e—Zt 1 e—Zt 1
e uvwya| =Y. 5 | ——IVI5 > ———= v,
‘1) 180(25)t5 180(25)¢5

Vte]+,u,v,weP,,y,z€P,

and

1\ e et
(t,M,V,W, ,Z) > Y ” ” —||W||71,
sl = (38 ) 2wt 2

1
= n* | 270¢5

Vte],u,v,weP,,y,zeP;

hence, (3), (4), (5), and (6) are satisfied, that is, f(¢,u,v,w,,2) is singular at £ = 0, u = 6,
v=0,andw=06 (8 =(0,0,...,0,...)). On the other hand, from (98)-(100) we get

Lin(w) > n72375 4 (4w + ||w||)‘1, vweP, (k=1,2,3,...;n=1,2,3,...),

Tuw) = n 2673754 2w + VIIwll) ™, YweP, (k=1,2,3,...;n=1,2,3,...),
and

Tuw) = 223754 (Iwl? + VIwll) ™, YweP, (k=1,2,3,...;n1=1,2,3,..),

SO,
=1 1 1
|ew)|| = (Z ;)3* AWl VIwl) T > 37 @l + Vwl)
n=1
YweP, (k=1,2,3,...),
- <1 1 1
||1k<w)||z<2ﬁ>k*s-k-4(2nwu2+ lwll)™ > k3754 2wl + V/lwl) ™,
n=1
YweP, (k=1,2,3,...),
and

1

—k—4 -1 i, P —
) K237 (Iwll +VIwll) ™ > k2375wl + Vllwll)

NIH

B o0
i) (Z
=1

YyweP, (k=1,2,3,...),

which imply that (7), (8), and (9) are satisfied, that is, I (w), Ix(w), and I (w) are singular
at w = 6. Now, we check that condition (Hy) is satisfied. Let £ € J,, r > p >0, and ¢ > 0 be
fixed, and {y"} be any sequence in f (£, Py, Pyr, Ppr, Py, Py), where y™ = (ygm), . ..,yﬁ,m), ).

Then, by (101) we have

(m)e‘ztl_; Loy 1, 1, 1 1
0=y"= 60 "o " teo” tro? *w? tao?

S

(m,m=1,2,3,...). (110)
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So, {ij”} is bounded, and, by the diagonal method we can choose a subsequence {m,} C
{m} such that

(m;)

I = yu asi—o00(n=123,..), (111)

which implies by (110) that

0<5) < e_Zt ip7%+ip7%+ir2+ip71+iq2+iq3
== 2,1\ 60 180 60 270 407 7 40

(n=1,2,3,...). (112)

Consequently, y = (J1,...,¥4,...) € I = E. Let € > 0 be given. Choose a positive integer #q
such that

e S 1\/1 1 1 1 1, 1 ., 1, 13,\ €
— —|=p5+—p5+—r"'+—p +—q +— <. 113
! 2 (60’9 1807 " Te0” T270” T a0 4oq) 3 13

n=np+1

By (111) we can choose a positive integer iy such that
D~ 5| < =, Visip(n=1,2,...,m). (114)
3”0

It follows from (110)-(114) that

o0 no 00
051 = S -5 = 3ol -5+ Y b
n=1 n=1

n=np+1
0
|_ € € € Visi
+ E Yul< -+ -+ - =¢€, 1> 1p;
3 3 3
n=np+1

hence, ) — y in E as i — oo. Thus, we have proved that f(¢, Py, Py, Py, Py, Py) is rela-
tively compact in E. Similarly, we can prove that I (P,,), jk(Ppr), and jk(Ppr) (k=1,2,3,...)
are relatively compact in E. Hence, condition (H,) is satisfied. Finally, we check that in-

equality (88) is satisfied for r =1, that is,
Z(ﬂil + Gl,lb* + Nl,l)/*) <1 (115)

Since

(o))
[Sal
I
=
S
w

3 1 1
<=, 125 =1.64--- < —,
2 1
P 7
e =o.13---<%, V6=244... <2,

and

oo ,—2t ldt o) 1 1
/ e—dt</ —+[ e 2t dt = +-e2, V0<ac<l,
0 A 0 t* 1 l-« 2
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we have, by (103) and (104),

1 5 1 1 5 1
af < —12)5 2+ =€)+ —(6)5( 2 + e
© 30 2 2 90 3 2

1 /17\ (/5 7 1 /3\(5 7
<—|=Nz+—=)+=l=lz+—=—
30\10/\2 100 90\2/\3 100

4,369 521
+
30,000 18,000

<0.15+0.04=0.19

and

. 5 7 33
b*<—+—=—.
4 100 25

Moreover, (102) implies

L U T S I

1 1 14
G <max] —a7 + —&;, +—x, + —x5:— <x1<1,0<x<—,0<x3<1
b= {301 13570 2027203 6" T = =05 —3—}

1 6 1(14)2 123 49

<—+t+—+——=) +—=—+ ,
30 135 20\ 25 20 180 3,125
and (105) implies
11
lelzmax{Zs 2 c §s§1} =2V6 <5,
S0,
N 23 49 33 253 1,617
G <| —+ — | = + <0.17 +0.03=0.2,
’ 180 3,125 25 1,500 78,125

and, observing (106), we have

Niy*< S <0.04
WY S 1ep <UUH
Consequently,
2(aj, + Gi1b* + Ni1y™) <2(0.19+ 0.2 + 0.04) = 0.86 < 1.

Hence, (115) holds, and our conclusion follows from the theorem. O
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