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Abstract
In this paper, we investigate positive solutions to the doubly degenerate parabolic
equation not in divergence form with gradient term ut = um div(|∇u|p–2∇u) + λuq +
γ ur|∇u|p, subject to the null Dirichlet boundary condition. We first establish the local
existence of weak solutions to the problem, and then determine in what way the
gradient term affects the behavior of solutions. The conditions for global and
non-global solutions are obtained with the critical exponent rc =

pm–q
p–1 . Here we

introduce some precise technique for the ‘concavity method’ to deal with the difficult
non-divergence form of the model.
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1 Introduction
This paper studies the doubly degenerate parabolic equation not in divergence form with
gradient term

⎧
⎪⎨

⎪⎩

ut = um div(|∇u|p–∇u) + λuq + γ ur|∇u|p, (x, t) ∈ � × (, T),
u = , (x, t) ∈ ∂� × (, T),
u(x, ) = u(x), x ∈ �,

(.)

where � ⊂ R
N is a bounded domain with smooth boundary ∂�, m ≥ , p > , q ≥ m,

r ≥ m – , γ > , λ > , and u(x) ∈ C(�) ∩ W ,p
 (�), u(x) >  in �.

There has been much work contributed to the degenerate parabolic equations not in
divergence form. Friedman-McLeod [] considered the following problem:

⎧
⎪⎨

⎪⎩

ut = up�u + uq, (x, t) ∈ � × (, T),
u = , (x, t) ∈ ∂� × (, T),
u(x, ) = u(x), x ∈ �,

(.)

with p =  and q = p +  = , for which it was shown that, for sufficiently large domains,
the solutions of (.) must blow up in finite time regardless of the size of the initial value.
The more general situation with p >  and q >  was studied by Wiegner [, ]. We refer to
[] for more results on (.).
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Stinner [] investigated the non-divergence form parabolic equation with gradient term

⎧
⎪⎨

⎪⎩

ut = up�u + uq + κur|∇u|, (x, t) ∈ � × (, T),
u = , (x, t) ∈ ∂� × (, T),
u(x, ) = u(x), x ∈ �,

(.)

with p > , q > , r > –. Quite differently from the problem (.) without gradient term, it
was found that the additional gradient term can enforce blow-up in some cases, with the
critical exponent rc = p – q.

Recently, Jin and Yin [] studied the doubly degenerate diffusion equation

⎧
⎪⎨

⎪⎩

ut = um div(|∇u|p–∇u) + λuq, (x, t) ∈ � × (, T),
u = , (x, t) ∈ ∂� × (, T),
u(x, ) = u(x), x ∈ �,

(.)

where m ≥ , p > , and they obtained the critical exponent qc = p + m – , namely, the
solutions are global if q < qc, and there exist both global and blow-up solutions if q > qc. In
the critical case q = qc, blow-up or not of solutions will be determined by the size of the
domain.

As for the doubly degenerate diffusion equation with gradient term

⎧
⎪⎨

⎪⎩

ut = u div(|∇u|p–∇u) + γ |∇u|p, (x, t) ∈ � × (, T),
u = , (x, t) ∈ ∂� × (, T),
u(x, ) = u(x), x ∈ �,

(.)

Zhou et al. proved the existence conditions of solutions [–].
A natural question is in what way the additional gradient term in (.) affects the behavior

of solutions. It will be shown that, depending on the complicated interaction among the
multi-nonlinearity parameters m, p, q, and r, the problem (.) admits the critical exponent
rc = pm–q

p– , for which there is some substantial difficulty to be overcome due to the doubly
degenerate diffusion of non-divergence in (.). In particular, to treat the critical case r =
rc, we will introduce an auxiliary problem wt = f (w)(div(|∇w|p–∇w) + cwp–) with f (w) =
hm(w)h′(w)p– and h(s) solving an ODE problem. We will explore a ‘concavity method’
where some precise technique is necessary to deal with the difficult non-divergence form
with the general f (w).

Throughout the paper, denote by λ the first Dirichlet eigenvalue of the problem

⎧
⎪⎨

⎪⎩

– div(|∇ϕ|p–∇ϕ) = λϕp–, x ∈ �,
ϕ > , x ∈ �,
ϕ = , x ∈ ∂�,

(.)

with the corresponding eigenfunction ϕ ∈ C(�) ∩ W ,p
 (�), normalized by ϕ >  in �,

‖ϕ‖∞ = .

2 Local existence of weak solutions
We begin with the local existence of solutions to (.). Denote

�T = � × (, T), ST = ∂� × (, T), 	T = ST ∪ {
� × {}},
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E =
{

u ∈ L∞(�T ); ut ∈ L(�T );∇u ∈ Lp
loc(�T )

}
,

E = {u ∈ E; u|∂� = }.

The following comparison principle will play a crucial role in the paper, the proof of which
can be found in [].

Lemma . Let L be the parabolic differential operator defined by

Lu := ∂tu – f (x, t, u)�u + g(x, t, u)

with continuous functions f and g , f ≥ . Let ui ∈ C(�T ) ∩ C,(�T ), i = , , be such that
Lui is well defined in �T and

Lu ≤ Lu in �T , u ≤ u on 	T .

Assume f and g are Lipschitz with respect to u in a neighborhood of ui(�T ), i =  or , and
in addition either u < u on 	T or ∇ui ∈ L∞(�T ). Then

u ≤ u in �T .

Since (.) degenerates when u =  or |∇u| = , the problem does not admit classical
solutions in general. Here we deal with nonnegative weak solutions, defined as follows.

Definition . A nonnegative measurable function u ∈ E is called a weak subsolution of
problem (.)

∫ t



∫

�

{
utφ + |∇u|p–∇u · ∇(

umφ
)

– γ ur|∇u|pφ}
dx dτ ≤ λ

∫ t



∫

�

uqφ dx dτ (.)

for all bounded test functions  ≤ φ ∈ C
(�T ). The weak supersolution is defined by the

opposite inequality, and u is a weak solution of (.) if it is both a subsolution and a super-
solution to (.).

To show the local solvability of (.), consider the following regularized problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(uεη)t = um
εη div{(|∇uεη| + η)

p–
 ∇uεη} + λuq

εη

+ γ ur
εη(|∇uεη| + η)

p–
 |∇uεη| in �T ,

uεη = ε on ST ,
uεη(x, ) = u(x) + ε on �,

(.)

where ε ∈ (, ). Denote the classical solution of problem (.) by uεη . It is easy to prove
for fixed η ≥  that uεη ≥ ε, and uεη is increasing in ε.

Lemma . For any ε ∈ (, ), there exists a function uε with uε – ε ∈ L∞(�T ) ∩
Lp(, T ; W ,p

 (�)) for some T > , such that uε is a weak solution of the problem

⎧
⎪⎨

⎪⎩

ut = um div(|∇u|p–∇u) + λuq + γ ur|∇u|p, (x, t) ∈ � × (, T),
u = ε, (x, t) ∈ ∂� × (, T),
u(x, ) = u(x) + ε, x ∈ �.

(.)
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Proof Step . A priori estimates for uεη .
At first it is easy to show that there exist T, M >  such that

‖uεη‖L∞(�T ) ≤ M for all η ≥ .

In fact, let U solve

dU
dt

= λUq, U() = ‖u + ‖L∞(�)

in [, T). Set T = T/. Then

‖uεη‖L∞(�T ) ≤ M = U(T) < ∞ (.)

by comparison.
Choose s satisfying

s > C :=

{
γ Mr–m+

 , r > m – ,
γ – m, r = m – .

Multiply (.) by us
εη , and integrate over �T ,

∫

�T

(uεη)tus
εη dx dt + (m + s)

∫

�T

um+s–
εη

(|∇uεη| + η
) p–

 |∇uεη| dx dt

≤ λ

∫

�T

(uεη)q+s dx dt + γ

∫

�T

ur+s
εη

(|∇uεη| + η
) p–

 |∇uεη| dx dt.

We have
∫

�T

um+s–
εη

(|∇uεη| + η
) p–

 |∇uεη| dx dt ≤ C = C(M, s,γ ), (.)

and hence
∫

�T

(|∇uεη| + η
) p–

 |∇uεη| dx dt ≤ C = C(M, s,γ , ε), (.)

due to uεη ≥ ε. Consequently,

∫

�T

|∇uεη|p dx dt ≤
∫

�T

(|∇uεη| + η
) p–

 |∇uεη| dx dt ≤ C. (.)

Integrate (.) over �T . Noticing ∂uεη

∂n |∂� ≤ , by (.) and (.), we have

∫

�T

(uεη)t dx dt ≤ –m
∫

�T

um–
εη

(|∇uεη| + η
) p–

 |∇uεη| dx dt + λ

∫

�T

uq
εη dx dt

+ γ

∫

�T

ur
εη

(|∇uεη| + η
) p–

 |∇uεη| dx dt

≤ C = C(C, M). (.)
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Step . Uniform integrability.
For any ε > , choose δ = ε

C
with C to be defined. Then for any measurable set E ⊂ �,

meas(E) < δ, there exists Ẽ such that E ⊂ Ẽ ⊂ � with meas(̃E) < δ. Take ρ(x) ∈ C
(�)

satisfying ρ(x) =  for x ∈ E, ρ(x) =  for x ∈ � \ Ẽ, and  ≤ ρ(x) ≤ , ∇ρ(x) ≤ Cρα(x)
in � with p–

p < α < . Refer to [] for such ρ . Multiply (.) by us
εηρ and integrate over

Ẽ × [, T] to get

∫ T



∫

Ẽ
(uεη)tus

εηρ dx dt

+
∫ T



∫

Ẽ

[
(m + s)um+s–

εη – γ ur+s
εη

](|∇uεη| + η
) p–

 |∇uεη|ρ dx dt

≤ λ

∫ T



∫

Ẽ
uq+s

εη ρ dx dt –
∫ T



∫

Ẽ
um+s

εη

(|∇uεη| + η
) p–

 ∇uεη∇ρ dx dt

≤ λMq+s
 Tδ + CMm+s



∫ T



∫

Ẽ

(|∇uεη| + η
) p–

 |∇uεη|ρα dx dt. (.)

By Young’s inequality,

∫ T



∫

Ẽ

(|∇uεη| + η
) p–

 |∇uεη|ρα dx dt

≤
∫ T



∫

Ẽ

(|∇uεη| + η
) p–

 ρα dx dt

≤ σ

∫ T



∫

Ẽ

(|∇uεη| + η
) p–


(|∇uεη| + η

)
ρ dx dt + c(σ )

∫ T



∫

Ẽ
ρ(α–)p+ dx dt

≤ σ

∫ T



∫

Ẽ

(|∇uεη| + η
) p–

 |∇uεη|ρ dx dt + σηC + c(σ )δ. (.)

Choose σ < ε
Cη

satisfying σCMm+s
 < εm+s–(m + s –γ Mr–m+

 ). We have by (.) and (.)

∫ T



∫

Ẽ

(|∇uεη| + η
) p–

 |∇uεη|ρ dx dt ≤ Cδ + σηC < ε, (.)

where

C =
Ms+


s+ + λMq+s

 T + CMm+s
 c(σ )

εm+s–(m + s – γ Mr–m+
 ) – σCMm+s


> . (.)

It follows from (.) that

∫ T



∫

E
|∇uεη|p dx dt ≤

∫ T



∫

Ẽ

(|∇uεη| + η
) p–

 |∇uεη| dx dt < ε. (.)

By using a similarly procedure with (.), we can obtain

∫ T



∫

E

∣
∣(uεη)t

∣
∣dx dt < ε. (.)
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Furthermore, for any fixed ζ > , again by (.), we have

∫ T



∫

E
uζ

εη|∇uεη|p dx dt ≤ Mζ


∫ T



∫

E
|∇uεη|p dx dt ≤ Mζ

 ε. (.)

Step . Convergence of uεη .
By Dunford-Pettis theorem, we know from the inequalities (.), (.), (.), (.),

(.), and (.) that for any ε ∈ (, ), there exist a subsequence of uεη (denoted still by
uεη) and a function uε with uε – ε ∈ L∞(�T ) ∩ Lp(, T ; W ,p

 (�)), such that as η → ,

uεη → uε a.e. in �T , (.)

∇uεη ⇀ ∇uε in Lp(�T ), (.)

∂uεη

∂t
⇀

∂uε

∂t
in L(�T ), (.)

|∇uεη|p ⇀ |∇uε |p in L(�T ), (.)

uζ
εη|∇uεη|p ⇀ uζ

ε |∇uε |p in L(�T ), (.)

where ⇀ denotes weak convergence, and

ε ≤ uε ≤ M a.e. in �T . (.)

For any φ(x, t) ∈ C
(�T ), uεη satisfies

∫ T



∫

�

∂uεη

∂t
φ dx dt +

∫ T



∫

�

(|∇uεη| + η
)(p–)/∇uεη · ∇(

um
εηφ

)
dx dt

= λ

∫ T



∫

�

uq
εηφ dx dt + γ

∫ T



∫

�

ur
εη

(|∇uεη| + η
)(p–)/|∇uεη|φ dx dt. (.)

Furthermore,

∫ T



∫

�

(
um

εη

(|∇uεη| + η
)(p–)/∇uεη – um

ε |∇uε |p–∇uε

) · ∇φ dx dt

=
∫ T



∫

�

um
εη

((|∇uεη| + η
)(p–)/∇uεη – |∇uεη|p–∇uεη

) · ∇φ dx dt

+
∫ T



∫

�

um
εη

(|∇uεη|p–∇uεη – |∇uε |p–∇uε

) · ∇φ dx dt

+
∫ T



∫

�

(
um

εη – um
ε

)|∇uε |p–∇uε · ∇φ dx dt

= I + I + I.

Obviously, as η → , we have I →  due to p > , I →  by (.), and I →  because of
(.) and the dominated convergence theorem. Consequently,

∫ T



∫

�

(
um

εη

(|∇uεη| + η
)(p–)/∇uεη – um

ε |∇uε |p–∇uε

) · ∇φ dx dt

→ , as η → . (.)
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By a similar procedure, we have

∫ T



∫

�

(
ur

εη

(|∇uεη| + η
)(p–)/|∇uεη| – ur

ε |∇uε |p
)
φ dx dt

=
∫ T



∫

�

(
ur

εη

(|∇uεη| + η
)(p–)/|∇uεη| – ur

εη|∇uεη|p
)
φ dx dt

+
∫ T



∫

�

(
ur

εη|∇uεη|p – ur
εη|∇uε |p

)
φ dx dt

+
∫ T



∫

�

(
ur

εη|∇uε |p – ur
ε |∇uε |p

)
φ dx dt → , as η → . (.)

In summary of (.), (.), (.), (.), and (.), it is true for any φ ∈ C
(�T ) that

∫ T



∫

�

∂uε

∂t
φ dx dt +

∫ T



∫

�

|∇uε |p–∇uε · ∇(
um

ε φ
)

dx dt

= λ

∫ T



∫

�

uq
εφ dx dt + γ

∫ T



∫

�

ur
ε |∇uε |pφ dx dt. (.)

Together with the initial and boundary conditions, we conclude that uε is a weak solution
of problem (.). �

Theorem . Let u ∈ C(�) ∩ W ,p
 (�) with p > . Then the problem (.) admits a weak

solution u ∈ E.

Proof From (.) and the comparison principle, uε is bounded and increasing in ε. So,

uε → u a.e. in �T , as ε → . (.)

Moreover, the estimate (.) is obviously true for η = , namely,

∫

�T

um+s–
ε |∇uε |p dx dt ≤ C = C(M, s,γ ). (.)

On the other hand, set u := ce–ξ tϕ(x) for (x, t) ∈ � × [,∞), with ϕ defined by (.) and
ξ = cm+p–

 λ. Then

ut – um div
(|∇u|p–∇u

)
– λuq – γ ur|∇u|p ≤ ut – um div

(|∇u|p–∇u
) ≤ . (.)

For any K ⊂⊂ �, let c be small such that cϕ(x) < u(x) on K . By the comparison principle,

uε ≥ u in K × [,∞).

Since ϕ ∈ C(�) (see []) and ϕ >  in �, there exists cK such that

uε ≥ cK in K × (,∞). (.)
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Set �n = {x ∈ �, dist(x, ∂�) ≥ 
n }. Then �n ⊂⊂ �, and �n → � as n → ∞. Together

with (.) and (.), we have

∫ T



∫

�

|∇uε |p dx dt ≤ C = C(M, s,γ ). (.)

Thus, there exists a subsequence ε = εk →  such that

∇uεk ⇀ ∇u in Lp(� × [, T]
)
.

It is easy to see the inequality (.) is still valid for uεk when � is replaced by �. So,
there exists a subsequence of εk such that

∇uεk ⇀ ∇u in Lp(� × [, T]
)
.

By induction, we obtain a subsequence εnk such that

∫ T



∫

�n

|∇uεnk |p dx dt ≤ C = C(M, s,γ )

and

∇uεnk ⇀ ∇u in Lp(�n × [, T]
)
.

Similar to the above procedure, we see that the estimates (.)-(.) hold as well for uεnk

with �n instead of �. Consequently,

∂uεnk

∂t
⇀

∂u
∂t

in L(�n × [, T)
)
, (.)

|∇uεnk |p ⇀ |∇u|p in L(�n × [, T)
)
, (.)

uζ
εnk

|∇uεnk |p ⇀ uζ |∇u|p in L(�n × [, T)
)
. (.)

For any φ(x) ∈ C
(�T ), there exists K ⊂⊂ � such that φ =  in � \ K . For such K , there

exists n ∈ N such that K ⊂⊂ �n. By (.) and the dominated convergence theorem, we
obtain

∫ T



∫

�

(
ur

εnk
|∇uε |p – ur|∇u|p)φ dx dt

=
∫ T



∫

�n

(
ur

εnk
|∇uεnk |p – ur|∇u|p)φ dx dt

=
∫ T



∫

�n

(
ur

εnk
|∇uεnk |p – ur

εnk
|∇u|p)φ dx dt

+
∫ T



∫

�n

(
ur

εnk
|∇u|p – ur|∇u|p)φ dx dt → , as εnk → . (.)

Similarly,

∫ T



∫

�

(
um–

εnk
|∇uεnk |p – um–|∇u|p)φ dx dt → , as εnk →  (.)
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and

∫ T



∫

�

(
um

εnk
|∇uεnk |p–∇uεnk – um|∇u|p–∇u

) · ∇φ dx dt → , as εnk → . (.)

Notice that uεnk satisfies

∫ T



∫

�

∂uεnk

∂t
φ dx dt +

∫ T



∫

�

um
εnk

|∇uεnk |p–∇uεnk · ∇φ dx dt

= λ

∫ T



∫

�

uq
εnk

φ dx dt + γ

∫ T



∫

�

ur
εnk

|∇uεnk |pφ dx dt

– m
∫ T



∫

�

um–
εnk

|∇uεnk |pφ dx dt. (.)

Letting εnk →  in (.), by (.)-(.), we conclude for the limit function u that

∫ T



∫

�

∂u
∂t

φ dx dt +
∫ T



∫

�

|∇u|p–∇u · ∇(
umφ

)
dx dt

= λ

∫ T



∫

�

uqφ dx dt + γ

∫ T



∫

�

ur|∇u|pφ dx dt. (.)

In addition, u satisfies the initial and boundary conditions of (.) (in the sense of trace).
This proves that u is a weak solution of (.). �

We know by the proof of Theorem . that if ‖u(·, t)‖L∞(�) < ∞, then
∫ T


∫

K |∇u|p dx dt <
∞ for any K ⊂⊂ �, namely, u ∈ L∞(�T ) implies ∇u ∈ Lp

loc(�T ). Let T∗ be the maximal
existence time of the solution u. We get the following proposition immediately.

Proposition . If T∗ < ∞, then limt→T∗ ‖u(·, t)‖L∞(�) = ∞.

Remark  It is mentioned that the uniqueness of such weak solutions to the problem (.)
cannot be ensured. In the rest of the paper, the solution of (.) always means the maximal
solution of (.), for which the comparison principle is valid.

3 Global existence and nonexistence of solutions
We discuss the existence and nonexistence of global solutions to the problem (.) in this
section, via a complete classification on the parameters m, p, q as follows:

(a) q < p + m – , (b) q = p + m – , (c) q > p + m – .

Correspondingly, we have three theorems for them.

Theorem . Suppose q < p + m – .
(i) If r < pm–q

p– , then all solutions are global and bounded.
(ii) If r > pm–q

p– , then the solutions blow up for a large domain or large initial data, and
they are global for a small domain with small initial data.

(iii) If r = pm–q
p– , the solutions blow up for a large domain and are global for a small

domain.
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We will prove Theorem . in five lemmas.

Lemma . Suppose q < p + m –  with r < pm–q
p– . Then all positive solutions of (.) are

global and bounded.

Proof Let ψ ∈ C+β (�) solve – div(|∇ψ |p–∇ψ) =  in � with ψ |∂� = , β ∈ (, ) [].
The condition q < p + m –  with r < pm–q

p– implies m – r > q–m
p– . Choose α ∈ (, ) such that

q–m
p– < α < m – r. Let w = M + Mαψ(x), with M ≥  to be determined. Then

wt – wm div
(|∇w|p–∇w

)
– λwq – γ wr|∇w|p

= wm[
Mα(p–) – λ

(
M + Mαψ

)q–m – γ
(
M + Mαψ

)r–mMαp|∇ψ |p]

≥ wm[
Mα(p–) – c

(
Mq–m + Mαp+r–m)]

with some c > . Due to the choice of α, we have

q – m < α(p – ), αp + r – m < α(p – ).

Now let M >  be large enough such that u(x) + ε < M in � and Mα(p–) – c(Mq–m +
Mαp+r–m) ≥ . Therefore, the comparison principle yields uε ≤ w in � × (,∞). Letting
ε → , we obtain u ≤ w in � × (,∞). �

Lemma . Suppose q < p + m –  with r > pm–q
p– . If � contains a ball with radius R large

enough, then all solutions of (.) blow up in finite time.

Proof Suppose for contradiction that for any R >  such � admits a global solution u to
(.) with suitable initial data u. Without loss of generality, assume BR() ⊂ �. We first
show that for any fixed M > , there exists t >  such that u ≥ M in B × (t,∞).

Let R′ > R be such that BR′ () ⊂ �. Set z := cφR′ , with c ∈ (,λ
– 

p+m––q
R′ ) small to be deter-

mined, λR′ and φR′ the first eigenvalue and eigenfunction in the domain BR′ , normalized
by φR′ >  in BR′ , ‖φR′ ‖∞ = . Then

zt – zm div
(|∇z|p–∇z

)
– λzq – γ zr|∇z|p ≤ λR′cp+m–φ

p+m–
R′ – cqφ

q
R′ ≤ 

in BR′ () × (,∞). Since u >  in �, u ∈ C(�), choose c small enough such that u + ε >
cφR′ in BR′ . By the comparison principle, u ≥ z = cφR′ in BR′ . Furthermore, there exists
c >  small such that u ≥ c in BR() × (,∞), due to φR′ >  in BR′ and φR′ ∈ C(BR′ ) with
R < R′. Define

v := y(t)
(
φR(x) + δ

)
, (x, t) ∈ BR() × (,∞),

where y(t) is a nondecreasing positive function on [,∞) to be determined with suitable
δ > . A direct computation yields

vt – vm div
(|∇v|p–∇v

)
– λvq – γ vr|∇v|p

≤ y′(φR(x) + δ
)

+ λRyp+m–(φR + δ)mφ
p–
R – yq(φR + δ)q

=: L + L – L in BR() × (,∞),
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where

L

L
=

y′

yq (φR + δ)–q ≤ y′

yq δ–q

and

L

L
= λRyp+m––q(φR + δ)m–qφ

p–
R ≤ λR(y)p+m––q.

Let yR = 

(λR)


p+m––q
, and choose y and δ such that y ≤ c

 , δ ≤ min{ c
yR

, }, and y′ ≤ δq–

 yq,

y() = y, and y(t) ↗ yR as t → ∞. We have v ≤ uε on {t = } and ∂BR(). Moreover, L
L

≤ 
 ,

L
L

≤ 
 . By comparison, uε ≥ v, and hence u ≥ v in BR() × (,∞).

For any fixed M > , choose R >  large such that 
 yRφR ≥ M in B, and hence y(t) ≥


 yRφR for some t > . Consequently,

u ≥ v ≥ 


yRφR ≥ M in B × (t,∞). (.)

For n ∈ N with n > max{p, pq
r(p–)–pm+q }, choose  ≤ θ ∈ C

(B) such that
∫

B
θn dx = .

Multiply (.) by θn and integrate over B,

d
dt

∫

B

uθn dx = –m
∫

B

um–θn|∇u|p dx – n
∫

B

umθn–|∇u|p–∇u · ∇θ dx

+ λ

∫

B

uqθn dx + γ

∫

B

urθn|∇u|p dx

=: –I – I + I + I. (.)

Since r > pm–q
p– > pm–p–m+

p– = m – , by (.), we have

I ≤ mM–(r+–m)
∫

B

urθn|∇u|p dx ≤ 


I, t > t, (.)

provided M ≥ ( m
γ

) 
r+–m . By Young’s inequality,

I ≤ n
γ

n

∫

B

urθn|∇u|p dx + n
n
γ

∫

B

upm–r(p–)θn–p|∇θ |p dx

≤ 


I +
n

γ

∫

B

upm–r(p–)θn–p|∇θ |p dx. (.)

If r ≥ pm
p– , by (.), (.), with M > , we have

I ≤ 


I +
n

γ
Mpm–r(p–)

∫

B

θn–p|∇θ |p dx

≤ 


I +
n

γ

∫

B

θn–p|∇θ |p dx, t > t. (.)
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In the case r < pm
p– , due to r > pm–q

p– implying β := q
pm–r(p–) > , again by Young’s inequality,

∫

B

upm–r(p–)θn–p|∇θ |p dx

≤ λγ

n

∫

B

uqθn dx +

β ′

(
n

λγβ

) β′
β

∫

B

θn–pβ ′ |∇θ |pβ ′
dx (.)

with β ′ = β

β– = q
r(p–)–pm+q .

It follows from (.)-(.) that

I ≤ 


I +



I +
λ(r(p – ) – pm + q)

(pm – r(p – ))
·
(

n(pm – r(p – ))
qγ λ

) q
r(p–)–pm+q

·
∫

B

θ
n– pq

r(p–)–pm+q |∇θ | pq
r(p–)–pm+q dx. (.)

Combine (.), (.), and (.) to get

d
dt

∫

B

uθn dx ≥ λ



∫

B

uqθn dx – C ≥ λ



(∫

B

uθn dx
)q

– C (.)

with

C =

⎧
⎪⎪⎨

⎪⎪⎩

λ(r(p–)–pm+q)
(pm–r(p–)) · ( n(pm–r(p–))

qγ λ
)

q
r(p–)–pm+q

· ∫B
θ

n– pq
r(p–)–pm+q |∇θ | pq

r(p–)–pm+q dx, r < pm
p– ,

n

γ

∫

B
θn–p|∇θ |p dx, r ≥ pm

p– .

Choose M ≥ max{( m
γ

) 
r+–m , ( C

λ
)


q }. By (.), we have

λ



(∫

B

u(·, t)θn dx
)q

≥ λ



(

M
∫

B

θn dx
)q

=
λ


Mq > C. (.)

We conclude from (.) and (.) that
∫

B
uθn dx must blow up in finite time. �

Lemma . Suppose q ≤ p + m –  with r > pm–q
p– . Let u = bω with ω ∈ W ,p

 (�) ∩ C(�)
and ω >  in �. Then there is b >  such that the solution u of (.) blows up in finite time
provided b ≥ b.

Proof Suppose for contradiction that u is global with u ≥ bω for any b > . Pick n and
M defined in the proof of Lemma .. Let � contain a ball with radius R, without loss
generality, BR() ⊂ �. It suffices to show there exists t >  such that u ≥ M in BR/ ×
(t,∞).

For σ > max{ p
p– , p(r+–m)

(p–)r+q–pm }, set w(x) := δe–z for x ∈ BR() with z := |x|σ
R–|x| and δ >  to

be determined. For x ∈ BR(), we have

wm div
(|∇w|p–∇w

)
+ λwq + γ wr|∇w|p

= δp+m–e–(p+m–)z |x|σp–σ–p(σR – (σ – )|x|)p–

(R – |x|)p

{
(p – )|x|σ (

σR – (σ – )|x|)
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– n
(
R – |x|)(

σR – (σ – )|x|) – |x|(R – |x|)(σR – (σ – )|x|)

– σ (σp – σ – p)
(
R – |x|) – (p – )|x|(R – |x|)}

+ λδqe–qz + γ δr+pe–(r+p)z |x|p(σ–)(σR – (σ – )|x|)p

(R – |x|)p .

Denote

f (s) := (p – )sσ
(
σR – (σ – )s) – n

(
R – s)(

σR – (σ – )s)

– s(R – s)(σR – (σ – )s)

– σ (σp – σ – p)
(
R – s) – (p – )s(R – s), s ∈ [, R].

Then there exists K >  such that |f (s)| ≤ K for s ∈ [, R]. Due to f (R) = (p – )pRσ+p > ,
there exists c ∈ ( 

 , ) such that f (s) ≥  in [cR, R], and hence

wm div
(|∇w|p–∇w

)
+ λwq + γ wr|∇w|p ≥ , |x| ∈ [cR, R].

For the above σ with r > pm–q
p– , set

l ∈
(

p + m –  – q
σp – σ – p

,
r +  – m

σ

)

.

Then there exists δ ≥  such that c = δ–l ∈ (, 
 ) for all δ ≥ δ. Hence, there exists δ ≥ δ

such that

wm div
(|∇w|p–∇w

)
+ λwq + γ wr|∇w|p

≥ –δp+m– cσp–σ–p
 Rσp–σ–pK

( – c
 )p + λδqe

–
qcσ Rσ–

–c


≥ –δp+m––l(σp–σ–p) Rσp–σ–pK
( 

 )p
+ λδqe– q

 ( R
 )σ–

≥ , |x| ∈ [, cR], δ ≥ δ.

Furthermore, there is δ ≥ δ such that

wm div
(|∇w|p–∇w

)
+ λwq + γ wr|∇w|p

≥ |x|σp–σ–p(σR – (σ – )|x|)p–

(R – |x|)p

{
–δp+m–K + γ δr+pcσ

 Rσ+e
–(r+p) (cR)σ

(–c
)R }

≥ |x|σp–σ–p(σR – (σ – )|x|)p–

(R – |x|)p

{
–δp+m–K + γ δr+p–lσ Rσ+e

–(r+p) (cR)σ

(–c
)R }

≥ , |x| ∈ [cR, cR], δ ≥ δ.

Finally, choose δ ≥ δ such that w(x) ≥ M in BR/. In summary, we obtain

wm div
(|∇w|p–∇w

)
+ λwq + γ wr|∇w|p ≥  in BR(),

and w(x) ≥ M in BR/.
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Let b >  be large such that bω ≥ w in BR(). By the comparison principle, we have
uε ≥ w in BR() × (,∞). Hence u(x, t) ≥ w(x) ≥ M in BR/ × (,∞).

The rest of the lemma can be proved by the same arguments as those for Lemma ..
�

Lemma . Suppose q < p + m –  with r ≥ pm–q
p– . Then all positive solutions of (.) are

bounded, if � is contained in a ball with radius R small.

Proof Without loss of generality, assume � ⊂ {x ∈R
N |R < x < R}. Set z := Kxκ

 for (x, t) ∈
� × (,∞), with K >  and  < κ <  to be determined. A simple calculation yields

zt – zm div
(|∇z|p–∇z

)
– λzq – γ zr|∇z|p

= (p – )( – κ)Kp+m–κp–x(p–)(κ–)–+mκ

 – λKqxqκ

 – γ Kr+pκpxp(κ–)+rκ


=: L – L – L.

Noticing r ≥ pm–q
p– > m – , we have

L

L
=

γ κ

(p – )( – κ)
Kr–m+xκ(r–m+)



≤ γ κ

(p – )( – κ)
Kr–m+(R)κ(r–m+)

≤ ,

provided K = ( (p–)(–κ)
γ κ

) 
r–m+ (R)–κ .

Choose κ = min{ p–
γ Mr–m++p– , p

p+m––q }, with M := ‖u‖L∞(�) + . Then there exists R
small such that

K ≥
(


(p – )( – κ)κp–

) 
p+m––q

(R)
p

p+m––q –κ ,

and hence

L

L
=


(p – )( – κ)κp– Kq–(p+m–)xqκ–mκ–(p–)(κ–)+



≤ 
(p – )( – κ)κp– Kq–(p+m–)(R)p–κ(p+m––q)

≤ .

In addition,

z = Kxκ
 ≥

(
(p – )( – κ)

γ κ

) 
r–m+

(R)–κRκ ≥ M

on the parabolic boundary of � × (,∞) due to the choice of κ . We conclude that z is a
time-independent supersolution of (.). �
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Lemma . Suppose q < p + m –  with r = pm–q
p– . Then all solutions of (.) blow up in finite

time provided � large enough.

Proof The lemma will be proved in three steps.
Step . Set u = h(v), and substitute into (.),

h′(v)vt =
[
hm(v)h′(v)p–]div

(|∇v|p–∇v
)

+ λhq(v)

+
[
(p – )h(v)mh′(v)p–h′′(v) + γ hr(v)h′(v)p]|∇v|p. (.)

Here h ∈ C([, +∞)) ∪ C((, +∞)) satisfies

h′(s) = e– γ
β(p–) hβ (s), h() = 

with β = r – m +  = p+m––q
p– ∈ (, ], and hence (p – )h(v)mh′′(v) + γ hr(v)h′(v) = . Thus,

vt = hm(v)h′(v)p–(div
(|∇v|p–∇v

)
+ γ h(p–)(–β)(v)e

λ
β

hβ (s)).

Set g(v) = h(p–)(–β)(v)e
λ
β

hβ (s). Similarly to the proof of Theorem . in [], we can find
constants v ≥  and c > , only depending on β , λ, and γ , such that

g(v) ≥ c(v + )p– for v ≥ v. (.)

So, v is a supersolution of

wt = hm(w)h′(w)p–(div
(|∇w|p–∇w

)
+ cwp–) in � × (t, T)

whenever v ≥ v.
Step . Let w solve

⎧
⎪⎨

⎪⎩

wt = f (w)(div(|∇w|p–∇w) + cwp–), (x, t) ∈ � × (, T),
w(x, t) = , (x, t) ∈ ∂� × (, T),
w(x, ) = w(x), x ∈ �,

(.)

with f (w) = hm(w)h′(w)p–. We claim that w blows up in finite time for any initial data
w >  provided � large such that λ < c.

We prove the claim by using the so-called ‘concavity’ method. Define

E (w) =

p

∫

�

|∇w|p dx –
c

p

∫

�

wp dx, H (w) =
∫

�

�(w) dx,

where �(w) =
∫ w


�

f (�) d� with f (�) = hm(�)h′(�)p–. Such � is well defined. In fact, since

h() = , there exists � >  such that h′(�) = e– γ
β(p–) hβ (�) ≥ 

 for � ∈ [,�]. Set h(�) =
(α ln(� + ))


β , with  < α < β(p–)

γ
. Then

h′
(�)

e– γ
β(p–) hβ

 (�)
=


β

(α ln(� + ))
–β
β 

�+

(� + )– αγ
β(p–)

=

β

(
α ln(� + )

) –β
β (� + )

αγ
β(p–) –.
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Choose � = min{�, e
β

β
–β

α –}. We have (α ln(� + ))
–β
β ≤ β for  ≤ � ≤ �. Since  < α <

β(p–)
γ

implies (� + )
αγ

β(p–) – ≤  for  ≤ � ≤ �, we have

h′
(�)

e– γ
β(p–) hβ

 (�)
≤  for � ∈ [,�].

Hence, by the comparison principle with h() = h() = , we obtain

h(�) ≥ h(�) for � ∈ [,�].

Consequently,

∫ �



�

f (�)
d� ≤

∫ �



�

hm
 (�)

d� ≤
∫ �



�

α
m
β ln

m
β (� + )

d� < ∞,

and so, �(w) =
∫ w


�

f (�) d� is well defined.
A simple calculation yields

H ′(w) =
∫

�

w
f (w)

wt dx = –pE (w)

and

H ′′(w) = –pE ′(w) = p
∫

�

w
t

f (w)
dx.

Noticing f is nondecreasing, we have by Hölder’s inequality

(
H ′(w)

) =
(∫

�

w
√

f (w)
wt

√
f (w)

dx
)

≤
(∫

�

w

f (w)
dx

)(∫

�

w
t

f (w)
dx

)

≤ 
p

(∫

�

∫ w



�

f (�)
d� dx

)(

p
∫

�

w
t

f (w)
dx

)

=

p
H (w)H ′′(w),

which implies

d

dt H – p
 (t) ≤ .

It follows that there exists T < ∞ such that if

E (w) =

p

∫

�

|∇w|p dx –
c

p

∫

�

wp
 dx < ,

then

lim sup
t→T

H (t) = ∞,
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which implies

lim sup
t→T

∥
∥�

(
w(·, t)

)∥
∥

L∞(�) = ∞.

Thus, we have

lim sup
t→T

∥
∥w(·, t)

∥
∥

L∞(�) = ∞. (.)

Let ϕ >  in � be the first eigenfunction of (.). We have, for any k > ,

E (kψ) =

p

∫

�

∣
∣∇(kψ)

∣
∣p dx –

c

p

∫

�

(kψ)p dx =
λ – c

p

∫

�

(kψ)p dx < ,

provided � large such that the first eigenvalue λ < c. Choose k small enough such that
w ≥ kψ . Then w blows up in finite time by comparison.

Step . By the assumption, � contains a closed ball with radius R. Let BR() ⊂ �, without
loss of generality. Suppose there is initial value u >  such that the solution u is global in
time. Then we can show in a way similar to the proof of Lemma . that there is t > 
such that u ≥ M > f (v) for (x, t) ∈ B × (t,∞), and hence v ≥ f –(u) ≥ f –(M) ≥ v in
B × (t,∞). Therefore v is a non-global supersolution of (.) in B × (t,∞) by Step .

�

Theorem . Suppose that q > p+m–. Then the solutions of (.) blow up for large initial
data and are global for small initial data.

Proof Let ψ solve – div(|∇ψ |p–∇ψ) =  in � with ψ |∂� = . Since q > p + m –  implies
pm–q
p– < m –  ≤ r, it follows that p–

q–m < 
m–r when m > r. Fix δ >  such that

p – 
q – m

< δ < min

{


m – r
, 

}

for m > r, (.)

and set

w = μδ + μψ(x), (x, t) ∈ � × (,∞),

with μ ∈ (, ) small to be determined. A simple calculation yields

wt – wm div
(|∇w|p–∇w

)
– wq – γ wr|∇w|p = μp–wm – wq – γμpwr|∇ψ |p.

Since (q – m)δ – p +  >  by (.), we have

wq

μp–wm = 
(
μδ + μψ

)q–m
μ–p ≤ μ(q–m)δ–p+( + ‖ψ‖L∞(�)

) ≤ ,

provided μ is small enough. If r < m, by (.), we have

γμpwr|∇ψ |p
μp–wm = γμ

(
μδ + μψ

)r–m|∇ψ |p ≤ γμ–(m–r)δ|∇ψ |p ≤ 
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for μ small. In the case r ≥ m,

γμpwr|∇ψ |p
μp–wm ≤ γμ+(r–m)δ( + ‖ψ‖L∞(�)

)r–m|∇ψ |p ≤  (.)

for μ small. In one word, there exists μ >  small enough that w is a time-independent
supersolution provided u < μδ + μψ .

To deal with large initial data, consider the following problem without gradient term:

⎧
⎪⎨

⎪⎩

ut = um div(|∇u|p–∇u) + λuq, (x, t) ∈ � × (, T),
u = , (x, t) ∈ ∂� × (, T),
u(x, ) = u(x), x ∈ �,

the solutions of which blow up in finite time for large initial data []. By the comparison
principle, the solutions of (.) blow up as well for large initial data. �

Theorem . Suppose q = p + m – .
(i) If r > m –  = pm–q

p– , there exist both global and non-global solutions.

(ii) Suppose r = m –  = pm–q
p– . If λ < λ( γ +p–

p– )
(p–)

p , all solutions of (.) blow up in finite

time. If λ ≥ λ( γ +p–
p– )

(p–)
p , the solutions are global and bounded.

Proof (i) It follows from Lemma . immediately that the solutions of (.) blow up in finite
time for large initial data.

Next, we will show the solutions are global for small domain and small initial data. Let
� be small with λ(�) > λ, and choose �̃ with � ⊂⊂ �̃ such that λ̃ := λ(�̃) > λ (see []).
Normalize ϕ̃, the eigenfunction corresponding to λ̃, by ϕ̃ >  in �′, ‖ϕ̃‖L∞(�̃) = . Then
ϕ̃ ≥ ρ in � for some ρ > .

Define w = aϕ̃b with a = ( (–b)(p–)
bγ

) 
r–m+ , b ∈ (λ/λ̃, ). Then

wt – wm div
(|∇w|p–∇w

)
– λwq – γ ur|∇w|p

= wm[
(ab)p–λ̃ϕ̃

(b–)(p–)+(p–) – (b – )(p – )(ab)p–ϕ̃(b–)(p–)–|∇ϕ̃|p

– λap–ϕ̃b(p–) – γ ap+r–mbpϕ̃(b–)p+b(r–m)|∇ϕ̃|p]

= wm[
ap–ϕ̃b(p–)(bp–λ̃ – λ

)

– (ab)p–ϕ̃(b–)p–b|∇ϕ̃|p((b – )(p – ) + γ bar–m+ϕ̃b(r–m+))]

≥ .

If in addition u is small such that ‖u‖L∞(�) < aρb, then uε ≤ w in � × (,∞) by the
comparison principle. Thus u ≤ w in � × (,∞).

(ii) By the re-scaling v(x, t) = uα( x
β

, t
α

) with α = γ

p– +  and β = α
p–

p , we transform (.)
into the Dirichlet problem

⎧
⎪⎨

⎪⎩

vt = vm div(|∇v|p–∇v) + λvp+m–, (x, t) ∈ U × (,αT),
v = , (x, t) ∈ ∂U × (,αT),
v(x, ) = uα

(x), x ∈ U ,
(.)
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where m = α+m––(α–)(p–)
α

, U = {βx|x ∈ �}. We know from Theorem . of [] that all
positive solutions of (.) are global and bounded if λ(U) ≥ λ, and so do the positive
solutions of (.) whenever

λ := λ(�) = βλ(U) ≥ λβ = λ

(
γ + p – 

p – 

) (p–)
p

.

Also by Theorem . of [], similarly, if λ < λ( γ +p–
p– )

(p–)
p , all solutions of (.) blow up in

finite time. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Author details
1School of Mathematics and Statistics, Central South University, Changsha, 410083, P.R. China. 2School of Mathematics
and Computational Science, Hunan City University, Yiyang, 413000, P.R. China. 3School of Science, Xi’an University of
Architecture and Technology, Xi’an, 710055, P.R. China.

Acknowledgements
The authors would like to express sincere gratitude to the referees for their valuable suggestions and comments on the
original manuscript. The first author is supported by Hunan Provincial Natural Science Foundation of China (14JJ6044);
the third author is supported by NSF of China (11501438) and the Natural Science Basic Research Plan in Shaanxi Province
of China (2015JQ1014).

Received: 14 September 2015 Accepted: 27 June 2016

References
1. Friedman, A, McLeod, B: Blow-up of solutions of nonlinear parabolic equations. Arch. Ration. Mech. Anal. 79, 62-78

(1986)
2. Wiegner, M: Blow-up for solutions of some degenerate parabolic equations. Differ. Integral Equ. 7, 1641-1647 (1994)
3. Wiegner, M: A degenerate diffusion equation with a nonlinear source team. Nonlinear Anal. 28, 1977-1995 (1997)
4. Winkler, M: Blow-up in a degenerate parabolic equation. Indiana Univ. Math. J. 53, 1414-1442 (2004)
5. Stinner, C, Winkler, M: Boundedness vs. blow-up in a degenerate diffusion equation with gradient nonlinearity.

Indiana Univ. Math. J. 56, 2233-2264 (2007)
6. Jin, CH, Yin, JX: Critical exponent of a doubly degenerate parabolic equation in non-divergence form with nonlinear

source. Chin. Ann. Math., Ser. A 30, 525-538 (2009)
7. Zhou, WS, Wu, ZQ: Some results on a class of degenerate parabolic equations not in divergence form. Nonlinear Anal.

60, 863-886 (2005)
8. Yao, ZA, Zhou, WS: Some results on a degenerate and singular diffusion equation. Acta Math. Sin. Ser. B 27, 581-601

(2007)
9. Zhou, WS: Some notes on a nonlinear degenerate parabolic equation. Nonlinear Anal. 71, 107-111 (2007)
10. Wang, J: Behaviors of solutions to a class of nonlinear degenerate parabolic equations not in divergence form. Appl.

Math. Lett. 24, 191-195 (2011)
11. Winkler, M: Lager time behavior of solutions to degenerate parabolic equation with absorption. Nonlinear Differ. Equ.

Appl. 8, 343-361 (2001)
12. Quittner, P, Souplet, P: Superlinear Parabolic Problems. Birkhäuser, Basel (2007)
13. García-Melián, J, Sabina de Lis, J: Maximum and comparison principles for operators involving the p-Laplacian.

J. Math. Anal. Appl. 218, 49-65 (1998)
14. Li, YX, Xie, CH: Blow-up for p-Laplacian parabolic equations. Electron. J. Differ. Equ. 2003, 20 (2003)


	A doubly degenerate diffusion equation not in divergence form with gradient term
	Abstract
	MSC
	Keywords

	Introduction
	Local existence of weak solutions
	Global existence and nonexistence of solutions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


