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Abstract
This paper concerns the asymptotic behavior of solutions to the homogeneous
Neumann exterior problems of a class of semilinear parabolic equations with
convection and reaction terms. The critical Fujita exponents theorems are established.
It is shown that the global existence and blow-up of solutions depends on the
reaction term, the convection term and the spatial dimension.
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1 Introduction
In this paper, we consider the asymptotic behavior of solutions to the following problem:

∂u
∂t

= �u + λ
x

|x| · ∇u + |x|λ tλ up, x ∈R
n \ B, t > , ()

∂u
∂ν

= , x ∈ ∂B, t > , ()

u(x, ) = u(x), x ∈R
n \ B, ()

where λ,λ,λ ≥ , p > ,  ≤ u ∈ C(Rn \ B) ∩ L∞(Rn \ B), B is the unit ball in R
n.

The studies on asymptotic behavior of solutions to diffusion equations with nonlinear
reaction was begun in  by Fujita in [], where it was proved that for the Cauchy prob-
lem to the semilinear equation

∂u
∂t

= �u + up, x ∈R
n, t > , ()

the problem does not have any nontrivial, nonnegative global solution if  < p < pc = +/n,
whereas if p > pc, there exist both global (with small data) and non-global (with large initial
data) solutions. This result shows that the exponent p of the nonlinear reaction affects the
properties of solutions directly. We call pc the critical Fujita exponent and such a result a
blow-up theorem of Fujita type.

The elegant work of Fujita revealed a new phenomenon of nonlinear evolution equa-
tions. There have been a number of extensions of Fujita’s results in several directions since
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then, including similar results for numerous of quasilinear parabolic equations and sys-
tems in various of geometries (whole spaces, cones, and exterior domains) with nonlinear
reactions or nonhomogeneous boundary conditions, and even degenerate equations in
domains with non-compact boundary [, ]. We refer to the survey papers [, ] and the
references therein, and more recent work [–]. Qi [] considered the Cauchy problem
of () without convection, i.e. λ = , and proved that the Fujita exponent is

pc =  +
 + λ + λ

n
.

Zheng and Wang [] studied the homogeneous Neumann exterior problem ()-() with
the special case λ = , and proved that the Fujita exponent is

pc =  +
 + λ

n + λ
.

In this paper, we consider the homogeneous Neumann exterior problem ()-(), and
prove that the Fujita exponent is

pc =  +
 + λ + λ

n + λ
,

which depends on n, λ, λ, λ. The technique used in this paper for establishing the Fujita
type results for the problem ()-() is mainly inspired by [, , ]. To prove the blow-up of
solutions, we will determine the interactions among the diffusion terms, convection terms
and reaction terms by a series of precise integral estimates instead of pointwise compar-
isons. Here, we also need to construct some subsolutions to get some integral estimates of
the solutions. As to the existence of global solutions, we construct some global self-similar
supersolutions.

This paper is arranged as follows. The main results of the paper are stated in Section 
and their proofs are given in Section  subsequently.

2 Main results
For  ≤ u ∈ C(Rn \ B) ∩ L∞(Rn \ B), it follows from the classical theory for parabolic
equations that the problem ()-() admits a nonnegative solution locally in time. Moreover,
the comparison principle holds for the problem ()-(). A solution u to the problem ()-()
is said to blow up in a finite time  < T < +∞, if

∥
∥u(·, t)

∥
∥

L∞(Rn\B) = sup
x∈Rn\B

u(x, t) → +∞ as t → T–.

Otherwise, u is said to be global.
The main results of this paper are the following two theorems.

Theorem . Assume that  < p < pc =  + ( + λ + λ)/(n + λ). Then each nontrivial
nonnegative solution to the problem ()-() blows up in a finite time.

Theorem . Assume that p > pc =  + ( + λ + λ)/(n + λ). Then there exist both non-
trivial global and blow-up nonnegative solutions to the problem ()-().
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3 Proof of main results
First we prove Theorem . by determining the interactions among the diffusion terms,
convection terms and reaction terms by a series of precise integral estimates. Moreover,
we need to construct some subsolutions to get some integral estimates of the solutions.

Proof of Theorem . We prove the theorem by a contradiction argument. Assume that
the problem ()-() admits a nontrivial nonnegative global solution u. For each l > , set

ψl(r) =

⎧

⎪⎨

⎪⎩

rλ ,  ≤ r ≤ l,

 rλ ( + cos (r–l)π

(δ–)l ), l < r < δl,
, r ≥ δl,

where δ = π/(n + λ – ) + . Similar to the proof of Lemma . in [], one can show that
for each l > ,

d
dt

∫

Rn\B

u(x, t)ψl
(|x|)dx

≥ –Cl–
∫

Bδl\Bl

u(x, t)ψl
(|x|)dx

+ tλ

∫

Rn\B

|x|λ up(x, t)ψl
(|x|)dx, t > , ()

where C = (δ – )–π, Bl is a ball centered at the origin and with radius l in R
n. It follows

from the Hölder inequality that

C

∫

Bδl\Bl

u(x, t)ψl
(|x|)dx

≤ C

(∫

Bδl\Bl

|x|–λ/(p–)ψl
(|x|)dx

)(p–)/p

×
(∫

Bδl\Bl

|x|λ up(x, t)ψl
(|x|)dx

)/p

≤ Cln+λ–(n+λ+λ)/p
(∫

Rn\B

|x|λ up(x, t)ψl
(|x|)dx

)/p

, t > , ()

with some constant C >  depending only on n, λ, λ, and p. Substitute () into () to get

d
dt

wl(t) ≥
(∫

Rn\B

|x|λ up(x, t)ψl
(|x|)dx

)/p{

–Cln+λ––(n+λ+λ)/p

+ tλ

(∫

Rn\B

|x|λ up(x, t)ψl
(|x|)dx

)(p–)/p}

, t > , ()

where

wl(t) =
∫

Rn\B

u(x, t)ψl
(|x|)dx, t ≥ .
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The Hölder inequality shows

∫

Rn\B

u(x, t)ψl
(|x|)dx

≤
(∫

Bδl\B

|x|–λ/(p–)ψl
(|x|)dx

)(p–)/p

×
(∫

Rn\B

|x|λ up(x, t)ψl
(|x|)dx

)/p

≤ Cl(n+λ)–(n+λ+λ)/p
(∫

Rn\B

|x|λ up(x, t)ψl
(|x|)dx

)/p

, t > ,

which leads to
∫

Rn\B

|x|λ up(x, t)ψl
(|x|)dx ≥ Cl(n+λ+λ)–p(n+λ)wp

l (t), t > , ()

where C, C >  are constants depending only on n, λ, λ, and p. It follows from () and
() that

d
dt

wl(t) ≥ (

Cln+λ+λ–p(n+λ))/pwl(t)
{

–Cln+λ––(n+λ+λ)/p

+ C(p–)/p
 l(p–)(n+λ+λ)/p–(p–)(n+λ)tλ wp–

l (t)
}

, t > . ()

It is noted that the restriction on p in () is p >  instead of  < p < pc.
Next we prove that there exists a constant C >  depending only on u, n, and λ, such

that

wl
(

l) =
∫

Rn\B

u(x, t)ψl
(|x|)dx ≥ C, l ≥ . ()

Let v be the solution to the following problem:

∂v
∂t

= �v + λ
x

|x| · ∇v, x ∈R
n \ B, t > ,

∂v
∂ν

= , x ∈ ∂B, t > ,

v(x, ) = u(x), x ∈R
n \ B.

Then the comparison principle gives

u(x, t) ≥ v(x, t), x ∈R
n \ B, t ≥ . ()

Since  ≤ u ∈ C(Rn \B)∩L∞(Rn \B) is nontrivial, one can prove by the Green function
method that

v(x, ) ≥ CC–(n+λ)/
 exp

{

–
(|x| – )

C

}

, x ∈R
n \ B, ()
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with some constants C, C >  depending only on u, n, and λ. Set

z(x, t) = C(t –  + C)–(n+λ)/ exp

{

–
(|x| – )

(t –  + C)

}

, x ∈R
n \ B, t ≥ . ()

It is easy to verify that z is a subsolution to the problem

∂z
∂t

= �z + λ
x

|x| · ∇z, x ∈R
n \ B, t > ,

∂z
∂ν

= , x ∈ ∂B, t > ,

z(x, ) = CC–(n+λ)/
 exp

{

–
(|x| – )

C

}

, x ∈R
n \ B.

The comparison principle, together with () and (), shows that

v(x, t) ≥ z(x, t)

= C(t –  + C)–(n+λ)/ exp

{

–
(|x| – )

(t –  + C)

}

, x ∈ R
n \ B, t ≥ . ()

It follows from () and () that

u(x, t) ≥ C(t –  + C)–(n+λ)/ exp

{

–
(|x| – )

(t –  + C)

}

, x ∈ R
n \ B, t ≥ ,

which implies ().
Now, taking t ≥ l in (), one gets

d
dt

wl(t) ≥ (

Cln+λ+λ–p(n+λ))/pwl(t)
{

–Cln+λ––(n+λ+λ)/p

+ C(p–)/p
 l(p–)(n+λ+λ)/p–(p–)(n+λ)+λ wp–

l (t)
}

, t ≥ l. ()

It follows from p < pc that

n + λ –  – (n + λ + λ)/p < (p – )(n + λ + λ)/p – (p – )(n + λ) + λ. ()

In addition, () yields

inf
{

wl
(

l) : l ∈ (, +∞)
} ≥ C. ()

Owing to () and (), one sees from () that there exist two constants L >  and γ > 
depending only on u, n, λ, λ, and λ such that, for each l > L,

d
dt

wl(t) ≥ (

Cln+λ+λ–p(n+λ))/p

× wl(t)
(




C(p–)/p
 l(p–)(n+λ+λ)/p–(p–)(n+λ)+λ wp–

l (t)
)

≥ γ wp
l (t), t ≥ l.
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Thus there exists some  < T < +∞ such that

wl(t) =
∫

Rn\B

u(x, t)ψl
(|x|)dx → +∞ as t → T–.

Since suppψl(|x|) = Bδl \ B, one further gets

∥
∥u(·, t)

∥
∥

L∞(Rn\B) → +∞ as t → T–.

That is to say, u blows up in a finite time. �

Remark . Similar to the proof of critical case in [] and the proof in Theorem ., one
can show that the critical case p = pc is also blow-up case.

We turn to the proof of Theorem .. We use the integral estimate () to show the ex-
istence of nontrivial blow-up nonnegative solutions, while we construct some global self-
similar supersolutions to show the existence of nontrivial global nonnegative solutions.

Proof of Theorem . First consider the blow-up case. As mentioned in the proof of The-
orem ., () holds for each p > , especially for p > pc. In particular, for l = ,

d
dt

w(t) ≥ (

Cn+λ+λ–p(n+λ))/pw(t)
{

–Cn+λ––(n+λ+λ)/p

+ C(p–)/p
 (p–)(n+λ+λ)/p–(p–)(n+λ)tλ wp–

 (t)
}

, t > , ()

where w, C, and C are given in the proof of Theorem .. Let z be the solution to the
following problem:

∂z
∂t

= �z + λ
x

|x| · ∇z, x ∈R
n \ B, t > , ()

∂z
∂ν

= , x ∈ ∂B, t > , ()

z(x, ) = C exp

{

–
(|x| – )



}

, x ∈R
n \ B, ()

where C >  is a constant to be determined. If

u(x) ≥ C exp

{

–
(|x| – )



}

, x ∈R
n \ B, ()

then it follows from the comparison principle that

u(x, t) ≥ z(x, t), x ∈R
n \ B, t ≥ . ()

Set

z(x, t) = C(t + )–(n+λ)/ exp

{

–
(|x| – )

(t + )

}

, x ∈R
n \ B, t ≥ . ()
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Then z is a subsolution to the problem ()-() and thus the comparison principle gives

z(x, t) ≥ z(x, t), x ∈R
n \ B, t ≥ . ()

It follows from ()-() that

u(x, t) ≥ C(t + )–(n+λ)/ exp

{

–
(|x| – )

(t + )

}

, x ∈ R
n \ B, t ≥ .

Thus, there exists sufficiently large C such that

C(p–)/p
 (p–)(n+λ+λ)/p–(p–)(n+λ)wp–

 () ≥ Cn+λ––(n+λ+λ)/p,

which, together with (), leads to

d
dt

w(t) ≥ 

(

Cn+λ+λ–p(n+λ))/pC(p–)/p
 (p–)(n+λ+λ)/p–(p–)(n+λ)wp

(t), t ≥ .

Then, similar to the discussion in the proof of Theorem ., one sees that if u satisfies
(), then u blows up in a finite time.

We turn to the global existence case. We prove that the problem ()-() admits a self-
similar supersolution of the form

u(x, t) = (t + )–αv
(

(t + )–β |x|), x ∈R
n \ B, t ≥  ()

if

u(x) ≤ u(x, ), x ∈R
n \ B, ()

where

α =
 + λ + λ

(p – )
, β =




.

Direct calculations show that if v is a supersolution to the following ordinary differential
equation:

v′′(r) +
n + λ – 

r
v′(r) + βrv′(r) + αv(r) + rλ vp(r) = , r > , ()

then u defined by () is a supersolution to equation (). It follows from p > pc that  <
+λ+λ

(p–)(n+λ) < 
 , which ensure that we can choose A >  such that

α

(n + λ)
=

 + λ + λ

(p – )(n + λ)
< A <




=
β


.

Set

v(r) = ηe–Ar
, r >  ()
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with η >  to be determined. We verify that for sufficiently small η > , v is a supersolution
to (). That is to say,

v′′(r) +
n + λ – 

r
v′(r) + βrλ+v′(r) + αrλ v(r) + rλ vp(r) ≤ , r > ,

which is equivalent to

Ar – A – (n + λ – )A – βAr + α + rληp–e–A(p–)r ≤ , r > 

or

(A – β)Ar + 
(

α – (n + λ)A
)

+ rληp–e–A(p–)rλ+ ≤ , r > . ()

The choice of A shows that () holds for sufficiently small η > . Therefore, for sufficiently
small η > , u defined by () and () is a supersolution to equation (). Noting

v′(r) ≤ , r > ,

one further sees that u is a supersolution to the problem ()-() if u satisfies (). Then
the comparison principle shows that if u satisfies (), the solution to the problem ()-()
exists globally. �
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