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Abstract
In this paper we investigate the existence of solutions to a kind of fourth-order
impulsive differential equations with integral boundary value conditions. By
employing the Schauder fixed point theorem, we obtain sufficient conditions which
ensure the system has at lease one solution. Also by using the contraction mapping
theorem we get the uniqueness result. Finally an example is given to illustrate the
effectiveness of our results.
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1 Introduction
Fourth-order boundary value problems have attached much attention from many authors;
for example, see Sun and Wang [], Yao [], O’Regan [], Yang [], Zhang [], Gupta [],
Agarwal [], Bonanno and Bella [], and Han and Xu []. In particular, we would like to
mention some results as follows. In [], Zhang and Liu studied the following fourth-order
four-point boundary value problem:

⎧
⎪⎨

⎪⎩

(φp(x′′(t)))′′ = ω(t)f (t, x(t)), t ∈ [, ],
x() = , x() = ax(ξ ),
x′′() = , x′′() = bx′′(η),

where  < ξ ,η < ,  ≤ a < b < . By using the upper and lower solutions method, fixed
point theorems, and the properties of the Green’s functions G(t, s) and H(t, s), the authors
gave sufficient conditions for the existence of one positive solution.

Zhou and Zhang [] employed a new existence theory to study the fourth-order
p-Laplacian elasticity problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(φm(y′′))′′ = F(t, y, y′′),  < t < ,
ay() – by′() =

∫ 
 g(s)y(s) ds,

ay() + by′() =
∫ 

 g(s)y(s) ds,
φm(y′′()) = φm(y′′()) =

∫ 
 h(t)φm(y′′(t)) dt,

where a, b > , J = [, ], φm(s) is an m-Laplace operator, i.e. φm(s) = |s|m–s, m > , (φm)– =
φm∗ , 

m + 
m∗ = , F : [, ] × R × R → R is continuous. In their paper, a new technique

for dealing with the bending term of the fourth-order p-Laplacian elasticity problems was
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introduced and several new and more general results were obtained for the existence of at
least single, double, or triple positive solutions.

Feng [] studied a fourth-order boundary value problem with impulses and integral
boundary conditions,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(φp(y′′(t)))′′ = f (t, y(t)), t ∈ [, ], t �= tk , k = , , . . . , n,
�y′|t=tk = –Ik(y(tk)), k = , , . . . , n,
y() = y() =

∫ 
 g(s)y(s) ds,

φp(y′′()) = φp(y′′()) =
∫ 

 h(s)φp(y′′(s)) ds.

By using a suitably constructed cone and fixed point theory for cones, the existence of
multiple positive solutions was established. Some papers considered the existence, multi-
plicity, and nonexistence of positive solutions for fourth-order impulsive differential equa-
tions with one-dimensional m-Laplacian; for example, see [–]. Most recently Feng
and Qiu [], studied a fourth-order impulse integral boundary value problem with one-
dimensional m-Laplacian and deviating arguments:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(φm(y′′))′′ = λω(t)f (t, y(α(t))), t ∈ J , t �= tk , k = , , . . . , n,
�y′|t=tk = –μIk(tk , y(tk)), k = , , . . . , n,
ay() – by′() =

∫ 
 g(s)y(s) ds,

ay() + by′() =
∫ 

 g(s)y(s) ds,
φm(y′′()) = φm(y′′()) =

∫ 
 h(t)φm(y′′(t)) dt.

We see that in the above system the right-hand side function f has nothing to do with
the term y′, the jumping function Ik does not contain the term y′(tk). What is more, there
is no restriction on the impulses for state function, i.e. �y|t=tk does not appear. Definitely
for more extensive applications, we would better consider the following boundary value
problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φm(y′′))′′ = f (t, y, y′), t ∈ J , t �= tk , k = , , . . . , m,
�y|t=tk = Ik(y(tk)), k = , , . . . , m,
�y′|t=tk = Īk(y(tk), y′(tk)), k = , , . . . , m,
ay() – by′() =

∫ 
 g(s)y(s) ds,

ay() + by′() =
∫ 

 g(s)y(s) ds,
φm(y′′()) = φm(y′′()) =

∫ 
 h(t)φm(y′′(t)) dt,

(.)

where a, b > , J = [, ], φm(s) is an m-Laplace operator, i.e. φm(s) = |s|m–s, m > , (φm)– =
φm∗ , 

m + 
m∗ = ,  = t < t < t < · · · < tk < · · · < tm < tm+ = , f ∈ C[J × Rn × Rn, Rn], Ik ∈

C[Rn, Rn], Īk ∈ C[Rn × Rn, Rn], �y|t=tk = y(t+
k ) – y(t–

k ), here y(t+
k ) and y(t–

k ) represent the
right-hand limit and left-hand limit of y(t) at t = tk , respectively. �y′|t=tk has a similar
meaning for y′(t). In addition, f , g , and h satisfy the following conditions.

(H) f ∈ C[J × Rn × Rn, Rn], �y|t=tk = y(t+
k ) – y(t–

k ), where y(t+
k ) and y(t–

k ) represent the
right-hand limit and left-hand limit of y(t) at t = tk , respectively;

(H) Ik ∈ C[Rn, Rn], Īk ∈ C[Rn × Rn, Rn];
(H) g, h ∈ L[, ] are nonnegative and ξ ∈ [, a), υ ∈ [, ) where

ξ =
∫ 


g(t) dt, υ =

∫ 


h(t) dt. (.)
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The remainder of the paper is organized as below. In Section , we give the expression of
the solution to BVP (.). For this purpose, we do some computation and estimation of the
Green’s function. In Section , we show the existence and uniqueness of solutions to BVP
(.) by the Schauder fixed point theorem and contraction mapping theorem. Section 
gives an example to illustrate our main result.

2 Preliminaries and lemmas
We shall reduce problem (.) to an integral equation. To this aim, first, by means of the
transformation

φm
(
y′′(t)

)
= –x(t),

we convert problem (.) into

{
x′′(t) + f (t, y, y′) = , t ∈ J ,
x() = x() =

∫ 
 h(t)x(t) dt

(.)

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y′′(t) = –φm∗ (x(t)), t ∈ J , t �= tk ,
�y|t=tk = Ik(y(tk)), k = , , . . . , m,
�y′|t=tk = Īk(y(tk), y′(tk)), k = , , . . . , m,
ay() – by′() =

∫ 
 g(s)y(s) ds,

ay() + by′() =
∫ 

 g(s)y(s) ds.

(.)

Lemma . If (H), (H), and (H) hold, then problem (.) has a unique solution x(t),
which is given by

x(t) =
∫ 


H(t, s)f

(
s, y, y′)ds,

where

H(t, s) = G(t, s) +


 – v

∫ 


G(s, τ )h(τ ) dτ , (.)

G(t, s) =

{
t( – s),  ≤ t ≤ s ≤ ,
s( – t),  ≤ s ≤ t ≤ .

(.)

Proof Integrating (.) from  to t we get

x′(t) – x′() = –
∫ t


f
(
t, y, y′)dt,

x′(t) = x′() –
∫ t


f
(
t, y, y′)dt.

Integrating it again, we have

x(t) – x() = x′()t –
∫ t


(t – s)f

(
s, y, y′)ds,
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x(t) = x() + x′()t –
∫ t


(t – s)f

(
s, y, y′)ds.

From (.) we know that x() = x() =
∫ 

 h(t)x(t) dt. Letting t =  we then obtain

x() = x() + x′() –
∫ 


( – s)f

(
s, y, y′)ds.

Hence

x′() =
∫ 


( – s)f

(
s, y, y′)ds.

Thus we get

x(t) =
∫ 


h(t)x(t) dt + t

∫ 


( – s)f

(
s, y, y′)ds –

∫ t


(t – s)f

(
s, y, y′)ds. (.)

In order to get the expression of x(t), different from [], we multiply both sides of (.)
with function h(t) and then integrating it from  to , we have

∫ 


h(t)x(t) dt =

∫ 


h(s) ds

∫ 


h(t)x(t) dt +

∫ 


th(t) dt

∫ 


( – s)f

(
s, y, y′)ds

–
∫ 


h(t) dt

∫ t


(t – s)f

(
s, y, y′)ds

and

( – υ)
∫ 


h(t)x(t) dt =

∫ 


th(t) dt

∫ 


( – s)f

(
s, y, y′)ds

–
∫ 


h(t) dt

∫ t


(t – s)f

(
s, y, y′)ds.

Hence,

∫ 


h(t)x(t) dt =


 – υ

(∫ 


th(t) dt

∫ 


( – s)f

(
s, y, y′)ds

–
∫ 


h(t) dt

∫ t


(t – s)f

(
s, y, y′)ds

)

. (.)

Finally, we obtain

x(t) =


 – υ

(∫ 


th(t) dt

∫ 


( – s)f

(
s, y, y′)ds –

∫ 


h(t) dt

∫ t


(t – s)f

(
s, y, y′)ds

)

+t
∫ 


( – s)f

(
s, y, y′)ds –

∫ 


( – s)f

(
s, y, y′)ds

=


 – υ

(∫ 



∫ 


th(t)( – s)f

(
s, y, y′)dt ds –

∫ 



∫ t


h(t)(t – s)f

(
s, y, y′)ds dt

)

+
∫ 


t( – s)f

(
s, y, y′)ds –

∫ 


( – s)f

(
s, y, y′)ds
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=
∫ 




 – υ

(∫ 


t( – s)h(t) dt –

∫ t


(t – s)h(t) dt

)

f
(
s, y, y′)ds

+
∫ 


t( – s)f

(
s, y, y′)ds –

∫ 


( – s)f

(
s, y, y′)ds

=
∫ 




 – υ

(∫ 


t( – s)h(t) dt –

∫ t


(t – s)h(t) dt

)

f
(
s, y, y′)ds

+
∫ t


s( – t)f

(
s, y, y′)ds –

∫ 

t
t( – s)f

(
s, y, y′)ds.

Thus

x(t) =
∫ 


H(t, s)f

(
s, y, y′)ds,

where

H(t, s) = G(t, s) +


 – v

∫ 


G(s, τ )h(τ ) dτ ,

G(t, s) =

{
t( – s),  ≤ t ≤ s ≤ ,
s( – t),  ≤ s ≤ t ≤ .

This completes the proof. �

Let e(t) = t( – t). Then from (.) and (.) we can prove that H(t, s) and G(t, s) have the
following properties.

Lemma . Let G(t, s) and H(t, s) be given as in Lemma .. Assume that (H) holds. Then
we have

H(t, s) > , G(t, s) > , ∀t, s ∈ (, ),

H(t, s) ≥ , G(t, s) ≥ , ∀t, s ∈ J ,

e(t)e(s) ≤ G(t, s) ≤ G(t, t) = t( – t) = e(t) ≤ ē = max
t∈J

e(t) =



, ∀t, s ∈ J ,

ρe(s) ≤ H(t, s) ≤ γ s( – s) = γ e(s) ≤ 


γ , ∀t, s ∈ J ,

where

γ =


 – υ
, ρ =

∫ 
 e(τ )h(τ ) dτ

 – υ
.

Lemma . If (H), (H), and (H) hold, then problem (.) has a unique solution y(t)
expressed in the form

y(t) =
∫ 


H(t, s)φm∗

(
x(s)

)
ds –

m∑

k=

H(t, tk)Īk
(
y(tk), y′(tk)

)

–
m∑

k=

H(t)Ik
(
y(tk)

)
,
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where

H(t, s) = G(t, s) +


a – ξ

∫ 


G(s, τ )g(τ ) dτ , (.)

G(t, s) =

d

{
(b + as)(b + a( – t)),  ≤ s ≤ t ≤ ,
(b + at)(b + a( – s)),  ≤ t ≤ s ≤ ,

(.)

H(t) =
at – a – b

a + b
+


a – ξ

∫ 



at – a – b
a + b

g(t) dt, (.)

and d = a(a + b).

Proof First, we assume that t ∈ Ii, Ii = (ti, ti+) (i = , , , . . . , m). Integrating both sides of
(.) from ti to t–

i+, we get

y′(t–

)

– y′() = –
∫ t


φm∗

(
x(t)

)
dt,

y′(t–

)

– y′(t+

)

= –
∫ t

t

φm∗
(
x(t)

)
dt,

. . . ,

y′(t) – y′(t+
i
)

= –
∫ t

ti

φm∗
(
x(t)

)
dt.

Adding the above equations, we find

y′(t) – y′() –
∑

k:tk <t

(
y′(t+

k
)

– y′(t–
k
))

= –
∫ t


φm∗

(
x(t)

)
dt,

y′(t) = y′() +
∑

k:tk <t

(
y′(t+

k
)

– y′(t–
k
))

–
∫ t


φm∗

(
x(t)

)
dt,

y′(t) = y′() +
∑

k:tk <t

Īk
(
y(tk), y′(tk)

)
–

∫ t


φm∗

(
x(t)

)
dt. (.)

Similarly, we can get

y(t) = y() + y′()t –
∫ t


(t – s)φm∗

(
x(t)

)
ds

+
∑

k:tk<t

(t – tk)Īk
(
y(tk), y′(tk)

)
+

∑

k:tk<t

Ik
(
y(tk)

)
. (.)

Let t =  in (.) and (.). We obtain

⎧
⎪⎨

⎪⎩

by′() = by′() + b
∑

k:tk<t Īk(y(tk), y′(tk)) – b
∫ t

 φm∗ (x(t)) dt,
ay() = ay() + ay′() – a

∫ 
 ( – s)φm∗ (x(s)) ds

+ a
∑

k:tk <t( – tk)Īk(y(tk), y′(tk)) + a
∑

k:tk <t Ik(y(tk)).
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It is easy to get

ay() + by′() = ay() + (a + b)y′() – a
∫ 


( – s)φm∗

(
x(s)

)
ds

+ a
∑

k:tk<t

( – tk)Īk
(
y(tk), y′(tk)

)
+ a

∑

k:tk<t

Ik
(
y(tk)

)

+ b
∑

k:tk<t

Īk
(
y(tk), y′(tk)

)
– b

∫ t


φm∗

(
x(t)

)
dt

=
∫ 


g(s)y(s) ds,

which implies

ay() + (a + b)y′() = a
∫ 


( – s)φm∗

(
x(s)

)
ds

– a
∑

k:tk<t

( – tk)Īk
(
y(tk), y′(tk)

)

– a
∑

k:tk<t

Ik
(
y(tk)

)
– b

∑

k:tk<t

Īk
(
y(tk), y′(tk)

)

+ b
∫ t


φm∗

(
x(t)

)
dt +

∫ 


g(s)y(s) ds.

Then we have the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ay() + (a + b)y′()
= a

∫ 
 ( – s)φm∗ (x(s)) ds – a

∑
k:tk <t( – tk)Īk(y(tk), y′(tk))

– a
∑

k:tk<t Ik(y(tk)) – b
∑

k:tk <t Īk(y(tk), y′(tk))
– b

∫ t
 φm∗ (x(t)) dt +

∫ 
 g(s)y(s) ds,

ay() – by′() =
∫ 

 g(s)y(s) ds.

Obviously,

y′() =


a + b

[

a
∫ 


( – s)φm∗

(
x(t)

)
ds – a

∑

k:tk <t

( – tk)Īk
(
y(tk), y′(tk)

)

– a
∑

k:tk <t

Ik
(
y(tk)

)
– b

∑

k:tk <t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]

,

y() =
b

a(a + b)

[

a
∫ 


( – s)φm∗

(
x(s)

)
ds – a

∑

k:tk<t

( – tk)Īk
(
y(tk), y′(tk)

)

– a
∑

k:tk <t

Ik
(
y(tk)

)
– b

∑

k:tk<t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]

+

a

∫ 


g(s)y(s) ds.



Sun and Xing Boundary Value Problems  (2016) 2016:81 Page 8 of 15

Substituting (.), (.) in (.), we have

y(t) =
b

a(a + b)

[

a
∫ 


( – s)φm∗

(
x(s)

)
ds – a

∑

k:tk<t

( – tk)Īk
(
y(tk), y′(tk)

)

– a
∑

k:tk<t

Ik
(
y(tk)

)
– b

∑

k:tk <t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]

+

a

∫ 


g(s)y(s) ds +

t
a + b

[

a
∫ 


( – s)φm∗

(
x(s)

)
ds

– a
∑

k:tk<t

( – tk)Īk
(
y(tk), y′(tk)

)
– a

∑

k:tk<t

Ik
(
y(tk)

)

– b
∑

k:tk<t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]

–
∫ t


(t – s)φm∗

(
x(t)

)
ds +

∑

k:tk <t

(t – tk)Īk
(
y(tk), y′(tk)

)
+

∑

k:tk <t

Ik
(
y(tk)

)
.

In a similar way as the proof of (.) in Lemma ., we get

∫ 


g(s)y(s) ds =

a
a – ξ

{
b

a(a + b)

[∫ 


g(t) dta

∫ 


( – s)φm∗

(
x(t)

)
ds

– a
∑

k:tk <t

( – tk)Īk
(
y(tk), y′(tk)

)
– a

∑

k:tk <t

Ik
(
y(tk)

)

– b
∑

k:tk <t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]

+
t

a + b

∫ 


g(t) dt

[

a
∫ 


( – s)φm∗

(
x(s)

)
ds

– a
∑

k:tk <t

( – tk)Īk
(
y(tk), y′(tk)

)
– a

∑

k:tk <t

Ik
(
y(tk)

)

– b
∑

k:tk <t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]

–
∫ 


g(t) dt

∫ t


(t – s)φm∗

(
x(s)

)
ds

+
∑

k:tk <t

(t – tk)Īk
(
y(tk), y′(tk)

)
∫ 


g(t) dt +

∫ 


g(t)

∑

k:tk <t

Ik
(
y(tk)

)
dt

}

.

Hence, we finally get

y(t) =
b

a(a + b)

[

a
∫ 


( – s)φm∗

(
x(s)

)
ds – a

∑

k:tk<t

( – tk)Īk
(
y(tk), y′(tk)

)

– a
∑

k:tk<t

Ik
(
y(tk)

)
– b

∑

k:tk <t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]



Sun and Xing Boundary Value Problems  (2016) 2016:81 Page 9 of 15

+
a

a – ξ

{
b

a(a + b)

[∫ 


g(t) dta

∫ 


( – s)φm∗

(
x(s)

)
ds

– a
∑

k:tk<t

( – tk)Īk
(
y(tk), y′(tk)

)
– a

∑

k:tk<t

Ik
(
y(tk)

)

– b
∑

k:tk<t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]

+
t

a + b

∫ 


g(t) dt

[

a
∫ 


( – s)φm∗

(
x(s)

)
ds – a

∑

k:tk<t

( – tk)Īk
(
y(tk), y′(tk)

)

– a
∑

k:tk<t

Ik
(
y(tk)

)
– b

∑

k:tk <t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]

–
∫ 


g(t) dt

∫ t


(t – s)φm∗

(
x(s)

)
ds +

∑

k:tk <t

(t – tk)Īk
(
y(tk), y′(tk)

)
∫ 


g(t) dt

+
∫ 


g(t) dt

∑

k:tk <t

Ik
(
y(tk)

)
}

+
t

a + b

[

a
∫ 


( – s)φm∗

(
x(s)

)
ds – a

∑

k:tk <t

( – tk)Īk
(
y(tk), y′(tk)

)

– a
∑

k:tk<t

Ik
(
y(tk)

)
– b

∑

k:tk <t

Īk
(
y(tk), y′(tk)

)
+ b

∫ t


φm∗

(
x(t)

)
dt

]

–
∫ t


(t – s)φm∗

(
x(s)

)
ds +

∑

k:tk<t

(t – tk)Īk
(
y(tk), y′(tk)

)
+

∑

k:tk<t

Ik
(
y(tk)

)
.

Hence

y(t) =
∫ 


H(t, s)φm∗

(
x(s)

)
ds –

m∑

k=

H(t, tk)Īk
(
y(tk), y′(tk)

)
–

m∑

k=

H(t)Ik
(
y(tk)

)
,

where

H(t, s) = G(t, s) +


a – ξ

∫ 


G(s, τ )g(τ ) dτ ,

G(t, s) =

d

{
(b + as)(b + a( – t)),  ≤ s ≤ t ≤ ,
(b + at)(b + a( – s)),  ≤ t ≤ s ≤ ,

H(t) =
at – a – b

a + b
+


a – ξ

∫ 



at – a – b
a + b

g(t) dt.

Then the proof is completed. �

It follows from (.), (.), and (.) that H(t, s), G(t, s), and H(t) have the following
properties.

Lemma . Suppose (H) holds and assume that G(t, s) and H(t, s) are given as in
Lemma .. Then we have


d

b ≤ G(t, s) ≤ G(s, s) ≤ (a + b)

d
, ∀t, s ∈ J , (.)
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ρ ≤ H(t, s) ≤ a
a – ξ

G(s, s) ≤ ρ, ∀t, s ∈ J , (.)

H(t) ≤ ρ, (.)

where

δ =
b

a + b
, ρ =

bγ 

a + b
, ρ =

a(a + b)

(a – ξ )d
.

Proof Clearly, it follows from the definition of G(t, s) that (.) holds. Now we show that
(.) and (.) are true.

In fact, for t ∈ [ζ , ] and s ∈ J , we have

H(t, s) = G(t, s) +


a – ξ

∫ 


G(s, τ )g(τ ) dτ

≤ G(s, s) +
ξ

a – ξ
G(s, s) ≤ a(a + b)

(a – ξ )d
= ρ,

H(t) =
at – a – b

a + b
+


a – ξ

∫ 



at – a – b
a + b

g(t) dt ≤ at
a + b

+
ξ

a – ξ

at
a + b

,

at
a + b

≤ a
a + b

≤ (a + b)

a + b
.

Consequently,

H(t) ≤ (a + b)

a + b
+

ξ

a – ξ

(a + b)

a + b
=

a(a + b)

(a – ξ )d
= ρ. (.)

This completes the proof. �

Combining Lemma . with Lemma ., we can get directly the following result.

Lemma . Assume that (H)-(H) hold. Then y(t) has the following form:

y(t) =
∫ 


H(t, s)φm∗

(∫ 


H(s, τ )f

(
τ , y(τ ), y′(τ )

)
dτ

)

ds

–
m∑

k=

H(t, tk)Īk
(
y(tk), y′(tk)

)
–

m∑

k=

H(t)Ik
(
y(tk)

)
.

Proof The conclusion is so straightforward that we omit it here. �

We next give some notations and a fixed point theorem which will be used to prove our
main results. Let

PC[J , Rn] =
{

y : J → Rn | y′(t) is continuous when t �= tk , y
(
t+
k
)
, y

(
t+
–
)
, y′(t+

k
)
, y′(t–

k
)

exist and y
(
t–
k
)

= y(tk), k = , , . . . , m
}

.

Clearly, PC[J , Rn] is a Banach space with the norm ‖y‖PC = max{‖y‖PC ,‖y′‖PC}.
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Lemma . [] H ⊂ PC[J , Rn] is a relatively compact set if and only if ∀y ∈ H , y and y′

are uniformly bounded in J and equi-continuous on Jk (k = , , , . . . , m).

Definition . A function y ∈ PC is said to be a solution of (.) if it satisfies every equa-
tion in system (.).

Lemma . (Schauder fixed point theorem) If K is a nonempty convex subset of a Banach
space V and T is a continuous mapping of K into itself such that T(K) is contained in a
compact subset of K , then T has a fixed point.

Definition . Define an operator A : PC[J , Rn] → PC[J , Rn] by

(Ay)(t) =
∫ 


H(t, s)φm∗

(∫ 


H(s,α)f

(
α, y, y′)dα

)

ds

–
m∑

k=

H(t, tk)Īk
(
y(tk), y′(tk)

)
–

m∑

k=

H(t)Ik
(
y(tk)

)
. (.)

Lemma . Assume that (H)-(H) hold. Then y(t) ∈ J is a fixed point of A if and only if
y(t) is a solution of problem (.).

Lemma . The operator A : PC[J , Rn] → PC[J , Rn] is completely continuous.

Proof According to (.) we have

(Ay)′(t) =
∫ 


H ′

t(t, s)φm∗
(∫ 


H(s, τ )f

(
τ , y, y′)dτ

)

ds

–
m∑

k=

H ′
(t, tk)Īk

(
y(tk), y′(tk)

)
–

m∑

k=

H ′
(t)Ik

(
y(tk)

)
. (.)

From (.) and (.) we know that A : PC[J , Rn] → PC[J , Rn] is continuous. For any
bounded set S ∈ PC[J , Rn], and any function y(t) ∈ S, we see that (Ay)(t) and (Ay)′(t)
are uniformly bounded and equi-continuous on Jk (k = , , , . . . , m). Hence, according
to Lemma . we see that A(S) is a relatively compact set, therefore A is a completely
continuous operator. �

3 Main results
Let

β = lim
‖y‖+‖y′‖→∞

( ‖f (t, y, y′)‖
φm∗ (‖y‖ + ‖y′‖)

)

,

βk = lim‖y‖→∞

(‖Ik(y)‖
‖y‖

)

,

β̄k = lim
‖y‖+‖y′‖→∞

( ‖Īk(y, y′)‖
‖y‖ + ‖y′‖

)

(k = , , . . . , m).
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Theorem . Assume that (H)-(H) hold. Let η = max{η,η} < , then (.) has at least
one solution, where

η = ρφm∗
(

γβ



)

+ mρβ̄k + mρβk ,

η = ρφm∗
(

γβ



)

+ mρβ̄k + mρβk .

Proof From the definition of β , there exists N > , s.t.

∥
∥f

(
t, y, y′)∥∥ ≤ βφm∗

(‖y‖ +
∥
∥y′∥∥)

, ∀t ∈ J ,φm∗
(‖y‖ +

∥
∥y′∥∥) ≥ N .

Similarly, we get

∥
∥Ik(y)

∥
∥ ≤ βk‖y‖,

∥
∥Īk

(
y, y′)∥∥ ≤ β̄k

(‖y‖ +
∥
∥y′∥∥)

, ∀y, y′ ∈ Rn (k = , , . . . , m).

This together with (.), (.) implies that

∥
∥(Ay)(t)

∥
∥ =

∥
∥
∥
∥
∥

∫ 


H(t, s)φm∗

(∫ 


H(s, τ )f

(
τ , y, y′)dτ

)

ds

–
m∑

k=

H(t, tk)Īk
(
y(tk), y′(tk)

)
–

m∑

k=

H(t)Ik
(
y(tk)

)
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥ρφm∗

(∫ 


H(s, τ )f

(
τ , y(τ ), y′(τ )

)
dτ

)∥
∥
∥
∥

+ mρ
(
β̄k

(‖y‖ +
∥
∥y′∥∥))

+ mρβk‖y‖

≤ ρφm∗
(

γ


βφm

(‖y‖ +
∥
∥y′∥∥)

)

+ mρβ̄k‖y‖ + mρβk‖y‖

≤ ρφm∗
(

γβ



)

‖y‖ + mρβ̄k‖y‖ + mρβk‖y‖

≤
(

ρφm∗
(

γβ



)

+ mρβ̄k + mρβk

)

‖y‖

≤ η‖y‖
≤ ‖y‖,

where η = ρφm∗ ( γβ

 ) + mρβ̄k + mρβk .
From (.), (.), and (.), we have

H ′
t(t, s) = G′

t(t, s) =

d

{
–a(b + as),  ≤ s ≤ t ≤ ,
a(b + a( – s)),  ≤ t ≤ s ≤ ,

max
t,s∈J ,t �=s

∣
∣H ′

t(t, s)
∣
∣ = max

t,s∈J ,t �=s

∣
∣G′

t(t, s)
∣
∣ ≤ 

d
a(a + b) =

a + b
a + b

= ρ,
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and

H ′
(t) =

a
a + b

≤ ρ,

which together with (.) imply

∥
∥(Ay)′(t)

∥
∥ =

∥
∥
∥
∥
∥

∫ 


H ′

t(t, s)φm∗
(∫ 


H(s, τ )f

(
τ , y, y′)dτ

)

ds

–
m∑

k=

H ′
(t, tk)Īk

(
y(tk), y′(tk)

)
–

m∑

k=

H ′
(t)Ik

(
y(tk)

)
∥
∥
∥
∥
∥

≤ ρφm∗
(

γ


βφm

(‖y‖ +
∥
∥y′∥∥)

)

+ mρ
(
β̄k

(‖y‖ +
∥
∥y′∥∥))

+ mρβk‖y‖

≤ ρφm∗
(

γβ



)
(‖y‖ +

∥
∥y′∥∥)

+ mρβ̄k‖y‖ + mρβk‖y‖

≤
(

ρφm∗
(

γβ



)

+ mρβ̄k + mρβk

)

‖y‖

≤ η‖y‖
≤ ‖y‖,

where η = ρφm∗ ( γβ

 ) + mρβ̄k + mρβk .
On the other hand, according to Lemma ., we know operator A is a completely con-

tinuous operator. Together with Lemma . (Schauder fixed point theorem), we know A
has a fixed point in PC[J , Rn]. �

Theorem . Assume that (H)-(H) hold. If there exist nonnegative real numbers α, αk ,
ᾱk , s.t.

∥
∥φm∗ (x) – φm∗ (y)

∥
∥ ≤ α

(‖x – y‖),
∥
∥Īk

(
x, x′) – Īk

(
y, y′)∥∥ ≤ ᾱk

(‖x – y‖ +
∥
∥x′ – y′∥∥)

,
∥
∥Ik(x) – Ik(y)

∥
∥ ≤ αk‖x – y‖,

and ξ = max{ξ, ξ} < , then (.) has a unique solution, where

ξ = ρ(α + mᾱk + mαk),

ξ = ρα + mρᾱk + mρ.

Proof From (.) and (.), similar to the proof of Theorem ., we get

(Ax)(t) – (Ay)(t) =
∫ 


H(t, s)

(
φm∗ (x) – φm∗ (y)

)
+

m∑

k=

H(t, tk)
(
Īk

(
y, y′) – Īk

(
x, x′))

+
m∑

k=

H(t)
(
Ik(y) – Ik(x)

)
.
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Computing straightforwardly we have

∥
∥(Ax)(t) – (Ay)(t)

∥
∥ ≤ ρα

(‖x – y‖) +
m∑

k=

ρᾱk
(‖x – y‖ +

∥
∥x′ – y′∥∥)

+
m∑

k=

ραk
(‖x – y‖)

≤ ρ(α + mᾱk + mαk)‖x – y‖PC

= ξ‖x – y‖PC

≤ ξ‖x – y‖PC .

Also we obtain

(Ax)′(t) – (Ay)′(t) =
∫ 


H ′

t(t, s)
(
φm∗ (x) – φm∗ (y)

)

+
m∑

k=

H ′
(t, tk)

(
Īk

(
y, y′) – Īk

(
x, x′))

+
m∑

k=

H ′
(t)

(
Ik(y) – Ik(x)

)
,

∥
∥(Ax)′(t) – (Ay)′(t)

∥
∥ ≤ ρα‖x – y‖ + mρᾱk

(‖x – y‖ +
∥
∥x′ – y′∥∥)

+ mραk‖x – y‖
≤ (ρα + mρᾱk + mραk)‖x – y‖PC

= ξ‖x – y‖PC

≤ ξ‖x – y‖PC .

It follows from ξ <  that A has a unique fixed point and therefore (.) has a unique solu-
tion. �

4 Example
In this section, we will illustrate the main results by a simple example.

Let n = , t = 
 , a = b = , I(y(t)) = Ī(y(t, y′(t))) = 

 , f (t, y, y′) = 
√

t – y + y′ – 
 y′ –

 ln( + y), and g(s) = 
 , h(t) = 

 , m =  in φm. Then equation (.) turns to the following
equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ(y′′))′′ = 
√

t – y + y′ – 
 y′ –  ln( + y), t ∈ J , t �= 

 ,
�y|t= 


= 

 ,
�y′|t= 


= 

 ,
y() – y′() =

∫ 



 y(s) ds,

y() + y′() =
∫ 



 y(s) ds,

φ(y′′()) = φ(y′′()) =
∫ 



φ(y′′(t)) dt.

(.)

Following Theorem ., we have the following result.

Theorem . The problem (.) has at least one positive solution.
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Proof Obviously, f (t, y, y′) ∈ C[J × Rn × Rn, Rn], I(y(t)) ∈ C[Rn, Rn], Ī(y(t, y′(t))) ∈
C[Rn × Rn, Rn]. From (.), we get

∥
∥f

(
t, y, y′)∥∥ ≤ 

√

t + ‖y‖ +
∥
∥y′∥∥ +




∥
∥y′∥∥ +  ln

(
 + ‖y‖),

∥
∥I(y)

∥
∥ =




,
∥
∥Ī

(
t, y, y′)∥∥ =




, ∀t ∈ J , y, y′ ∈ Rn,

so we get β ≤ 
 , β = , β̄ = , ρ = , ρ = 

 , γ = , φm∗ ( γβ

 ) ≤
√


 .

Hence, η ≤
√


 ≤ , η ≤

√


 ≤ , η ≤
√


 ≤ . From Theorem ., we get the result.

This completes the proof. �
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