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Abstract
This paper is concerned with the existence of solutions for periodic boundary value
problems for impulsive fractional integro-differential equations using a recent novel
concept of conformable fractional derivative. We give a new definition of exponential
notations and impulsive integrals for constructing the Green function and a
comparison result of the linear problems with impulses. By applying the method of
lower and upper solutions in reversed order coupled with the monotone iterative
technique, some new sufficient conditions for the existence of solutions are
established. The obtained results are well illustrated by an example.
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1 Introduction
Fractional order differential equations plays an important role in describing many phe-
nomena and processes in various fields of science and engineering such as mechanics,
chemistry, control systems, dynamical processes, viscoelasticity, and so forth. For a de-
tailed account of applications and recent results on initial and boundary value problems
of fractional differential equations, we refer the reader to a series of books and papers
[–] and references cited therein.

The definition of the fractional order derivative used is either the Caputo or the
Riemann-Liouville fractional order derivative involving an integral expression and the
gamma function. Recently, Khalil et al. [] introduced a new well-behaved definition of a
local fractional derivative, called the conformable fractional derivative, depending just on
the basic limit definition of the derivative. This new theory is improved by Abdeljawad
[]. For recent results on conformable fractional derivatives we refer the reader to
[–].

Impulsive differential equations serve as basic models to study the dynamics of processes
that are subject to sudden changes in their states. Recent development in this field has been
motivated by many applied problems arising in control theory, population dynamics and
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medicines. For some recent work on the theory of impulsive differential equations, we
refer the reader to [–].

Due to fact that fractional differential equations and impulsive differential equations
serve effective tools in order to improve the mathematical modeling of several concepts
arising in engineering and various areas of science, many researchers have paid a consid-
erable attention to the subject of impulsive fractional differential equations in the recent
literature [–].

In this paper, we consider the following periodic boundary value problem for impulsive
conformable fractional integro-differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

tk Dαx(t) = f (t, x(t), (Fx)(t), (Sx)(t)), t ∈ J := [, T], t �= tk ,

�x(tk) = Ik(x(tk)), k = , , . . . , m,

x() = x(T),

(.)

where aDα denotes the conformable fractional derivative of order  < α ≤  starting from
a ∈ {t, . . . , tm}, t =  < t < · · · < tm < tm+ = T , f ∈ C(J ×R

,R),

(Fx)(t) =
∫ t


l(t, s)x(s) ds, (Sx)(t) =

∫ T


h(t, s)x(s) ds,

l ∈ C(D,R+), D = {(t, s) ∈ J : t ≥ s}, h ∈ C(J,R+), Ik ∈ C(R,R), �x(tk) = x(t+
k ) – x(t–

k ).
The monotone iterative technique coupled with the method of lower and upper solu-

tions provides an effective way to obtain two sequences which approximate the extremal
solutions between lower and upper solutions of nonlinear differential and impulsive dif-
ferential (fractional or non-fractional ordered) equations; see, for instance, [–]. To
the best of the authors’ knowledge, this is the first paper establishing the impulsive frac-
tional differential equations via the conformable fractional calculus developed by []. By
means of a new maximal principle and new definitions of lower and upper solutions, the
monotone iterative technique will be used in our investigation of the problem (.).

The rest of the paper is organized as follows: In Section  we recall some definitions
and results from conformable fractional calculus and prove some basic results used in the
sequel. In Section  we define the lower and upper solutions, obtain the Green functions
and prove a comparison result. The existence results are contained in Section , while an
example illustrating the main result is presented in Section .

2 Conformable fractional calculus
In this section, we recall some definitions, notations and results which will be used in our
main results.

Definition . [] The conformable fractional derivative starting from a point a of a
function f : [a,∞) →R of order  < α ≤  is defined by

aDαf (t) = lim
ε→

f (t + ε(t – a)–α) – f (t)
ε

, (.)

provided that the limit exists.
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If f is differentiable then aDαf (t) = (t – a)–αf ′(t). In addition, if the conformable frac-
tional derivative of f of order α exists on [a,∞), then we say that f is α-differentiable on
[a,∞).

It is easy to prove the following results.

Lemma . Let α ∈ (, ], k, k, p,λ ∈ R, and the functions f , g be α-differentiable on
[a,∞). Then:

(i) aDα(kf + kg) = kaDα(f ) + kaDα(g);
(ii) aDα(t – a)p = p(t – a)p–α ;

(iii) aDαλ =  for all constant functions f (t) = λ;
(iv) aDα(fg) = f aDαg + gaDαf ;
(v) aDα( f

g ) = gaDα f –f aDαg
g for all functions g(t) �= .

Definition . [] Let α ∈ (, ]. The conformable fractional integral starting from a
point a of a function f : [a,∞) →R of order α is defined as

aIαf (t) =
∫ t

a
(s – a)α–f (s) ds. (.)

Remark . If a = , the definitions of the conformable fractional derivative and integral
above will be reduced to the results in [].

Theorem . (Rolle’s theorem) Let an interval [c, d] ⊂ [a,∞) and f : [a,∞) → R be a
given function that satisfies:

(i) f is continuous on [c, d],
(ii) f is α-differentiable for some α ∈ (, ) on [c, d],

(iii) f (c) = f (d).
Then there exists a constant e ∈ (c, d), such that aDαf (e) = .

Proof From (i) f is continuous on [c, d], and since by (iii) f (c) = f (d), there exists a point
e ∈ (c, d) such that f (e) is a maximum or minimum value of f on [c, d]. Without loss of
generality, we assume that e is a point of local minimum. Then we have

aDαf (e) = lim
ε→+

f (e + ε(e – a)–α) – f (e)
ε

= lim
ε→–

f (e + ε(e – a)–α) – f (e)
ε

.

Observe that the first limit is nonnegative and also the second limit is non-positive. There-
fore, we obtain aDαf (e) = . �

Theorem . (Mean value theorem) Let an interval [c, d] ⊂ [a,∞) and let f : [a,∞) →R

be a given function satisfying:
(i) f is continuous on [c, d],

(ii) f is α-differentiable for some α ∈ (, ).
Then there exists a constant e ∈ (c, d), such that aDαf (e) = f (d)–f (c)


α (d–a)α– 

α (c–a)α
.

Proof Setting the function

g(t) = f (t) – f (c) –
f (d) – f (c)


α

(d – a)α – 
α

(c – a)α

(

α

(t – a)α –

α

(c – a)α
)

,
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we see that g satisfy all the conditions of the Rolle’s theorem. Therefore, there exists a
constant e ∈ (c, d), such that aDαg(e) = . Using the fact that aDα( 

α
(t – a)α) = , we get the

desired result. This completes the proof. �

Remark . If a = , then Theorems . and . are reduced to Theorems . and . in
[], respectively.

3 Impulsive results
Let J– = J \ {t, t, . . . , tm}, J = [t, t], Jk = (tk , tk+] for k = , , . . . , m be sub-intervals of J
and the set PC(J ,R) = {x : J → R : x(t) is continuous everywhere except for some tk at
which x(t–

k ) and x(t+
k ) exist and x(t–

k ) = x(tk), k = , , . . . , m}. Let E = PC(J ,R), then E is the
Banach space with the norm ‖x‖ = supt∈J |x(t)|. A function x ∈ E is called a solution of the
impulsive periodic boundary value problem (.) if it satisfies (.).

Definition . A function μ ∈ E is called a lower solution of the periodic boundary value
problem (.) if it satisfies

⎧
⎪⎪⎨

⎪⎪⎩

tk Dαμ(t) ≤ f (t,μ(t), (Fμ)(t), (Sμ)(t)), t ∈ J–,

�μ(tk) ≤ Ik(μ(tk)), k = , , . . . , m,

μ() ≤ μ(T).

(.)

Analogously, a function ν ∈ E is called an upper solution of the periodic boundary value
problem (.) if the inequalities

⎧
⎪⎪⎨

⎪⎪⎩

tk Dαν(t) ≥ f (t,ν(t), (Fν)(t), (Sν)(t)), t ∈ J–,

�ν(tk) ≥ Ik(ν(tk)), k = , , . . . , m,

ν() ≥ ν(T),

(.)

hold.

Let us introduce the new notations which will be used in this paper. For nonnegative
real numbers a ≤ b and a, b ∈ J , we define

e
M
α (a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e M
α (b–a)α , a, b ∈ (ti, ti+], i = , , . . . , m,

e M
α (b–ti)α · e M

α (ti–a)α , a ∈ (ti–, ti], b ∈ (ti, ti+],

i = , , . . . , m,

e M
α (b–tq)α · ∏a<ti–<ti<b e M

α (ti–ti–)α · e M
α (tp–a)α , a < ti– < ti < b,

i = , , . . . , m,

(.)

where tq = max{tk ; a < tk < b}, tp = min{tk ; a < tk < b} for some k ∈ {, , . . . , m} and
∏

(·) = .
Let f : J →R be a function given by

f (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f(t), t ∈ J,

f(t), t ∈ J,

. . . ,

fm(t), t ∈ Jm.

(.)
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The impulsive integral notation is defined as

∫ b

a
f (s) d̂s =

∫ tp

a
fp–(s) ds +

∫ tp+

tp

fp(s) ds + · · · +
∫ b

tq

fq(s) ds, a, b ∈ J , (.)

where a ≤ tp < · · · < tq ≤ b.

Example . For J = [, ], tk = k, k = , , , , , we have

e
M
α (, ) = e

M
α (–)α · e

M
α (–)α · e

M
α (–)α ,

e
–M
α (., .) = e

–M
α (.–)α · e

–M
α (–.)α ,

∫ .

.
f (s) d̂s =

∫ 

.
f(s) ds +

∫ 


f(s) ds +

∫ 


f(s) ds +

∫ .


f(s) ds.

It is easy to prove the following result.

Property . Let a ≤ c ≤ b ≤ d be nonnegative real numbers. The following relations
hold:

(i) e M
α (a, c)e M

α (c, b) = e M
α (a, b),

(ii) e M
α (a, b)e M

α (c, d) = e M
α (a, d)e M

α (c, b).

Now, we consider the following boundary value problem of a linear impulsive con-
formable fractional integro-differential equation subject to periodic boundary condition
of the form

⎧
⎪⎪⎨

⎪⎪⎩

tk Dαx(t) – Mx(t) = H(Fx)(t) + K(Sx)(t) + v(t),  < α ≤ , t ∈ J–,

�x(tk) = Lkx(tk) + Ik(σ (tk)) – Lkσ (tk), k = , , . . . , m,

x() = x(T),

(.)

where M > , H , K ≥ , Lk ≥ , k = , , . . . , m, are given constants and functions v,σ ∈ E.

Lemma . The solution x ∈ E of the problem (.) can be written as the following impul-
sive integral equation:

x(t) =
∫ T


G(t, s)P(s) d̂s

+
m∑

k=

G(t, tk)
[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]
, t ∈ J , (.)

where P(t) = H(Fx)(t) + K(Sx)(t) + v(t),

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

(s–th)α–e
M
α (th ,t)e– M

α (th ,s)

–e
M
α (t,T)

,  ≤ s < t ≤ T ,

(s–th)α–e
M
α (t,t)e

M
α (th ,T)e– M

α (th ,s)

–e
M
α (t,T)

,  ≤ t ≤ s ≤ T ,
(.)
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and

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

e
M
α (s,t)

–e
M
α (t,T)

,  ≤ s < t ≤ T ,

e
M
α (t,t)e

M
α (s,T)

–e
M
α (t,T)

,  ≤ t ≤ s ≤ T ,
(.)

with th = max{tk ; k = , , . . . , m and tk ≤ s}.

Proof Let x(t) be a solution of the problem (.). For t ∈ J, multiplying by e–M (t–t)α
α both

sides of the first equation of the problem (.) and using Lemma .(v),

e–M (t–t)α
α t Dαx(t) – e–M (t–t)α

α Mx(t) = t Dα
[
e–M (t–t)α

α x(t)
]
,

we obtain

t Dα
[
e–M (t–t)α

α x(t)
]

= e–M (t–t)α
α

[
H(Fx)(t) + K(Sx)(t) + v(t)

]
. (.)

Applying the conformable fractional integral of order α to both sides of (.) for t ∈ J,
we have

x(t) = x()eM tα
α +

∫ t


sα–eM tα

α e–M sα
α P(s) ds

= x()e
M
α (t, t) +

∫ t


sα–e

M
α (t, t)e– M

α (t, s)P(s) ds.

For t ∈ J, multiplying both sides of the first equation of the problem (.) by e–M (t–t)α
α and

using the product rule, we get

t Dα
[
e–M (t–t)α

α x(t)
]

= e–M (t–t)α
α P(t). (.)

The conformable fractional integration of order α from t to t of (.) implies

x(t) = x
(
t+

)
eM (t–t)α

α +
∫ t

t

(s – t)α–eM (t–t)α
α e–M (s–t)α

α P(s) ds

= x
(
t+

)
e

M
α (t, t) +

∫ t

t

(s – t)α–e
M
α (t, t)e– M

α (t, s)P(s) ds.

Since x(t+
 ) = x(t) + Lx(t) + I(σ (t)) – Lσ (t) and

x(t) = x()e
M
α (t, t) +

∫ t


sα–e

M
α (t, t)e– M

α (t, s)P(s) ds,

by using Property .(i), we get

x(t) = x()e
M
α (t, t) +

∫ t

t

(s – t)α–e
M
α (t, t)e– M

α (t, s)P(s) ds

+ e
M
α (t, t)

[
Lx(t) + I

(
σ (t)

)
– Lσ (t)

]

+
∫ t

t

(s – t)α–e
M
α (t, t)e– M

α (t, s)P(s) ds.
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Repeating the above process, for t ∈ Jk , we have

x(t) = x()e
M
α (t, t) +

∑

t<tk <t
e

M
α (tk , t)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
∑

t<tk<t

∫ tk

tk–

(s – tk–)α–e
M
α (tk–, t)e– M

α (tk–, s)P(s) ds

+
∫ t

tl

(s – tl)α–e
M
α (tl, t)e– M

α (tl, s)P(s) ds, (.)

where tl = max{tk ; k = , , . . . , m and tk < t}.
Putting t = T in (.), we obtain

x(T) = x()e
M
α (t, T) +

m∑

k=

e
M
α (tk , T)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
m∑

k=

∫ tk

tk–

(s – tk–)α–e
M
α (tk–, T)e– M

α (tk–, s)P(s) ds

+
∫ T

tm

(s – tm)α–e
M
α (tm, T)e– M

α (tm, s)P(s) ds.

From periodic boundary value condition x() = x(T), we deduce that

x() =


 – e M
α (t, T)

{ m∑

k=

e
M
α (tk , T)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
m∑

k=

∫ tk

tk–

(s – tk–)α–e
M
α (tk–, T)e– M

α (tk–, s)P(s) ds

+
∫ T

tm

(s – tm)α–e
M
α (tm, T)e– M

α (tm, s)P(s) ds

}

. (.)

Substituting (.) into (.), it follows that

x(t) =
e M

α (t, t)
 – e M

α (t, T)

{ m∑

k=

e(tk , T)
[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
m∑

k=

∫ tk

tk–

(s – tk–)α–e
M
α (tk–, T)e– M

α (tk–, s)P(s) ds

+
∫ T

tm

(s – tm)α–e
M
α (tm, T)e– M

α (tm, s)P(s) ds

}

+
∑

t<tk<t
e

M
α (tk , t)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
∑

t<tk<t

∫ tk

tk–

(s – tk–)α–e
M
α (tk–, t)e– M

α (tk–, s)P(s) ds

+
∫ t

tl

(s – tl)α–e
M
α (tl, t)e– M

α (tl, s)P(s) ds
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=


 – e M
α (t, T)

{ m∑

k=

e
M
α (t, t)e

M
α (tk , T)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
m∑

k=

∫ tk

tk–

(s – tk–)α–e
M
α (t, t)e

M
α (tk–, T)e– M

α (tk–, s)P(s) ds

+
∫ T

tm

(s – tm)α–e
M
α (t, t)e

M
α (tm, T)e– M

α (tm, s)P(s) ds

–
∑

t<tk<t
e

M
α (t, T)e

M
α (tk , t)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

–
∑

t<tk<t

∫ tk

tk–

(s – tk–)α–e
M
α (t, T)e

M
α (tk–, t)e– M

α (tk–, s)P(s) ds

–
∫ t

tl

(s – tl)α–e
M
α (t, T)e

M
α (tl, t)e– M

α (tl, s)P(s) ds

+
∑

t<tk<t
e

M
α (tk , t)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
∑

t<tk<t

∫ tk

tk–

(s – tk–)α–e
M
α (tk–, t)e– M

α (tk–, s)P(s) ds

+
∫ t

tl

(s – tl)α–e
M
α (tl, t)e– M

α (tl, s)P(s) ds

}

.

Using Property .(ii), we have

x(t) =


 – e M
α (t, T)

{ ∑

t<tk<T

e
M
α (t, t)e

M
α (tk , T)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
∫ tl+

t
(s – tl)α–e

M
α (t, t)e

M
α (tl, T)e– M

α (tl, s)P(s) ds

+
∑

tl+<tk <T

∫ tk

tk–

(s – tk–)α–e
M
α (t, t)e

M
α (tk–, T)e– M

α (tk–, s)P(s) ds

+
∫ T

tm

(s – tm)α–e
M
α (t, t)e

M
α (tm, T)e– M

α (tm, s)P(s) ds

+
∑

t<tk<t
e

M
α (tk , t)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
∑

t<tk<t

∫ tk

tk–

(s – tk–)α–e
M
α (tk–, t)e– M

α (tk–, s)P(s) ds

+
∫ t

tl

(s – tl)α–e
M
α (tl, t)e– M

α (tl, s)P(s) ds
}

=


 – e M
α (t, T)

{ ∑

t<tk<T

e
M
α (t, t)e

M
α (tk , T)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
∫ T

t
(s – th)α–e

M
α (t, t)e

M
α (th, T)e– M

α (th, s)P(s) d̂s
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+
∑

t<tk<t
e

M
α (tk , t)

[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]

+
∫ t

t

(s – th)α–e
M
α (th, t)e– M

α (th, s)P(s) d̂s
}

.

Therefore, we obtain the integral equation (.) as required.
Conversely, it can easily be shown by direct computation that the integral equation (.)

satisfies the impulsive periodic boundary value problem (.). This completes the proof.
�

Denote a = maxk{tk+ – tk}, k = , , . . . , m. Now we prove the comparison result.

Lemma . Let  < α ≤ . Assume that x ∈ E satisfies

⎧
⎪⎪⎨

⎪⎪⎩

tk Dαx(t) ≥ Mx(t) + H(Fx)(t) + K(Sx)(t), t ∈ J–,

�x(tk) ≥ Lkx(tk), k = , , . . . , m,

x() ≥ x(T),

(.)

where M > , H , K ≥ , Lk ≥ , k = , , . . . , m are given constants. Suppose in addition that

m∑

k=

Lk +
aα

α
(m + )(M + Hl̄T + Kh̄T) ≤ , (.)

where l̄ = sup{l(t, s) : (t, s) ∈ J} and h̄ = sup{h(t, s) : (t, s) ∈ J}. Then x(t) ≤  for all t ∈ J .

Proof Suppose, to the contrary, that x(t) >  for some t ∈ J . Then there are two cases:
(i) There exists a point t∗ ∈ J , such that x(t∗) >  and x(t) ≥  for all t ∈ J .

(ii) There exist two points t∗, t∗ ∈ J , such that x(t∗) >  and x(t∗) < .
Case (i): Setting u(t) = e– M

α (t–tk )α x(t) for t ∈ J , then we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tk Dαu(t) ≥ H
∫ t

 l(t, s)e– M
α [(t–tk )α–(s–tk )α ]u(s) ds

+ K
∫ T

 h(t, s)e– M
α [(t–tk )α–(s–tk )α ]u(s) ds, t ∈ J–,

�u(tk) ≥ Lku(tk), k = , , . . . , m,

u() ≥ e M
α (T–tm)α u(T).

Obviously, the functions u(t) and x(t) have the same sign. According to the above, it fol-
lows that tk Dαu(t) ≥  for t ∈ J– and �u(tk) ≥  for k = , , . . . , m. This implies that u(t) is
nondecreasing in J . Therefore, we have u(T) ≥ u(t∗) >  and u(T) ≥ u() ≥ e M

α (T–tm)α u(T),
which is a contradiction.

Case (ii): Let inf{x(t) : t ∈ J} = –b. Then we can assume that b >  and also there exists a
point t∗ ∈ (ti, ti+], i ∈ {, , . . . , m}, such that x(t∗) = –b or x(t+

i ) = –b. Now, we only consider
the case x(t∗) = –b. For the case x(t+

i ) = –b, the proof is similar. It is easy to see that

tk Dαx(t) ≥ –b
(

M + H
∫ t


l(t, s) ds + K

∫ T


h(t, s) ds

)

≥ –b(M + Hl̄T + Kh̄T).
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Suppose that t∗ ∈ (tj, tj+) for some j ∈ {, , . . . , m}. We assume t∗ < t∗, which implies i ≤ j.
For the case t∗ > t∗, the proof is similar and thus we omit it. By Theorem ., we get

x(T) – x(tm) ≥ x(T) – x
(
t+
m
)

+ Lmx(tm) =

α

(T – tm)α tm Dαx(rm) + Lmx(tm)

≥ –b
[

aα

α
(M + Hl̄T + Kh̄T) + Lm

]

, rm ∈ (tm, T),

x(tm) – x(tm–) ≥ x(tm) – x
(
t+
m–

)
+ Lm–x(tm–)

=

α

(tm – tm–)α tm– Dαx(rm–) + Lm–x(tm–)

≥ –b
[

aα

α
(M + Hl̄T + Kh̄T) + Lm–

]

, rm– ∈ (tm–, tm),

. . . ,

x(tj+) – x
(
t∗) =

[

α

(tj+ – tj)α –

α

(
t∗ – tj

)α

]

tj D
αx

(
r∗)

≥ –b
[

aα

α
(M + Hl̄T + Kh̄T)

]

, r∗ ∈ (
t∗, tj+

)
.

Summing up the above inequalities, we get

x(T) – x
(
t∗) ≥

m∑

k=j+

(

–b
[

aα

α
(M + Hl̄T + Kh̄T) + Lk

])

– b
[

aα

α
(M + Hl̄T + Kh̄T)

]

. (.)

In the same way, we have

x(t∗) – x(ti) ≥ –b
[

aα

α
(M + Hl̄T + Kh̄T) + Li

]

,

. . . ,

x(t) – x() ≥ –b
[

aα

α
(M + Hl̄T + Kh̄T)

]

.

Summing up the above inequalities, it follows that

x(t∗) – x() ≥
i∑

k=

(

–b
[

aα

α
(M + Hl̄T + Kh̄T) + Lk

])

– b
[

aα

α
(M + Hl̄T + Kh̄T)

]

. (.)

From (.), (.), and the third inequality of (.), we obtain

x(t∗) – x
(
t∗) ≥ –b

m∑

k=

Lk –
aα

α
b(m + )(M + Hl̄T + Kh̄T),
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which leads to

 < x
(
t∗) ≤ –b + b

m∑

k=

Lk +
aα

α
b(m + )(M + Hl̄T + Kh̄T).

Thus, we get

m∑

k=

Lk +
aα

α
(m + )(M + Hl̄T + Kh̄T) > ,

which contradicts (.). The proof is completed. �

4 Existence results
In view of Lemma ., we define the operator A : E → E by

Ax(t) =
∫ T


G(t, s)

[
H(Fx)(s) + K(Sx)(s) + v(s)

]
d̂s

+
m∑

k=

G(t, tk)
[
Lkx(tk) + Ik

(
σ (tk)

)
– Lkσ (tk)

]
, (.)

where the Green functions G(t, s) and G(t, s) are defined by (.) and (.), respectively.
Next, we will prove the existence of a unique solution for the problem (.). To accomplish
this, we set

� :=
e M

α (t, T)
| – e M

α (t, T)|

[

aα–

(
l̄H


m+∑

k=

(
t
k – t

k–
)

+ h̄KT

)

+
m∑

k=

Lk

]

.

Lemma . Assume that α ∈ (, ], M > , H , K ≥ , Lk ≥ , k = , , . . . , m. If

� < , (.)

then the periodic boundary value problem (.) has a unique solution on J .

Proof Case I. For  ≤ s < t ≤ T , we see that

(s – th)α–e
M
α (th, t)e– M

α (th, s) ≤ aα–e
M
α (t, T)

and

e
M
α (s, t) ≤ e

M
α (t, T).

Case II. For  ≤ t ≤ s ≤ T , we have

e
M
α (t, t)e

M
α (s, T) ≤ e

M
α (t, T).

If t < th ≤ s, then we obtain

(s – th)α–e
M
α (t, t)e

M
α (th, T)e– M

α (th, s) ≤ aα–e
M
α (t, T). (.)
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If th ≤ t ≤ s, we have e M
α (th, t)e– M

α (th, s) ≤ , which implies that the above inequality (.)
holds. From Cases I and II, it follows that

sup
(t,s)∈J

∣
∣G(t, s)

∣
∣ ≤ aα–e M

α (t, T)
| – e M

α (t, T)|
and sup

(t,s)∈J

∣
∣G(t, s)

∣
∣ ≤ e M

α (t, T)
| – e M

α (t, T)|
.

Transform the problem (.) into a fixed point problem, x = Ax, where the operator A
is defined by (.). For any x, y ∈ E, we have

‖Ax – Ay‖ ≤ ‖x – y‖
∫ T



∣
∣G(t, s)

∣
∣
[
H(F)(s) + K(S)(s)

]
d̂s

+ ‖x – y‖
m∑

k=

∣
∣G(t, s)

∣
∣Lk

≤ �‖x – y‖.

As � < , A is a contraction. Therefore, by the Banach contraction mapping principle, we
deduce that A has a fixed point which is the unique solution of the problem (.). The
proof is completed. �

For ν,μ ∈ E, we denote

[ν,μ] =
{

x ∈ E : ν(t) ≤ x(t) ≤ μ(t), t ∈ J
}

,

and we write ν ≤ μ if ν(t) ≤ μ(t) for all t ∈ J .

Theorem . Assume that the following conditions hold:

(H) the functions μ and ν are lower and upper solutions of the periodic boundary value
problem (.), respectively, such that ν(t) ≤ μ(t) on J ;

(H) the function f ∈ C(J ×R
,R) satisfies

f (t, x, y, z) – f (t, x̄, ȳ, z̄) ≤ M(x – x̄) + H(y – ȳ) + K(z – z̄),

for ν(t) ≤ x̄(t) ≤ x(t) ≤ μ(t), (Fν)(t) ≤ ȳ(t) ≤ y(t) ≤ (Fμ)(t), (Sν)(t) ≤ z̄(t) ≤
z(t) ≤ (Sμ)(t), t ∈ J ;

(H) the functions Ik ∈ C(R,R) satisfy

Ik
(
x(tk)

)
– Ik

(
y(tk)

) ≤ Lk
(
x(tk) – y(tk)

)
,

whenever ν(tk) ≤ y(tk) ≤ x(tk) ≤ μ(tk), Lk ≥ , k = , , . . . , m;
(H) the inequalities (.) and (.) hold.

Then there exist monotone sequences {μn}, {νn} ⊂ E such that limn→∞ μn(t) = x∗(t),
limn→∞ νn(t) = x∗(t) uniformly on J and x∗, x∗ are maximal and minimal solutions of the
problem (.), respectively, such that

ν ≤ ν ≤ ν ≤ · · · ≤ νn ≤ x∗ ≤ x ≤ x∗ ≤ μn ≤ · · · ≤ μ ≤ μ ≤ μ,
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on J , where x is any solution of the periodic boundary value problem (.) such that ν(t) ≤
x(t) ≤ μ(t) on J .

Proof For any σ ∈ [ν,μ], we investigate the periodic boundary value problem (.) with

v(t) = f
(
t,σ (t), (Fσ )(t), (Sσ )(t)

)
– Mσ (t) – H(Fσ )(t) – K(Sσ )(t).

Applying Lemma ., the problem (.) has a unique solution x(t) for t ∈ J . Let us define
an operator A by x = Aσ . Then the operator A is an operator from [ν,μ] to E and A has
the following properties:

(i) ν ≤Aν, Aμ ≤ μ;
(ii) for any σ,σ ∈ [ν,μ], σ ≤ σ implies Aσ ≤Aσ.

To prove (i), we set a function ϕ = ν – ν, where ν = Aν. Then from condition (H) and
(.), we have

tk Dαϕ(t) = tk Dαν(t) – tk Dαν(t)

≥ f
(
t,ν(t), (Fν)(t), (Sν)(t)

)
–

[
Mν(t) + H(Fν)(t) + K(Sν)(t)

+ f
(
t,ν(t), (Fν)(t), (Sν)(t)

)
– Mν(t) – H(Fν)(t) – K(Sν)(t)

]

= Mϕ(t) + H(Fϕ)(t) + K(Sϕ)(t), t ∈ J–,

and

�ϕ(tk) = �ν(tk) – �ν(tk)

≥ Ik
(
ν(tk)

)
–

[
Lkν(tk) + Ik

(
ν(tk)

)
– Lkν(tk)

]

= Lkϕ(tk), k = , , . . . , m,

and

ϕ() = ν() – ν()

≥ ν(T) – ν(T)

= ϕ(T).

Using Lemma ., we deduce that ϕ(t) ≤  for all t ∈ J , i.e., ν ≤ Aν. Similarly, we can
prove that Aμ ≤ μ.

To prove (ii), we let u = Aσ, u = Aσ, where σ ≤ σ on J and σ,σ ∈ [ν,μ]. Setting
a function ϕ = u – u, then for t ∈ J and by (H), we obtain

tk Dαϕ(t) = tk Dαu(t) – tk Dαu(t)

= Mu(t) + H(Fu)(t) + K(Su)(t) + f
(
t,σ(t), (Fσ)(t), (Sσ)(t)

)

– Mσ(t) – H(Fσ)(t) – K(Sσ)(t)

–
(
Mu(t) + H(Fu)(t) + K(Su)(t)

+ f
(
t,σ(t), (Fσ)(t), (Sσ)(t)

)
– Mσ(t) – H(Fσ)(t) – K(Sσ)(t)

)
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≥ M
(
u(t) – u(t)

)
+ H

(
F(u – u)

)
(t) + K

(
S(u – u)

)
(t),

= Mϕ(t) + H(Fϕ)(t) + K(Sϕ)(t), t ∈ J–,

and by (H),

�ϕ(tk) = �u(tk) – �u(tk)

= Lku(tk) + Ik
(
σ(tk)

)
– Lkσ(tk) –

[
Lku(tk) + Ik

(
σ(tk)

)
– Lkσ(tk)

]

≥ Lk
[
u(tk) – u(tk)

]
= Lkϕ(tk), k = , , . . . , m.

It is easy to see that

ϕ() = u() – u()

= u(T) – u(T)

≥ ϕ(T).

Then, from Lemma ., we get ϕ(t) ≤ , which yields Aσ ≤Aσ.
Next, we define the sequences {μn}, {νn} such that μn+ = Aμn and νn+ = Aνn. From (i)

and (ii), we see that the sequences {μn}, {νn} satisfy the following inequality:

ν ≤ ν ≤ · · · ≤ νn ≤ · · · ≤ μn ≤ · · · ≤ μ ≤ μ,

for all n ∈ N . Obviously, the functions μn, νn (n = , , . . .) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk Dαμn(t) = Mμn(t) + H(Fμn)(t) + K(Sμn)(t)

+ f (t,μn–(t), (Fμn–)(t), (Sμn–)(t))

– Mμn–(t) – H(Fμn–)(t) – K(Sμn–)(t), t ∈ J–,

�μn(tk) = Lkμn(tk) + Ik(μn–(tk)) – Lkμn–(tk), k = , , . . . , m,

μn() = μn(T),

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk Dανn(t) = Mνn(t) + H(Fνn)(t) + K(Sνn)(t)

+ f (t,νn–(t), (Fνn–)(t), (Sνn–)(t))

– Mνn–(t) – H(Fνn–)(t) – K(Sνn–)(t), t ∈ J–,

�νn(tk) = Lkνn(tk) + Ik(νn–(tk)) – Lkνn–(tk), k = , , . . . , m,

νn() = νn(T).

Therefore, there exist functions x∗ and x∗ on J , such that limn→∞ νn = x∗ and limn→∞ μn =
x∗ uniformly on J . Clearly, x∗, x∗ are solutions of the periodic boundary value problem (.).

Finally, we are going to show that x∗, x∗ are minimal and maximal solutions of the
problem (.). Suppose that x(t) is any solution of the problem (.) for t ∈ J , such that
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x ∈ [ν,μ] and also there exists a positive integer n such that νn(t) ≤ x(t) ≤ μn(t) on J . Let
ϕ = νn+ – x, then for t ∈ J , we have

tk Dαϕ(t) = tk Dανn+(t) – tk Dαx(t)

= Mνn+(t) + H(Fνn+)(t) + K(Sνn+)(t)

+ f
(
t,νn(t), (Fνn)(t), (Sνn)(t)

)

– Mνn(t) – H(Fνn)(t) – K(Sνn)(t) – f
(
t, x(t), (Fx)(t), (Sx)(t)

)

≥ Mϕ(t) + H(Fϕ)(t) + K(Sϕ)(t), t ∈ J–,

and

�ϕ(tk) = �νn+(tk) – �x(tk)

= Lkνn+(tk) + Ik
(
νn(tk)

)
– Lkνn(tk) – Ik

(
x(tk)

)

≥ Lk
[
νn+(tk) – x(tk)

]
= Lkϕ(tk), k = , , . . . , m,

and also

ϕ() = νn+() – x()

= νn+(T) – x(T)

≥ ϕ(T).

Then, by applying Lemma ., we have ϕ(t) ≤ , which leads to νn+ ≤ x on J . By similar
method, we can show that x ≤ μn+ on J . Since ν ≤ x ≤ μ on J , by mathematical in-
duction, we deduce that νn ≤ x ≤ μn on J for every n. Hence, by taking n → ∞, we have
x∗(t) ≤ x(t) ≤ x∗(t) on J . The proof is complete. �

5 An example
Example . Consider the following periodic boundary value problem for impulsive con-
formable fractional integro-differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tk D 
 x(t) = t




 sin x(t) + t


∫ t

 tsx(s) ds

+ t




∫ 

 cos(st)x(s) ds, t ∈ [, ] \ { 
 },

�x( 
 ) = 

 tan–(x( 
 )), k = ,

x() = x().

(.)

Here α = /, T = , m = , t = /. Choosing μ = , ν =
{ –, t ∈ [, 

 ],
–, t ∈ ( 

 , ], then μ and ν

are lower and upper solutions of the problem (.), respectively, and also ν ≤ μ. Let

f (t, u, v, w) =
t 




sin x +

t


v +

t 



w,

then we have

f (t, u, v, w) – f (t, ū, v̄, w̄) ≤ 


(x – x̄) +



(v – v̄) +




(w – w̄),
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where ν(t) ≤ ū(t) ≤ u(t) ≤ μ(t), (Fν)(t) ≤ v̄(t) ≤ v(t) ≤ (Fμ)(t), (Sν)(t) ≤ w̄(t) ≤
w(t) ≤ (Sμ)(t), t ∈ [, ]. We see that

I
(
u(t)

)
– I

(
v(t)

) ≤ 


(
u(t) – v(t)

)
,

where ν(t) ≤ v(t) ≤ u(t) ≤ μ(t). Setting M = /, H = /, K = /, L = /, a =
/, l̄ = , and h̄ = , it follows that

m∑

k=

Lk +
aα

α
(m + )(M + Hl̄T + Kh̄T) = . ≤ 

and

� =
e M

α (t, T)
| – e M

α (t, T)|

[

aα–

(
l̄H


m+∑

k=

(
t
k – t

k–
)

+ h̄KT

)

+
m∑

k=

Lk

]

= . < ,

where e M
α (t, T) = e M

α (– 
 )α · e M

α ( 
 –t)α = .. Therefore, the periodic boundary

value problem (.) satisfies all conditions of Theorem .. Then by using the monotone
iterative scheme,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk D 
 μn(t) = 

μn(t) + 


∫ t
 tsμn(s) ds + 


∫ 

 cos(st)μn(s) ds

+ t



 sinμn–(t) + t


∫ t

 tsμn–(s) ds + t




∫ 

 cos(st)μn–(s) ds

– 
μn–(t) – 


∫ t

 tsμn–(s) ds

– 


∫ 
 cos(st)μn–(s) ds, t ∈ [, ] \ { 

 },
�μn(t) = 

μn(t) + 
 tan–(μn–( 

 )) – 
μn–(t), k = ,

μn() = μn(),

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk D 
 νn(t) = 

νn(t) + 


∫ t
 tsνn(s) ds + 


∫ 

 cos(st)νn(s) ds

+ t



 sinνn–(t) + t


∫ t

 tsνn–(s) ds + t




∫ 

 cos(st)νn–(s) ds

– 
νn–(t) – 


∫ t

 tsνn–(s) ds

– 


∫ 
 cos(st)νn–(s) ds, t ∈ [, ] \ { 

 },
�νn(t) = 

νn(t) + 
 tan–(νn–( 

 )) – 
νn–(t), k = ,

νn() = νn(),

for n = , , , . . . , the problem (.) has the extremal solution in the segment [ν,μ].
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