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Abstract
Let u(t, x) be the solution to a stochastic heat equation

∂

∂ t
u =�αu +

∂2

∂ t ∂x
B(t, x), t ≥ 0, x ∈ R,

with initial condition u(0, x) ≡ 0, where B is a time-space white noise, �α = –(–�)α/2 is
the fractional Laplacian with α ∈ (1, 2]. In this paper we study the quadratic variation
of the processWα = {Wα

t = u(t, ·), t ≥ 0}. We construct a Banach space H of
measurable functions such that the generalized quadratic covariation 〈f (Wα ),Wα〉(α)
of f (Wα ) andWα defined by

〈
f (Wα),Wα

〉(α)
t := lim

ε↓0
1

ε
α–1
2α

∫ t

0

{
f (Wα

s+ε,x) – f (W
α
s )

}
(Wα

s+ε,x –W
α
s )ds

α–1
2α

exists in L2(�), provided f ∈ H . Moreover, we consider some related questions.
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1 Introduction and main results
Recently, Swanson [] (see also Pospisil and Tribe []) studied the exact variations of the
solution to the following one-dimensional stochastic heat equation:

∂

∂t
u =



�u +

∂

∂t ∂x
B(t, x), t ≥ , x ∈R, (.)

with initial condition u(, x) = , where B is a time-space white noise on [,∞) × R. It is
clear that the solution can be characterized as

u(t, x) =
∫ t



∫

R

p(t – s, x – y)B(ds, dy), (.)

here p(t, x) = √
π t e– x

t is the heat kernel of Lapalacian. Under the circumstance, we know
(see Swanson []) that

E
[
u(t, x)u(s, x)

]
=

√
π

(
(t + s)/ – |t – s|/), t, s ≥ , (.)
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moreover, the process t 
→ u(t, x) has a nontrivial quartic variation. As a general conclu-
sion from these results, in Sun et al. [] we considered the quadratic covariations and Itô’s
formula for the solution. The above results show that the process u = {u(t, x)} as a noise
admits the next special structures. For more results for an Itô analysis of stochastic heat
equations one refers to Da Prato et al. [], Deya and Tindel [], Denis [], Gradinaru et al.
[], Ouahhabi and Tudor [], León and Tindel [], Torres et al. [], Tudor and Xiao [],
Ciprian and Tudor [], Wu [], Zambotti [], and the references therein.

In the present paper, we study the temporal variation of the solution {u(t, x), t ≥ , x ∈R}
to the following fractional stochastic heat equation:

∂

∂t
u = �αu +

∂

∂t ∂x
B(t, x), t ≥ , x ∈R (.)

with initial condition u(, x) = , where X is a time-space white noise on [,∞) ×R, �α =
–(–�)α/ is the fractional Lapalacian with α ∈ (, ]. Let pα(t, x, y) be the heat kernel of
operator �α , i.e. the transition density function of one-dimensional symmetry α-stable
Lévy process. Then the solution u = {u(t, x), t ≥ , x ∈ R} is a two parameters Gaussian
process and

u(t, x) =
∫ t



∫

R

pα(t – s, x – y)B(ds, dy). (.)

This paper is organized as follows. In Section , we establish some technical estimates
associated with the solution based on the heat kernel estimates of the operator �α =
–(–�)α/. In Section , as some applications of Section  we introduce Wiener integrals
with respect to the process W α = {W α

t = u(t, ·), t ≥ }. In Section  we show that the pro-
cess W α admits a nontrivial strong p = α

α– -variation, i.e.

lim
ε↓


ε

∫ t



∣∣W α
ε+s – W α

s
∣∣

α
α– ds = Cαt

in probability for every t > . As a related question, we introduce a so-called the generalized
quadratic covariation of f (W α) and W α defined by

〈
f
(
W α

)
, W α

〉(α)
t := lim

ε↓


ε

α–
α

∫ t



{
f
(
W α

s+ε

)
– f

(
W α

s
)}(

W α
s+ε – W α

s
)

ds
α–
α

in probability. We construct a Banach space H of measurable functions such that the
generalized quadratic covariation 〈f (W α), W α〉(α) exists in L(�), provided f ∈ H . In Sec-
tion , we introduce that the Itô’s formula and Bouleau-Yor type identity for the temporal
process W α .

2 Preliminaries
In this section, we present some technical estimates associated with the solution

u(t, x) =
∫ t



∫

R

pα(t – r, x – y)B(dr, dy), t ≥ , x ∈R,

with  < α ≤ , where pα(t, x) is the heat kernel of the operator �α = –(–�)α/. For sim-
plicity, throughout this paper we denote by C a positive constant depending only on the
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subscripts and its value may be different in different places, and this assumption is also
suitable for c. If there exist positive constants b and b such that

bG(x) ≤ F(x) ≤ bG(x)

in the common domain of definition for F and G, then we employ the notation F  G.
It is clear that the heat kernel pα(t, x) is the fundamental solution of the following equa-

tion:

∂u
∂t

= �αu.

pα(t, x) is also the transition density function of one-dimensional symmetry α-stable Lévy
process X. Moreover, pα(t, x) satisfies (see, for example, Blumenthal and Getoor [])

∫

R

pα(t, x)eixξ dx = e–t|ξ |α , ξ ∈R, t ≥ .

When α = , we get

p(t, x) =
t

π (x + t)
.

For all x ∈R and t > , we have

pα(t, x) = t– 
α pα

(
, xt– 

α
)
.

Moreover, for all x ∈R and t > , we obtain

c–
(

t
|x|+α

∧ t– 
α

)
≤ pα(t, x) ≤ c

(
t

|x|+α
∧ t– 

α

)
, (.)

where c >  is a constant.
Now, we present some estimates. Denote by W α = {W α

t = u(t, ·), t ≥ } the temporal
process. For x ∈R and all t, s > , we have

E
(
W α

t W α
s
)

=
∫ s∧t



∫

R

pα(t – r, x – z)pα(s – r, x – z) dz dr

=
∫ s∧t


pα(t + s – r, ) dr

=
	(/α)

απ

∫ s∧t


(t + s – r)– 

α dr

=
	(/α)

π (α – )
(
(t + s)

α–
α – |t – s| α–

α
)
.

Lemma . For x ∈R and all t, s > , we have

E
[(

W α
t – W α

s
)]  (t – s)

α–
α . (.)
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Proof For x ∈ [, ], let

f (x) =  – 

α
(
( + x)

α–
α – ( – x)

α–
α

)
+ x

α–
α .

Then, for x ∈ [, ], we have

f (x)  ( – x)
α–
α .

It follows that

E
[(

W α
t – W α

s
)] =

	(/α)
 

α π (α – )

(
t

α–
α – 


α
(
(t + s)

α–
α – (t – s)

α–
α

)
+ s

α–
α

)

=
	(/α)

 
α π (α – )

t
α–
α f (s/t)  (t – s)

α–
α (.)

for all t > s > . �

Lemma . For x ∈R and all t, s > , we have

∣∣E
[
W α

r
(
W α

t – W α
s
)]∣∣ ≤ 	(/α)

π (α – )
|t – s| α–

α .

Proof By an elementary calculation, we have

∣∣E
[
W α

r
(
W α

t – W α
s
)]∣∣ =

∣∣E
(
W α

r W α
t
)

– E
(
W α

r W α
s
)∣∣

=
	(/α)

π (α – )
∣∣(t + r)

α–
α – |t – r| α–

α – (s + r)
α–
α + |s – r| α–

α

∣∣

≤ 	(/α)
π (α – )

∣∣(t + r)
α–
α – (s + r)

α–
α

∣∣ +
∣∣|t – r| α–

α – |s – r| α–
α

∣∣

≤ 	(/α)
π (α – )

|t – s| α–
α

for x ∈R and all t, s, r > . �

Lemma . For all t > s > t′ > s′ >  and x ∈R we have

∣∣E
[(

W α
t – W α

s
)(

W α
t′ – W α

s′
)]∣∣ ≤ C

[(t – s)(t′ – s′)] α–
α

(s – t′) α–
α

. (.)

Proof By applying the mean value theorem, there exist some ξ ∈ (s, t) and η ∈ (s′, t′) such
that

g :=
((

t + t′) α–
α –

(
t + s′) α–

α
)

–
((

s + t′) α–
α –

(
s + s′) α–

α
)

=
α – 

α
(t – s)

((
ξ + t′)– 

α –
(
ξ + s′)– 

α
)

= –
α – 
α (t – s)

(
t′ – s′)(ξ + η)–– 

α ,
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which gives

|g| ≤ α – 
α (t – s)

(
t′ – s′)(s + s′)–– 

α . (.)

By a similar argument, we get

|g| :=
∣∣((t – s′) α–

α –
(
t – t′) α–

α
)

–
((

s – s′) α–
α –

(
s – t′) α–

α
)∣∣

=
α – 

α
(t – s)

∣∣(ξ – s′)– 
α –

(
ξ – t′)– 

α
∣∣

=
α – 
α (t – s)

(
t′ – s′)(ξ – η)–– 

α ≤ α – 
α (t – s)

(
t′ – s′)(s – t′)–– 

α

for some η ∈ (s′, t′) and ξ ∈ (s, t). It follows that

∣∣E
[(

W α
t – W α

s
)(

W α
t′ – W α

s′
)]∣∣ =

	(/α)
π (α – )

|g + g|

≤ 	(/α)
πα (t – s)

(
t′ – s′)(s – t′)–– 

α (.)

for all t > s > t′ > s′ > . On the other hand, noting that

∣∣E
[(

W α
t – W α

s
)(

W α
t′ – W α

s′
)]∣∣ ≤

√
	(/α)
π (α – )

[
(t – s)

(
t′ – s′)] α–

α ,

it follows that

|E[(W α
t – W α

s )(W α
t′ – W α

s′ )]|
√

	(/α)
π (α–) [(t – s)(t′ – s′)] α–

α

≤
( |E[(W α

t – W α
s )(W α

t′ – W α
s′ )]|

√
	(/α)
π (α–) [(t – s)(t′ – s′)] α–

α

)γ

for all β ∈ [, ]. By this, together with (.), we obtain

∣∣E
[(

W α
t – W α

s
)(

W α
t′ – W α

s′
)]∣∣

≤ C
[
(t – s)

(
t′ – s′)] α–

α (–γ )∣∣E
[(

W α
t – W α

s
)(

W α
t′ – W α

s′
)]∣∣γ

≤ C
[
(t – s)

(
t′ – s′)] α–

α (–γ )+γ 
(s – t′) +α

α γ

= C
[(t – s)(t′ – s′)] α–

α

(s – t′) α–
α

(.)

and by taking γ = α–
α+ , the lemma follows. �

Lemma . For all t > s > , let σ 
t = E[(W α

t )], σ 
s = E[(W α

s )], μt,s = E[W α
t W α

s ]. Then we
have

σ 
t σ 

s – μ
t,s  [

s(t – s)
] α–

α . (.)
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Proof Let κα = 	(/α)



α π (α–)

and

G(x) = 
(α–)

α x
α–
α –

(
( + x)

α–
α – ( – x)

α–
α

)

with x ∈ [, ]. Then

σ 
t σ 

s – μ
t,s = κ

α

{
(st)

α–
α – 

(–α)
α

(
(t + s)

α–
α – (t – s)

α–
α

)}

= κ
α

(–α)
α t

(α–)
α G(x)

for all t > s >  and x = s
t . We get

G(x) = 
(α–)

α x
α–
α –

(
( + x)

α–
α – ( – x)

α–
α

)

=
{


α–
α x

α–
α – ( + x)

α–
α + ( – x)

α–
α

}{


α–
α x

α–
α + ( + x)

α–
α – ( – x)

α–
α

}

≡ G(x)G(x).

It is obvious that


α–
α x

α–
α ≤ G(x) ≤ + α–

α x
α–
α .

We first estimate G(x). By an elementary calculation we can show that

(u + v – )
α–
α ≤ u

α–
α + v

α–
α –  ≤ (u + v – )

α–
α + (uv)

α–
α (.)

holds for u + v ≥ ,  ≤ u, v ≤ ,  ≤ K ≤ . By taking

u =

√

x
 + x

, v =
 – x
 + x

in (.), we have

 ≤ u, v ≤ , u + v –  =

√

x + ( – x) – ( + x)
 + x

≥ ,

and

G(x) = ( + x)
α–
α

((

√

x
 + x

) α–
α

+
(

 – x
 + x

) α–
α

– 
)

≤ ( + x)
α–
α

(

√

x
 + x

+
 – x
 + x

– 
) α–

α

+ ( + x)
α–
α

(

√

x
 + x

·  – x
 + x

) α–
α

≤ (
√

x – x)
α–
α +

(

√

x · ( – x)
) α–

α

≤ (

√

x – x/) α–
α +

(

√

x · ( – x)
) α–

α

≤ Cx
α–
α ( – x)

α–
α
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for all x ∈ [, ]. On the other hand, for all x ∈ [, ], we have

G(x) = ( + x)
α–
α

((

√

x
 + x

) α–
α

+
(

 – x
 + x

) α–
α

– 
)

≥ ( + x)
α–
α

(

√

x
 + x

+
 – x
 + x

– 
) α–

α

=
(

√

x + ( – x) – ( + x)
) α–

α

=
(
( – x) – ( – 

√
x + x)

) α–
α

=
(√

 – x – ( –
√

x)
) α–

α
(√

 – x + ( –
√

x)
) α–

α

≥ (√
 – x – ( –

√
x)

) α–
α ( – x)

α–
α .

Noting that

 =
√

 – x + x ≤ √
 – x ∨ √

x + (
√

 – )(
√

 – x ∧ √
x)

by using the Bernoulli inequality

( + x)β ≤  + βxβ ( ≤ x,β ≤ ).

We further get

√
 – x +

√
x –  ≥ 


√

 – x ∧ √
x

≥ 

√

( – x)x

for  ≤ x ≤ . It follows that

G(x) ≥ (√
 – x – ( –

√
x)

) α–
α ( – x)

α–
α ≥ 

 α–
α

x
α–
α ( – x)

α–
α

for all x ∈ [, ]. Therefore, the desired estimates

G(x)  x
α–
α ( – x)

α–
α

hold and the lemma follows. �

At the end of this section, we investigate Skorohod integrals associated with the tempo-
ral process W α = {W α

t = u(t, ·),  ≤ t ≤ T}. From the previous discussion, we have shown
that the process W α is neither a Markov process nor a semimartingale, thus many power-
ful techniques of stochastic analysis are not available. Noting they are Gaussian processes,
so we can develop the stochastic calculus of variations with respect to them. One refers
to Alós et al. [] and Nualart [] for more details of stochastic calculus for Gaussian
processes.
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Denote by E the set of linear combinations of elementary functions {[,t],  ≤ t ≤ T}.
Let the Hilbert space H be the closure of E with respect to the inner product

〈[,t], [,s]〉H∗ =
	(/α)

π (α – )
(
(t + s)

α–
α – |t – s| α–

α
)
.

The map [,t] 
→ W α
t is an isometry between E and the Gaussian space W α(ϕ) of {W α

t , t ≥
}, which can be extended to H. We denote the extension by

ϕ 
→ W α(ϕ) =
∫ t


ϕ(s) dW α

s .

Let f ∈ C∞
b (Rn), ϕi ∈ H, and let S denote the space of all smooth functionals of the fol-

lowing form:

F = f
(
W α(ϕ), W α(ϕ), . . . , W α(ϕn)

)
,

where f ∈ C∞
b (Rn) means f and all their derivatives are bounded. The derivative operator

Dα (the Malliavin derivative) of functionals F of the above form is defined as

DαF =
n∑

j=

∂f
∂xj

(
W α(ϕ), W α(ϕ), . . . , W α(ϕn)

)
ϕj.

Then Dα is closable from L(�) into L(�;H). Denote by D
, the closure of S endowed

with the norm

‖Ft‖, :=
√

E|F| + E
∥∥DαF

∥∥
H.

The divergence integral δα is the adjoint of Dα . Its domain is denoted by Dom(δα). We say
that a random variable u ∈ L(�;H) belongs to Dom(δα) if, for all F ∈ S ,

E
∣∣〈DαF , u

〉
H

∣∣ ≤ c‖F‖L(�).

In these cases, for any u ∈ D
,, δα(u) is defined by

E
[
Fδα(u)

]
= E

〈
DαF , u

〉
H. (.)

We have D
, ⊂ Dom(δα). We will use the notations

δα(u) =
∫ T


us dW α

s

to express the Skorohod integral, and the indefinite Skorohod integral is defined as

∫ t


us dW α

s = δα(u[,t]).
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3 The variation of temporal process
Let {u(t, x), t ≥ , x ∈R} be the solution to the Cauchy problem (.). Then we have

u(t, x) =
∫ t



∫

R

pα(t – s, x – y)B(ds, dy), (.)

where pα(t, x) is the transition density function of a one-dimensional symmetry α-stable
Lévy process X satisfying

∫

R

pα(t, x)eixξ dx = e–t|ξ |α

for ξ ∈ R and t ≥ . In this section, we investigate the strong p-variation of the temporal
process W α = {W α

t = u(t, ·), t ≥ }.
Recall that a continuous process X has a strong p-variation (p > ) if

ucp- lim
ε↓


ε

∫ t


|Xs+ε – Xs|p ds

exists, where the notation ucp means the uniform convergence in probability on each com-
pact interval. The limit is denoted by [X, X](p)

t and is called the p-strong variation. If the
p-strong variation exists, then for every q > p > , [X, X](q)

t = . When p =  we call [X, X](p)
t

the quadratic covariation of X and is denoted by [X, X], i.e.

[X, X] := ucp- lim
ε↓


ε

∫ t


(Xs+ε – Xs) ds. (.)

For ucp-convergence we have the next perfect result due to Russo and Vallois [].

Lemma . (Russo and Vallois []) Let {Xε , ε > } be a set of continuous processes. We
assume

• For any ε > , the process t 
→ Xε
t is increasing.

• There is a continuous process X = (Xt , t ≥ ) such that Xε
t → Xt in probability as ε goes

to zero.
Then Zε converges to X ucp.

Theorem . Let  < α < . Then, for every t > , we have

lim
ε↓


ε

∫ t



∣∣W α
s+ε – W α

s
∣∣

α
α– ds = καt

in probability, i.e.

[
W α , W α

](p)
t = καt

with p = α
α– , where λα = ( 	(/α)

π (α–) ) α
α– E|ξ | α

α– with ξ being a standard normal random vari-
able.
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Proof Let ε, t >  be given. Set

Cα(t, ε) :=

ε

∫ t



∣∣W α
s+ε – W α

s
∣∣

α
α– ds.

By Lemma . one only needs to show that Cα(t, ε) converges to λαt in L(�), as ε → .
Note that

E
[(

W α
s+ε – W α

s
)] = κα

(
(s + ε)

α–
α – 


α
(
(s + ε + s)

α–
α – ε

α–
α

)
+ s

α–
α

)

= κα(s + ε)
α–
α f (x)

for x = ε
s+ε

and s > , by (.). It is clear that

f (x) =  – 

α
(
( – x)

α–
α – x

α–
α

)
+ ( – x)

α–
α = 


α x

α–
α + o

(
x

α–
α

)

as x → , and

lim
ε↓


ε

α–
α

E
[(

W α
s+ε – W α

s
)] =

	(/α)
π (α – )

(.)

for s ≥ δ. We have

lim
ε↓


ε

E
[∣∣W α

s+ε – W α
s
∣∣

α
α–

]
= lim

ε↓


ε

E|ξ | α
α–

(
E
[(

W α
s+ε – W α

s
)]) α

α–

= E|ξ | α
α–

(
	(/α)
π (α – )

) α
α–

= λα

for s >  and

lim
ε↓

E
(
Cα(t, ε)

)
= λαt.

Thus, to obtain the result it suffices to establish that

lim
ε↓

E
(
Cα(t, ε)

) = (λα)t

for all t > . We get

E
(
Cα(t, ε)

) =

ε

∫ t


ds

∫ s


fε(s, r) dr,

where

fε(s, r) = E
∣∣(W α

s+ε – W α
s
)(

W α
r+ε – W α

r
)∣∣

α
α– .

Recall that if (B, B) is a Gaussian couple, then we can write

B =
Cov(B, B)

Var(B)
G +

√

Var(B) –
Cov(B, B)

Var(B)
η, (.)
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where η is a standard normal random variable independent of B and Var(·) denotes the
variance. Let B = W α

s+ε – W α
s , B = W α

r+ε – W α
r , με(s, r) = EBB, and

ϒε(s, r) = Var(B) Var(B) – με(s, r).

We get


ε fε(s, r) =


ε E|BB| α

α–

= E
(∣∣∣∣

B√
Var(B)

∣∣∣∣

α
α–

∣∣∣∣
με(s, r)
ε+b

B√
Var(B)

+


ε
α

α–

√
ϒε(s, r)η

∣∣∣∣

α
α–

)

= E
(

|ζ | α
α–

∣∣∣∣
με(s, r)
ε

α
α–

ζ +


ε
α

α–

√
ϒε(s, r)η

∣∣∣∣

α
α–

)
(.)

with a standard normal random variable ζ independent of η.
By Lemma ., it is obvious that


ε

α
α–

√
ϒε(s, r) ≤ 

ε
α

α–

√
E
(
W α

s+ε – W α
s
)E

(
W α

r+ε – W α
r
)  C.

Combining this with (.) and Lemma ., we have

∫ ε


ds

∫ s




ε fε(s, r) dr,

∫ t

ε

ds
∫ s

s–ε


ε fε(s, r) dr −→ 

as ε → . By (.) and (.) it follows that

E
(
Cα(t, ε)

) =

ε

∫ t


ds

∫ s


fε(s, r) dr

=

ε

∫ t

ε

ds
∫ s–ε


fε(s, r) dr +


ε

∫ t

ε

ds
∫ s

s–ε

fε(s, r) dr

+

ε

∫ ε


ds

∫ s


fε(s, r) dr

−→ 
∫ t


ds

∫ s


(λα) dr = (λα)t

as ε → , by Lebesgue’s dominated convergence theorem, the theorem follows. �

From Yan et al. [] and the above theorem, we can naturally introduce the next defini-
tion.

Definition . For all t ≥ , define the integral

Iε(f , t) =


ε
α–
α

∫ t



{
f
(
W α

s+ε

)
– f

(
W α

s
)}(

W α
s+ε – W α

s
)

ds
α–
α ,

where f is a measurable function on R. We call the limit limε→ Iε(f , t) the generalized
quadratic covariation of f (W α) and W α , denoted by 〈f (W α), W α〉(α), provided this limit
exists in probability.
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Proposition . For all  < α <  and t ≥ , we have

〈
BH , BH 〉(H)

t =
	(/α)
π (α – )

t
α–
α .

Moreover, for every f ∈ C(R), we have

〈
f
(
W α

)
, W α

〉(α)
t =

	(/α)
π (α – )

∫ t


f ′(W α

s
)

ds
α–
α . (.)

Proof It is suffices to estimate

E
∣∣∣∣

∫ t



(
W α

s+ε – W α
s
) ds

α–
α –

	(/α)
π (α – )

(tε)
α–
α

∣∣∣∣



= E
∣∣∣∣

∫ t



((
W α

s+ε – W α
s
) –

	(/α)
π (α – )

ε
α–
α

)
ds

α–
α

∣∣∣∣



≡
∫ t



∫ t


Xε(s, r) ds

α–
α dr

α–
α

for all ε > , where

Xε(y, z) = E
((

W α
s+ε – W α

s
) –

	(/α)
π (α – )

ε
α–
α

)((
W α

r+ε – W α
r
) –

	(/α)
π (α – )

ε
α–
α

)

= E
((

W α
s+ε – W α

s
)(W α

r+ε – W α
r
))

–
	(/α)
π (α – )

ε
α–
α

(
E
(
W α

s+ε – W α
s
) + E

(
W α

r+ε – W α
r
)) +

(
	(/α)
π (α – )

ε
α–
α

)

= E
((

W α
s+ε – W α

s
)(W α

r+ε – W α
r
)) –

(
	(/α)
π (α – )

ε
α–
α

)

for every t >  and y, z ∈R. By an elementary calculation we can show that

E
((

W α
s+ε – W α

s
)(W α

r+ε – W α
r
))

= E
(
W α

s+ε – W α
s
)E

(
W α

r+ε – W α
r
)

+ 
[
E
(
W α

s+ε – W α
s
)(

W α
r+ε – W α

r
)]

=
(

	(/α)
π (α – )

ε
α–
α

)

+ 
[
E
(
W α

s+ε – W α
s
)(

W α
r+ε – W α

r
)]

for all ε >  and y, z ∈ Ix, which implies

Xε(y, z) = 
[
E
(
W α

s+ε – W α
s
)(

W α
r+ε – W α

r
)].

It follows from Lemma ., Lemma ., and the fact

∣∣E
(
W α

s+ε – W α
s
)(

W α
r+ε – W α

r
)∣∣ ≤ Cε

α–
α
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for |s – r| < ε that
∫ t



∫ t


Xε(s, r) ds

α–
α dr

α–
α = O

(
εβ+ (α–)

α
)

(ε ↓ )

for some β > , which gives

〈
W α , W α

〉(α)
t =

	(/α)
π (α – )

t
α–
α

for all t ≥ .
On the other hand, by Hölder continuity of W α we get

lim
ε↓


ε

α–
α

∫ t


o
(
W α

s+ε – W α
s
)(

W α
s+ε – W α

s
) ds

α–
α = 

almost surely. It follows that

lim
ε↓


ε

α–
α

∫ t



{
f
(
W α

s+ε

)
– f

(
W α

s
)}(

W α
s+ε – W α

s
)

ds
α–
α

= lim
ε↓


ε

α–
α

∫ t


f ′(W α

s
)(

W α
s+ε – W α

s
) ds

α–
α =

	(/α)
π (α – )

∫ t


f ′(W α

s
)

ds
α–
α

almost surely. By the next lemma and the proposition the result follows. �

Recall that the local Hölder index γ of a continuous paths process {Xt : t ≥ } is the
supremum of the exponents γ verifying, for any T > ,

P
({

ω : ∃L(ω) > ,∀s, t ∈ [, T],
∣∣Xt(ω) – Xs(ω)

∣∣ ≤ L(ω)|t – s|γ })
= .

Recently, Gradinaru-Nourdin [] introduced the following very useful result.

Lemma . Assume that f : R →R is a function such that for all x, y ∈R,
∣∣f (x) – f (y)

∣∣ ≤ C|x – y|a( + x + y)b (C > ,  < a ≤ , b > ). (.)

Let X be a locally Hölder continuous paths process with index γ ∈ (, ). Assume that V is
a bounded variation continuous paths process. For t ≥ , ε > , set

Xf
ε (t) =

∫ t


f
(

Xs+ε – Xs

εγ

)
ds.

If for each t ≥ ,

lim
ε→

=
∥∥Xf

ε (t) – Vt
∥∥

L = O
(
εα

)
(.)

with α > , then for any t ≥ , limε→ Xf
ε (t) = Vt almost surely, and if f is non-negative, for

any continuous stochastic process {Yt : t ≥ },

lim
ε→

∫ t


Ysf

(
Xs+ε – Xs

εγ

)
ds −→

∫ t


Ys dVs, (.)

almost surely, uniformly in t on each compact interval.
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4 The existence of the generalized quadratic covariation
In this section, we consider the existence of the generalized quadratic covariation of f (W α)
and W α , we do not need that f is a C-function. The main idea is from Yan et al. []. Let
να = 	(/α)

π (α–) and β = α–
α

. For ε > , we consider the following decomposition:


εβ

∫ t



{
f
(
W α

s+ε

)
– f

(
W α

s
)}(

W α
s+ε – W α

s
)

dsβ

=

εβ

∫ t


f
(
W α

s+ε

)(
W α

s+ε – W α
s
)

dsβ –

εβ

∫ t


f
(
W α

s
)(

W α
s+ε – W α

s
)

dsβ

≡ I+
ε (f , t) – I–

ε (f , t), (.)

and define a set

H =
{

g : g is a Borel function on R such that ‖g‖H < ∞}
,

where

‖g‖
H :=

∫ T



∫

R

∣∣g(x)
∣∣e

– x
να sβ

dx ds
√

πναs– β


= E
(∫ T



∣∣g
(
W α

s
)∣∣ dsβ

)
.

Then H = L(R,μ(dx)), where

μ(dx) =
(∫ T


e

– x
να sβ

ds
√

πναs– β


)
dx

and μ(R) = TH < ∞, which indicates that the set

E :=
{

all the elementary functions of the form g�(x) =
∑

i

gi(xi–,xi](x)
}

is dense in H , where {xi,  ≤ i ≤ l} is an finite sequence of real numbers satisfying xi < xi+.
In order to get the existence of the generalized quadratic covariation, we need first to

present the following two statements:
(i) For t ∈ [, ] and any ε > , f ∈ C∞

 ∩ H , I±
ε (f , t) ∈ L(�). That is,

E
∣∣I–

ε (f , t)
∣∣ ≤ C‖f ‖

H , (.)

E
∣∣I+

ε (f , t)
∣∣ ≤ C‖f ‖

H . (.)

(ii) For every f ∈ C∞
 ∩ H and t ∈ [, ], I+

ε (f , t) and I–
ε (f , t) are Cauchy sequences in

L(�). That is, for all t ∈ [, ],

E
∣∣I–

ε (f , t) – I–
ε (f , t)

∣∣ −→ , (.)

E
∣∣I+

ε (f , t) – I+
ε (f , t)

∣∣ −→  (.)

as ε, ε ↓ .
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We divide the proof of the two statements into several parts which is similar to Yan et
al. []. For simplicity, let T = . We need the next elementary lemmas. Let ϕ(x, y) denote
the density function of (W α

s , W α
r ) (s > r > ). That is

ϕ(x, y) =


πρ
exp

{
–


ρ

(
rβx – μxy + sβy)

}
,

where μ = E(W α
s W α

r ) and ρ = (κα)rβsβ – μ.

Lemma . Let f ∈ C(R) admit a compact support. Then we have

∣∣E
[
f ′(W α

s
)
f ′(W α

r
)]∣∣ ≤ Csβ/

rβ/(s – r)β
(
E
[∣∣f

(
W α

s
)∣∣]E

[∣∣f
(
W α

r
)∣∣])/,

∣∣E
[
f ′′(W α

s
)
f
(
W α

r
)]∣∣ ≤ C

(s – r)β
(
E
[∣∣f

(
W α

s
)∣∣]E

[∣∣f
(
W α

r
)∣∣])/

for all s > r > .

Proof By using an elementary calculation it follows that

∫

R
f (y)

(
x –

μ

καrβ
y
)

ϕ(x, y) dx dy

=
ρ

καrβ

∫

R

f (y)
√

πκαrβ/ e
– y

κα rβ dy =
ρ

καrβ
E
[∣∣f

(
W α

r
)∣∣],

which implies that


ρ

∫

R

∣∣f (x)f (y)
(
καsβy – μx

)(
καrβx – μy

)∣∣ϕ(x, y) dx dy

≤ κα(rs)β/

ρ

(
E
[∣∣f

(
W α

s
)∣∣]E

[∣∣f
(
W α

r
)∣∣])/

≤ Csβ/

rβ/(s – r)β
(
E
[∣∣f

(
W α

s
)∣∣]E

[∣∣f
(
W α

r
)∣∣])/

by Lemma ., we have

∣∣E
[
f ′(W α

s
)
f ′(W α

r
)]∣∣ =

∣∣∣∣

∫

R
f (x)f (y)

∂

∂x∂y
ϕ(x, y) dx dy

∣∣∣∣

=
∣∣∣∣

∫

R
f (x)f (y)

{

ρ

(
καsβy – μx

)(
καrβx – μy

)
+

μ

ρ

}
ϕ(x, y) dx dy

∣∣∣∣

≤ Csβ/

rβ/(s – r)β
(
E
[∣∣f

(
W α

s
)∣∣]E

[∣∣f
(
W α

r
)∣∣])/.

This gives the first estimate, by a similarly argument, one can obtain the second estimate.
�

Proof of the statement (i) Let f ∈ C∞
 . Noting that for all ε >  and t ≥ , we have

E
∣∣I–

ε (f , t)
∣∣ =


εβ

∫ t



∫ t


E
[
f
(
W α

s
)
f
(
W α

r
)(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]

dsβ drβ .
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For all s, r >  and ε > , let us estimate the expression

�ε(s, r) := E
[
f
(
W α

s
)
f
(
W α

r
)(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]

.

Note that

�ε(s, r) = E
[

f
(
W α

s
)
f
(
W α

r
)(

W α
s+ε – W α

s
)∫ r+ε

r
dW α

l

]

= E
〈
Dαf

(
W α

s
)
f
(
W α

r
)(

W α
s+ε – W α

s
)
, [r,r+ε]

〉
H

= E
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
f ′(W α

s
)
f
(
W α

r
)(

W α
s+ε – W α

s
)]

+ E
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
f
(
W α

s
)
f ′(W α

r
)(

W α
s+ε – W α

s
)]

+ E
[(

W α
r+ε – W α

r
)(

W α
s+ε – W α

s
)]

E
[
f
(
BH

s
)
f
(
BH

r
)]

= E
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

s
(
W α

s+ε – W α
s
)]

E
[
f ′′(W α

s
)
f
(
W α

r
)]

+ E
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

E
[
f ′(W α

s
)
f ′(W α

r
)]

+ E
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
W α

s
(
W α

s+ε – W α
s
)]

E
[
f ′(W α

s
)
f ′(W α

r
)]

+ E
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

E
[
f
(
W α

s
)
f ′′(W α

r
)]

+ E
[(

W α
r+ε – W α

r
)(

W α
s+ε – W α

s
)]

E
[
f
(
BH

s
)
f
(
BH

r
)]

≡
∑

j=

�ε(s, r, j).

By Cauchy’s inequality, it is easy to see that, for |s – r| < ε ≤ ,

∣∣E
[(

W α
r+ε – W α

r
)(

W α
s+ε – W α

s
)]∣∣ ≤ Cεβ ≤ C

εβ

|s – r|β .

It follows from Cauchy’s inequality, Lemma ., and the fact

E
[
f (W α

r
)]

=
∫

R

f (x)
√

πναrβ/ e
– x

να rβ dx

≤ sβ/

rβ/

∫

R

f (x)
√

πναsβ/ e
– x

να sβ dx =
sβ/

rβ/ E
[
f (W α

s
)]

, (.)

we have


εβ

∣∣∣∣

∫ t



∫ t


�ε(s, r, ) dsβ drβ

∣∣∣∣ ≤ C‖f ‖
H

for all  < ε ≤ .
Combing Lemma ., Lemma ., Lemma ., and (.) we get


εβ

∣∣∣∣

∫ t



∫ t


�ε(s, r, ) dsβ drβ

∣∣∣∣

≤
∫ t



∫ t



∣∣E
[
f ′′(W α

s
)
f
(
W α

r
)]∣∣drβ dsβ
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≤ C
∫ t



∫ s




(s – r)β

E
∣∣f

(
W α

s
)
f
(
W α

r
)∣∣drβ dsβ

≤ C
∫ t


E
[
f (W α

s
)]

s

 β– ds

∫ s



sβ/

(s – r)βr– 
 β

dr ≤ C‖f ‖
H

for all ε >  and t ≥ . In a similar way, we can estimate


εβ

∣∣∣∣

∫ t



∫ t


�ε(s, r, j) dsβ drβ

∣∣∣∣

for j ∈ {, , }. Thus, we have given the estimate (.). In the same way, one finds (.).
�

Proof of the statement (ii) By the first statement we can give the second statement with
f ∈ C∞

 . In fact, for all ε, ε >  and t ≥ , we have

E
∣∣I–

ε (f , t) – I–
ε (f , t)

∣∣ =


ε
β


∫ t



∫ t


Ef

(
W α

s
)
f
(
W α

r
)

· (W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)

drβ dsβ

–


ε
β
 ε

β


∫ t



∫ t


Ef

(
W α

s
)
f
(
W α

r
)

· (W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)

drβ dsβ

+


ε
β


∫ t



∫ t


Ef

(
W α

r
)
f
(
W α

r
)

· (W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)

drβ dsβ .

Set

�s,r(, ε) = E
[
f
(
W α

s
)
f
(
W α

r
)(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]

and

�s,r(, ε, ε) = E
[
f
(
W α

s
)
f
(
W α

r
)(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]

for all s, r ≥  and ε, ε, ε > . Then we have

E
∣∣I–

ε (f , t) – I–
ε (f , t)

∣∣

=
β

ε
β
 ε

β


∫ t



∫ t



{
ε

β
 �s,r(, ε) – ε

β
 �s,r(, ε, ε)

}
(sr)β– dr ds

+
β

ε
β
 ε

β


∫ t



∫ t



{
ε

β
 �s,r(, ε) – ε

β
 �s,r(, ε, ε)

}
(sr)β– dr ds

for all t ≥  and ε, ε > . Thus, in order to see that {I–
ε (f , t), ε > } is a Cauchy sequence

in L(�), we show that


ε

β

i ε
β

j

∫ t



∫ t



{
ε

β

j �s,r(, εi) – ε
β

i �s,r(, ε, ε)
}

(sr)β– dr ds −→  (.)
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for all i, j ∈ {, }, i �= j, as ε, ε → . Without loss of generality, we assume that ε > ε. By
the proof of (i), it follows that

�s,r(, ε) = E
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

s
(
W α

s+ε – W α
s
)]

E
[
f ′′(W α

s
)
f
(
W α

r
)]

+ E
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

E
[
f ′(W α

s
)
f ′(W α

r
)]

+ E
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
W α

s
(
W α

s+ε – W α
s
)]

E
[
f ′(W α

s
)
f ′(W α

r
)]

+ E
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

E
[
f
(
W α

s
)
f ′′(W α

r
)]

+ E
[(

W α
r+ε – W α

r
)(

W α
s+ε – W α

s
)]

E
[
f
(
W α

s
)
f
(
W α

r
)]

and

�s,r(, ε, ε) = E
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

s
(
W α

s+ε – W α
s
)]

E
[
f ′′(W α

s
)
f
(
W α

r
)]

+ E
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

E
[
f ′(W α

s
)
f ′(W α

r
)]

+ E
[
Br

(
W α

r+ε – Br
)]

E
[
W α

s
(
W α

s+ε – Bs
)]

E
[
f ′(W α

s
)
f ′(W α

r
)]

+ E
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

E
[
f
(
W α

s
)
f ′′(W α

r
)]

+ E
[(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]

E
[
f
(
W α

s
)
f
(
W α

r
)]

.

For ε, ε, ε, s, r >  and j ∈ {, }. Denote

A(s, r, ε, j) := ε
β

j E
[(

W α
r+ε – W α

r
)(

W α
s+ε – W α

s
)]

– εβE
[(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]

,

A(s, r, ε, j) := ε
β

j E
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

– εβE
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

,

A(s, r, ε, j) := ε
β

j E
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

s
(
W α

s+ε – W α
s
)]

– εβE
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

s
(
W α

s+ε – W α
s
)]

,

A(s, r, ε, j) := ε
β

j E
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
W α

s
(
W α

s+ε – W α
s
)]

– εβE
[
W α

r
(
W α

r+ε – W α
r
)]

E
[
W α

s
(
W α

s+ε – W α
s
)]

,

A(s, r, ε, j) := ε
β

j E
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

– εβE
[
W α

s
(
W α

r+ε – W α
r
)]

E
[
W α

r
(
W α

s+ε – W α
s
)]

.

One obtains

ε
β

j �s,r(, εi) – ε
β

i �s,r(, ε, ε)

= E
[
f
(
W α

s
)
f
(
W α

r
)]

A(s, r, εi, j)

+ E
[
f
(
W α

s
)
f ′′(W α

r
)]

A(s, r, εi, j) + E
[
f ′′(W α

s
)
f
(
W α

r
)]

A(s, r, εi, j)

+ E
[
f ′(W α

s
)
f ′(W α

r
)](

A(s, r, εi, j) + A(s, r, εi, j)
)
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with i �= j and i, j ∈ {, }. In the sequel, we prove the convergence of (.). By symmetry,
one only needs to show that, for i = , j = , the convergence holds. We divide the proof
into four steps.

Step I. The following convergence holds:

lim
ε,ε→


ε

β
 ε

β


∫ t



∫ t


A(s, r, ε, )E

[
f
(
W α

s
)
f
(
W α

r
)]

(sr)β– dr ds = . (.)

It is clear that, for i, j ∈ {, },  < |s – r| < εi ∧ εj ≤ ,  < λ <  – β , we have

∣∣E
[(

W α
s+εi

– W α
s
)(

W α
r+εj

– W α
r
)]∣∣

≤
√

E
[(

W α
s+εi

– W α
s
)E

(
W α

r+εj
– W α

r
)]

≤ Cε
β/
i ε

β/
j ≤ C

ε
β+λ

i ε
β

j

|s – r|β+λ
.

Combining this inequality with (.) (by taking γ = β+λ

–β
), we have

∣∣E
[(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]∣∣

≤ C
(

ε
β+λ


|s – r|β+λ
{|s–r|>ε} +

ε
β+λ


|s – r|β+λ
{<|s–r|≤ε}

)
≤ C

ε
β+λ


|s – r|β+λ

and

∣∣E
[(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]∣∣

≤ C
(

ε
β+ γ


 ε

β+ λ



|s – r|β+λ

{|s–r|>ε} +
ε

β+λ
 ε

β


|s – r|β+λ
{<|s–r|≤ε}

)
≤ C

ε
β+λ
 ε

β


|s – r|β+λ

for  < λ <  – β and |s – r| > . We deduce that


ε

β
 ε

β


∣∣A(s, r, ε, )
∣∣ ≤ CH

ελ


|s – r|β+λ
−→  (ε, ε → )

for  < λ <  – β and s, r > .
Besides, from the above proof, we also have


ε

β
 ε

β


∣∣A(s, r, ε, )
∣∣ ≤ 

ε
β


∣∣E
[(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]∣∣

+


ε
β
 ε

β


∣∣E
[(

W α
s+ε – W α

s
)(

W α
r+ε – W α

r
)]∣∣

≤ C


|s – r|β

for all ε, ε > , |s – r| > , and

∫ t



∫ t




|s – r|β

∣∣E
[
f
(
W α

s
)
f
(
W α

r
)]∣∣(sr)β– dr ds ≤ C‖f ‖

H
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for every  < ε, ε < . By Lebesgue’s dominated convergence theorem it follows that (.)
is convergent.

Step II. We show that the following convergence holds:

lim
ε,ε→


ε

β
 ε

β


∫ t



∫ t


A(s, r, ε, )E

[
f
(
W α

s
)
f ′′(W α

r
)]

(sr)β– dr ds = . (.)

From Lemma . and Lemma ., we obtain, for ε, ε > ,


ε

β
 ε

β


∣∣A(s, r, ε, )
∣∣ ≤ C

and

∫ t



∫ t



∣∣E
[
f
(
W α

s
)
f ′′(W α

r
)]∣∣(sr)β– dr ds ≤ C‖f ‖

H .

On the other hand, by the fact that

bα – aα ≤ bα–γ (b – a)γ (.)

with  < α ≤ γ ≤ , b > a > , and Lemma ., we get


ε

β
 ε

β


∣∣A(s, r, ε, )
∣∣ =


ε

β
 ε

β


∣∣E
[
W α

r
(
W α

s+ε – W α
s
)]∣∣

· ∣∣εβ
 E

[
W α

r
(
W α

r+ε – W α
r
)]

– ε
β
 E

[
W α

r
(
W α

r+ε – W α
r
)]∣∣

=


ε
β
 ε

β


∣∣E
[
W α

r
(
W α

s+ε – W α
s
)]∣∣

· 

∣∣εβ


(
(r + ε)β – rβ

)
– ε

β

(
(r + ε)β – rβ

)∣∣

≤ rβ–γ ε
γ –β
 −→  (ε, ε → ) (.)

for all r >  and β < γ ≤ , by the Lebesgue dominated convergence theorem it follows
that the convergence of (.) hold.

Step III. We show that the following convergence holds:

lim
ε,ε→


ε

β
 ε

β


∫ t



∫ t


A(s, r, ε, )E

[
f ′′(W α

s
)
f
(
W α

r
)]

(sr)β– dr ds = . (.)

By (.) we get

∣∣E
[
W α

s
(
W α

r+ε – W α
r
)]∣∣ =



∣∣(r + ε)β – |s – r – ε|β – rβ + |s – r|β ∣∣

≤ 

∣∣(r + ε)β – rβ

∣∣ +


∣∣|s – r|β + |s – r – ε|β ∣∣

≤ 

(
rβ–γ + |s – r|β–γ

)
εβ
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for β ≤ γ ≤ , ε > , and |s – r| > . By Lemma . and (.) it follows that, for all s, r > ,
β < γ ≤ ,


ε

β
 ε

β


∣∣A(s, r, ε, )
∣∣ =


ε

β
 ε

β


∣∣E
[
W α

s
(
W α

s+ε – W α
s
)]∣∣

· ∣∣εβ
 E

[
W α

s
(
W α

r+ε – W α
r
)]

– ε
β
 E

[
W α

s
(
W α

r+ε – W α
r
)]∣∣

≤ rβ–γ εγ –β{s=r} +
(
rβ–γ + |s – r|β–γ

)
εγ –β{|s–r|>} −→ 

as ε, ε → . Noting that for all ε, ε > ,

∫ t



∫ t



∣∣A(s, r, ε, )E
[
f ′′(W α

s
)
f
(
W α

r
)]∣∣(sr)β– dr ds ≤ CH‖f ‖

H ,

we obtain the convergence (.) by using Lebesgue’s dominated convergence theorem.
Step IV. We show that the following convergence holds:

lim
limε,ε→


ε

β
 ε

β


∫ t



∫ t



(
A(s, r, ε, ) + A(s, r, ε, )

)

· E
[
f ′(W α

s
)
f ′(W α

r
)]

(sr)β– dr ds = . (.)

For r >  and β < γ ≤ , from Step II it follows that


ε

β
 ε

β


∣∣A(s, r, ε, )
∣∣ ≤ 

ε
β
 ε

β


∣∣E
[
W α

s
(
W α

s+ε – W α
s
)]∣∣

· ∣∣εβ
 E

[
W α

r
(
W α

r+ε – W α
r
)]

– ε
β
 E

[
W α

r
(
W α

r+ε – W α
r
)]∣∣

≤ rβ–γ ε
γ –β
 −→ 

as ε, ε → . for s, r >  and β < γ ≤ , from Step III we get


ε

β
 ε

β


∣∣A(s, r, ε, )
∣∣ =


ε

β
 ε

β


∣∣E
[
W α

r
(
W α

s+ε – W α
s
)]∣∣

· ∣∣εβ
 E

[
W α

s
(
W α

r+ε – W α
r
)]

– ε
β
 E

[
W α

s
(
W α

r+ε – W α
r
)]∣∣

≤ rβ–γ εγ –β{s=r} +
(
rβ–γ + |s – r|β–γ

)
εγ –β{|s–r|>} −→ 

as ε, ε → . On the other hand, for all ε, ε > , we have


ε

β
 ε

β


∫ t



∫ t



∣∣A(s, r, ε, ) + A(s, r, ε, )
∣∣∣∣E

[
f ′(W α

s
)
f ′(W α

r
)]∣∣(sr)β– dr ds

≤ C
∫ t



∫ t



∣∣E
[
f ′(W α

s
)
f ′(W α

r
)]∣∣(sr)β– dr ds ≤ C‖f ‖

H

by Lebesgue’s dominated convergence theorem, the convergence of (.) follows.
Therefore, {I–

ε (f , t), ε > } is a Cauchy sequence in L(�). Similarly, we can also show
that {I+

ε (f , t), ε > } is a Cauchy sequence in L(�), and the lemma follows. �
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Theorem . Let g ∈ H . Then the generalized quadratic covariation of W α and g(W α)
exists in L(�) and for all t ∈ [, ],

E
∣∣〈g

(
W α

)
, W α

〉(α)
t

∣∣ ≤ C‖g‖
H . (.)

Proof Let g ∈ H be given. Since E is dense in H , we can take the sequence {g�,n} ⊂ E

such that g�,n → f in H . If the theorem is true for all functions belonging to E , then for
all ε, ε >  and n ≥ , we get

E
∣∣Iε (g, t) – Iε (g, t)

∣∣ ≤ C‖g – g�,n‖
H + CE

∣∣Iε (g�,n, t) – Iε (g�,n, t)
∣∣.

Thus, to end the proof, we only need to verify the theorem for g ∈ E .
Let g�(y) =

∑
i bi(yi–,yi](y). It is obvious that g� is bounded and left continuous. Consider

the function ξ defined on R by

ξ (x) :=

⎧
⎨

⎩
ke


(y–)– , y ∈ (, ),

, otherwise,
(.)

where k is a normalizing constant satisfying
∫
R

ξ (y) dy = . For all y ∈ R, we define the
mollifiers and the corresponding sequence of smooth functions, respectively, by

ξn(x) := nξ (nx), n = , , . . . , (.)

gn,�(y) =
∫

R

g�(y – x)ξn(x) dx =
∫ 


g�

(
y –

x
n

)
ξ (x) dx, n = , , . . . . (.)

Then, for every n, gn,� ∈ C∞
 (R) ∩ H is bounded, and gn,� converges to g� in H , as

n → ∞. Moreover, by the smooth approximation and the statement (i) we obtain

E
∣∣I±

ε (g�, t)
∣∣ ≤ C‖g�‖

H

for all t ∈ [, ] and ε > . Thus, for all n and ε, ε > , it follows that

E
∣∣Iε (g�, t) – Iε (g�, t)

∣∣ ≤ C‖g� – gn,�‖
H + CE

∣∣Iε (gn,�, t) – Iε (gn,�, t)
∣∣,

which implies that {Iε(g�, t), ε > } is a Cauchy sequence by (ii). This means that Theo-
rem . is true for g ∈ E . �

5 Itô’s formula and local time
In this section, we investigate Itô’s formula and the local time for the temporal process W α

by using the result of the previous sections. The first result is Itô’s formula.

Theorem . Assume that f ∈ H is a left continuous function and F is an absolutely
continuous function satisfying F ′ = f . then, for all t ≥ , the Itô type formula

F
(
W α

t
)

= G() +
∫ t


f
(
W α

s
)

dW α
s +


+ 

α

〈
f
(
W α

)
, W α

〉(α)
t (.)

holds.
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This is an analog of Föllmer-Protter-Shiryayev’s formula. For more details and works
one may refer to Föllmer et al. [], Eisenbaum [], Russo-Vallois [], Moret-Nualart
[], and the references therein. Recall that (see Alós et al. []) the Itô type formula

F
(
W α

t
)

= F(W) +
∫ t


F ′(W α

s
)

dW α
s +



κα

∫ t


F ′′(W α

s
)

ds
α–
α (.)

holds for all F ∈ C(R) satisfying the condition

∣∣F(y)
∣∣,

∣∣F ′(y)
∣∣,

∣∣F ′′(y)
∣∣ ≤ Ceβy

, y ∈ R (.)

with  ≤ β < 
κα

t –α
α , where κα = 	(/α)



α π (α–)

.

Proof of Theorem . If f ∈ C(R), (.) is Itô’s formula since

〈
f
(
W α

)
, W α

〉(α)
t =

	(/α)
π (α – )

∫ t


f ′(W α

s
)

ds
α–
α .

For f /∈ C(R), we can assume that f is uniformly bounded by using a localization argu-
ment. In fact, for every k ≥ , let

�k =
{

sup
≤t≤T

∣∣W α
t
∣∣ < k

}

and

f(k)(x) =

⎧
⎨

⎩
f (x), x ∈ [–k, k],

, otherwise,

be a measurable function. It is clear that f(k) ∈ H for every k ≥  and f(k) is uniformly
bounded. Set F(k) = F on [–k, k] and d

dx F(k) = f(k). If the result of theorem is true for all
uniformly bounded functions f ∈ H , then the formula

F(k)
(
W α

t
)

= F(k)() +
∫ t


f(k)

(
W α

s
)

dW α
s +


+ 

α

〈
f(k)

(
W α

)
, W α

〉(α)
t

holds on �k . Letting k → ∞, we deduce the Itô formula (.).
Let F ′ = f ∈ H be left continuous and uniformly bounded. For every n ∈N

+, we define

Fn(y) :=
∫

R

F(y – x)ξn(x) dx, y ∈R,

where ξn, n = , , . . . , are defined by (.). It is obvious that Fn ∈ C∞(R) for n ≥  and the
Itô formula,

Fn
(
W α

t
)

= Fn() +
∫ t


fn

(
W α

s
)

dW α
s +



κα

∫ t


f ′
n
(
W α

s
)

ds
α–
α , (.)
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holds with fn = F ′
n. By Lebesgue’s dominated convergence theorem, we can show that, for

each x,

Fn(x) −→ F(x), fn(x) −→ f (x) (n → ∞),

and fn → f in H . We further deduce that

κα

∫ t


f ′
n
(
W α

s
)

ds
α–
α = – 

α
〈
fn

(
W α

)
, W α

〉(α)
t −→ – 

α
〈
f
(
W α

)
, W α

〉(α)
t

and

fn
(
W α

t
) −→ f

(
W α

t
)

in L(�) as n → ∞. Therefore

∫ t


fn

(
W α

s
)

dW H
s = Fn

(
W H

t
)

– Fn() –


+ 
α

〈
fn

(
W α

)
, W α

〉(α)
t

−→ F
(
W α

t
)

– F() –


+ 
α

〈
f
(
W α

)
, W α

〉(α)
t

in L(�) as n → ∞. The proof is completed. �

At last, we investigate the local time of W α . It is well known that for any x ∈ R and any
closed interval I ⊂R+, the local time L(x, I) of W α is defined by

μI(A) =
∫

I
A

(
W α

s
)

ds,

that is, the density of the occupation measure μI . It is also shown (see Geman and
Horowitz [], Theorem .) that the occupation density formula holds:

∫

I
g
(
W α

s , s
)

ds =
∫

R

dx
∫

I
g(x, s)L(x, ds),

where g(x, t) ≥  is a Borel function on I ×R. Thus, by Theorem . in Geman-Horowitz
[] and Lemma ., we get the following result.

Lemma . Let L(x, t) := L(x, [, t]) be the local time of W α at x. Then, for all t ≥ , L ∈
L(λ × P) and (x, t) 
→ L(x, t) is jointly continuous, where λ denotes the Lebesgue measure.
Moreover, the occupation formula

∫ t


ψ

(
W α

s , s
)

ds =
∫

R

dx
∫ t


ψ(x, s)L(x, ds) (.)

holds for any t ≥  and every continuous and bounded function ψ(x, t) : R×R+ →R.

We now conclude this section with a comment on a generalized Bouleau-Yor identity.
For more details and works one refers to Bouleau-Yor [], Föllmer et al. [], Eisenbaum
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[], Feng-Zhao [, ], Rogers-Walsh [], Peskir [], Yan et al. [, , ], and the
references therein.

For t ≥  and x ∈ R, define the weighted local time L α by

L α(x, t) = κα

∫ t


s

α–
α dsL(s, x)

= κα

∫ t


δ
(
W α

s – x
)

ds
α–
α ,

where δ denotes the Dirac delta function.
In the sequel, we consider the integral

∫

R

f (x)L α(dx, t) (.)

and obtain the following Bouleau-Yor identity:

〈
f
(
W α

)
, W α

〉(α)
t = –


α

∫

R

f (x)L α(dx, t) (.)

for all f ∈ H .
Let F(y) = (y – a)+ – (y – b)+, it is clear that F is an absolutely continuous function with

the derivative F ′ = (a,b] ∈ E , by using Itô’s formula (.) it follows that, for all t ≥ ,

– 
α
〈
(a,b]

(
W α

)
, W α

〉(α)
t = F

(
W α

t
)

– F() – 
∫ t


(a,b]

(
W α

s
)

dW α
s

= L α(a, t) – L α(b, t).

Therefore, by the linear property we obtain the following result.

Lemma . For any f� =
∑

j fj(aj–,aj] ∈ E , the integral

∫

R

f�(x)L α(dx, t) :=
∑

j

fj
[
L α(aj, t) – L α(aj–, t)

]

exists and



α

∫

R

f�(x)L α(dx, t) = –
〈
f�

(
W α

)
, W α

〉(α)
t (.)

for all t ≥ .

Noting that E is dense in H , the definition of integration with respect to x 
→ L α(x, t)
can be extended to the elements of H in the following manner:

∫

R

f (x)L α(dx, t) := lim
n→∞

∫

R

f�,n(x)L α(dx, t)

in L for f ∈ H provided f�,n → f in H , as n → ∞, where {f�,n} ⊂ E . Thus, the integral

∫

R

f (x)L α(dx, t)
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is well defined and we obtain the desired Bouleau-Yor type identity

〈
f
(
W α

)
, W α

〉(α)
t = –


α

∫

R

f (x)L α(dx, t)

for all f ∈ H .

Corollary . (Tanaka formula) For any x ∈R we have

∣∣W α
t – x

∣∣ = |x| +
∫ t


sign

(
W α

s – x
)

dW α
s + L α(x, t).
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