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Abstract
In this paper, a class of nonlinear impulsive fractional differential systems including
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using variational methods, some new criteria to guarantee that the fractional
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1 Introduction
In this paper, we consider the following perturbed fractional differential systems with im-
pulsive effects:

⎧
⎪⎪⎨

⎪⎪⎩

tD
αi
T (ai(t)c

Dαi
t ui(t)) = λFui (t, u) + hi(ui(t)),  < t < T , t �= tj,

�(tD
αi–
T (c

Dαi
t ui))(tj) = Iij(ui(tj)), j = , , . . . , m,

ui() = ui(T) = ,  ≤ i ≤ N ,

(Pλ)

where u = (u, . . . , uN ), N ≥ , |u| =
√
∑N

i= u
i , λ > ,  < αi ≤  for  ≤ i ≤ N , ai ∈

L∞[, T] with ai := ess inf[,T] ai(t) >  and tD
αi
T denotes the right Riemann-Liouville

fractional derivative of order αi;  = t < t < · · · < tm+ = T , and �(tD
αi–
T (c

Dαi
t ui))(tj) =

tD
αi–
T (c

Dαi
t ui)(t+

j ) – tD
αi–
T (c

Dαi
t ui)(t–

j ) where

tD
αi–
T
(c

Dαi
t ui
)(

t+
j
)

= lim
t→t+

j
tD

αi–
T
(c

Dαi
t ui
)
(t),

tD
αi–
T
(c

Dαi
t ui
)(

t–
j
)

= lim
t→t–

j
tD

αi–
T
(c

Dαi
t ui
)
(t),

and c
Dαi

t is the left Caputo fractional derivatives of order αi. The functions Iij ∈ C(R, R)
are Lipschitz continuous functions with the Lipschitz constants Lij ≥ ; i.e.,

∣
∣Iij(s) – Iij(s)

∣
∣≤ Lij|s – s| (.)
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for all s, s ∈ R, satisfying Iij() =  for i = , . . . , N , j = , . . . , m. F : [, T] × RN → R is
measurable with respect to t for every u ∈ RN , continuously differentiable in u, for almost
every t ∈ [, T], and it satisfies the following summability condition:

(F) sup|u|≤r (max{|F(·, u)|, |Fui (·, u)|, i = , . . . , N}) ∈ L([, T]) for any r > , and F(t, ,
. . . , ) =  for each t ∈ [, T]. Fui denote the partial derivative of F with respect to ui for
 ≤ i ≤ N . In addition, the functions hi : R → R are Lipschitz continuous functions with
the Lipschitz constants Li ≥ ; i.e.,

∣
∣hi(x) – hi(x)

∣
∣≤ Li|x – x| (.)

for every x, x ∈ R, and hi() =  for i = , . . . , N .
Fractional differential equations play a very important role in the modeling of many phe-

nomena in various fields of engineering, chemistry, physics, rheology, and biology. With
the help of fractional calculus, the natural phenomena and mathematical models can be
more accurately described. Therefore, the theory and application of fractional differen-
tial equations have been rapidly developed in recent years. For more details of fractional
calculus theory, the reader can see the monographs of Kilbas et al. [], Diethelm [], and
Zhou []. Recently, the existence and multiplicity of solutions to boundary value problems
for nonlinear fractional differential equations is extremely investigated; see [–] and the
references therein. Classical approaches to such problems include fixed point theorems,
degree theory, the method of upper and lower solutions and so on. In [] the authors
studied a class of fractional boundary value problem by establishing corresponding vari-
ational structure and using mountain pass theorem. Since then the variational methods
are applied to deal with the existence of solutions for fractional differential equations. The
literature on this technique was extended by many authors as [–]. More precisely, the
authors [] obtained, by using recent results of Bonanno [], for the following boundary
value problem for fractional order differential equations:

⎧
⎨

⎩

tDα
b (c

aDα
t u(t)) + u(t) = λf (t, u), a < t < b,

u(a) = u(b) = ,

the existence of at least two nonzero solutions.
On the other hand, impulsive boundary value problems for differential equations have

become an important area of investigation in recent year. Such equations appear in
describing processes which experience a suddenly changes of their states in chemical
technology, physics phenomena, population dynamics, biotechnology, and economics,
etc. []. Some classical tools of nonlinear analysis as topological methods have been ap-
plied to study such problems in the literature. Since very recently, the variational methods
and critical point theorems belong to the most promising approaches to integer-order im-
pulsive differential problems, and the literature on this approach has extensively grown;
see [–] and the references therein.

However, to the best of our knowledge, there are few results on the solutions to impul-
sive fractional boundary value problems which were studied by the critical point theory
and variational methods. Bonanno et al. in [] studied the following impulsive fractional
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differential equations:
⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

Dα
t u(t)) + a(t)u(t) = λf (t, u),  < t < T , t �= tj,

�(tDα–
T (c

Dα
t u))(tj) = μIj(u(tj)), j = , , . . . , m,

u() = u(T) = ,

(.)

where λ,μ ∈ (, +∞) are two parameters. Under suitable hypotheses and by using the crit-
ical point theorem, the existence results of at least one and three solutions for the problem
(.) are proved. In [] the authors applying a recent critical point theorem of Bonanno
and Marano [] discussed the existence of at least three distinct weak solutions for the
problem (.). In [], by using critical point theory and variational methods, the authors
gave some new criteria to guarantee that the problem (.) have at least one solution or
infinitely many solutions, in the case λ = μ = .

Motivated by the above work, in the present paper, our main aim is to investigate the
multiplicity of nontrivial and nonnegative solutions of the system (Pλ) with Lipschitz
continuous impulsive effects. Under some natural assumptions, by employing variational
methods, some new results for the existence of at least two nontrivial and nonnegative so-
lutions of the system (Pλ) are obtained. To the best of our knowledge, the investigation of
the existence of solutions for impulsive fractional differential systems by employing varia-
tional methods has received considerably less attention. Obviously, our results are differ-
ent from the main results in [, ] and extend the second order boundary value problem
to the non-integer case in comparison with the papers [, , ]. The effectiveness of
our results is illustrated by an example.

The remainder of this paper is organized as follows. In Section , we provide some basic
definitions and lemmas that will be useful for our main results. In Section  we give the
proofs of our main results and an example.

2 Preliminaries
To formulate our main results on the existence of nontrivial solutions for the system (Pλ),
we present the following basic notations and lemmas.

Let C∞
 ([, T], RN ) be the set of all functions x ∈ C∞

 ([, T], RN ) with x() = x(T) =  and
the norm

‖x‖∞ = max
[,T]

∣
∣x(t)

∣
∣. (.)

Denote the norm of the space Lp([, T], RN ) for  ≤ p < ∞ by

‖x‖Lp =
(∫ T



∣
∣x(s)

∣
∣p ds

)/p

.

The following lemma shows the boundedness of the Riemann-Liouville fractional integral
operators from the space Lp([, T], RN ) to the space Lp([, T], RN ), where  ≤ p < ∞.

Lemma . ([]) Let  < α ≤ ,  ≤ p < ∞, and f ∈ Lp([, T], RN ). Then

∥
∥

D–α
ξ f
∥
∥

Lp([,t]) ≤ tα

�(α + )
‖f ‖Lp([,t]), for ξ ∈ [, t], t ∈ [, T],

where D–α
t is left Riemann-Liouville fractional integral of order α.
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Definition . ([]) Let 
 < αi ≤  for  ≤ i ≤ N . The fractional derivative space Eαi

 is
defined by the closure of C∞

 ([, T], RN ), that is,

Eαi
 = C∞


(
[, T], RN

)

with respect to the weighted norm

‖ui‖αi =
(∫ T


ai(t)

∣
∣c
Dαi

t ui(t)
∣
∣ dt +

∫ T



∣
∣ui(t)

∣
∣ dt

)/

, ∀ui ∈ Eαi
 . (.)

It is clear that the fractional derivative space Eαi
 is the space of functions ui ∈ L(, T)

having an αi-order fractional derivative c
Dαi

t ui ∈ L(, T) and ui() = ui(T) = . According
to [], Proposition ., it is well known that the space Eαi

 is a reflexive and separable
Banach space. Moreover, from [, ] we have

c
Dαi

t ui = Dαi
t ui, c

t Dαi
T ui = tD

αi
T ui

for any ui ∈ Eαi
 ,  ≤ i ≤ N .

Lemma . ([]) Let  < αi ≤  for  ≤ i ≤ N . For every ui ∈ Eαi
 , one has

‖ui‖L ≤ Tαi

�(αi + )
√

ai

(∫ T


ai(t)

∣
∣c
Dαi

t ui(t)
∣
∣ dt

)/

. (.)

Moreover, if αi > 
 , then

‖ui‖∞ ≤ Tαi– 


�(αi)
√

ai(αi – )

(∫ T


ai(t)

∣
∣c
Dαi

t ui(t)
∣
∣
)/

. (.)

By (.), one can consider Eαi
 with respect to the norm

‖ui‖αi =
(∫ T


ai(t)

∣
∣c
Dαi

t ui(t)
∣
∣ dt

)/

, ∀ui ∈ Eαi
 , (.)

which is equivalent to (.). Then one has

N∑

i=

‖ui‖
L ≤ A

N∑

i=

‖ui‖
αi

, (.)

N∑

i=

‖ui‖
∞ ≤ B

N∑

i=

‖ui‖
αi

(

if αi >



)

, (.)

where

A = max

{
Tαi

[�(αi + )]ai
,  ≤ i ≤ N

}

, B = max

{
Tαi–

[�(αi)]ai(αi – )
,  ≤ i ≤ N

}

.

For the space Eαi
 , similarly to the proof of Proposition . in [], we have the following

results.
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Lemma . Let 
 < αi ≤  for  ≤ i ≤ N . Assume that the sequence {xn} converges weakly

to x in Eαi
 , i.e. xn ⇀ x. Then {xn} converges strongly to x in C([, T], R), i.e. ‖xn – x‖∞ → ,

as n → ∞.
In the sequel, X will denote the Cartesian product of N Sobolev spaces Eα

 , . . . , EαN
 , i.e.,

Eα
 × · · · × EαN

 , which is a reflexive Banach space endowed with the norm

‖u‖X =
∥
∥(u, . . . , uN )

∥
∥

X =
N∑

i=

‖ui‖αi . (.)

Obviously, X is compactly embedded in (C([, T], R))N .

Definition . By a weak solution of problem (Pλ), one means any u = (u, . . . , uN ) ∈ X
such that

N∑

i=

∫ T


(ai(t)c

Dαi
t ui(t)c

Dαi
t xi(t) dt –

N∑

i=

∫ T


hi
(
ui(t)

)
xi(t) dt

+
N∑

i=

p∑

j=

ai(tj)Iij
(
ui(tj)

)
xi(tj) –

N∑

i=

λ

∫ T


Fui

(
t, u(t)

)
xi(t) dt = 

for every x = (xi, . . . , xN ) ∈ X.
We define

Hi(x) =
∫ x


hi(z) dz, i = , . . . , N , (.)

for every t ∈ [, T] and x ∈ R.

Arguing as in the proof of Theorem . in [], we have the following.

Lemma . Let 
 < αi ≤  for  ≤ i ≤ N , and u ∈ X. If u is a nontrivial weak solution of

problem (Pλ), then u is also a nontrivial solution of problem (Pλ).
Our analysis is mainly based on Lemmas . and ., consequences of a local minimum

theorem ([], Theorem .), which is a more precise result of Ricceri’s variational principle
(see []).

For a given non-empty set � and the functionals 	,
 : � → R, one defines the following
functions:

χ (r, r) = inf
x∈	–(]r,r[)

supu∈	–(]r,r[) 
(u) – 
(x)
r – 	(x)

,

ρ(r, r) = sup
x∈	–(]r,r[)


(x) – supu∈	–(]–∞,r[) 
(u)
	(x) – r

,

for every r, r ∈ R with r < r, and

ρ(r) = sup
x∈	–(]r,∞[)


(x) – supu∈	–(]–∞,r[) 
(u)
	(x) – r

,

for every r ∈ R.
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Lemma . ([], Theorem .) Let X be a real Banach space; 	 : X → R be a sequentially
weakly lower semicontinuous, coercive, and continuously Gâteaux differentiable function
whose Gâteaux derivative admits a continuous inverse on X∗, 
 : X → R be a continuously
Gâteaux differentiable function whose Gâteaux derivative is compact. Assume that there
exist r, r ∈ R, r < r, such that

χ (r, r) < ρ(r, r).

Then, setting Iλ = 	 – λ
 , for each λ ∈ ] 
ρ(r,r) , 

χ (r,r) [ there exists u,λ ∈ 	–(]r, r[) such
that Iλ(u,λ) ≤ Iλ(u), ∀u ∈ 	–(]r, r[) and I ′

λ(u,λ) = .

Lemma . ([], Theorem .) Let X be a real Banach space; 	 : X → R be a sequentially
weakly lower semicontinuous, coercive, and continuously Gâteaux differentiable function
whose Gâteaux derivative admits a continuous inverse on X∗, 
 : X → R be a continuously
Gâteaux differentiable function whose Gâteaux derivative is compact. Fix infX 	 < r <
supX 	 and assume that ρ(r) > , and for each λ > 

ρ(r) , the functional Iλ = 	 – λ
 is coer-
cive. Then for each λ ∈ ] 

ρ(r) , +∞[ there exists u,λ ∈ 	–(]r, +∞[) such that Iλ(u,λ) ≤ Iλ(u),
∀u ∈ 	–(]r, +∞[) and I ′

λ(u,λ) = .

3 Main results and proofs
In this section, we shall give and prove our main results. Throughout this paper, we assume
that:

(H) 
 < αi ≤  for i = , . . . , N and  < β := pa∗LB + LA < , where a∗ =

max{ess sup[,T] ai(t),  ≤ i ≤ N}, L = maxi∈{,...,N},j∈{,...,p} Lij, and L = maxi∈{,...,N} Li.

Proposition . Let T : X → X∗ be the operator defined by

T(u)x =
N∑

i=

∫ T


ai(t)c

Dαi
t ui(t)c

Dαi
t xi(t) – hi

(
ui(t)

)
xi(t) dt +

N∑

i=

p∑

j=

ai(tj)Iij
(
ui(tj)

)
xi(tj)

for all u = (u, . . . , uN ), x = (xi, . . . , xN ) ∈ X. Then T is a continuous inverse on X∗.

Proof From (.) and (.), we have –Li|ξ | ≤ hi(ξ )ξ ≤ Li|ξ | (i = , . . . , N ) for each ξ ∈ R,
and –Lij|s| ≤ Iij(s)s ≤ Lij|s| for each s ∈ R and i = , . . . , N ; j = , . . . , p. It follows from (.)
that

T(u)u =
N∑

i=

∫ T


ai(t)

∣
∣c
Dαi

t u(t)
∣
∣ – hi

(
ui(t)

)
ui(t) dt +

N∑

i=

p∑

j=

ai(tj)Iij
(
ui(tj)

)
ui(tj)

≥
N∑

i=

‖ui‖
αi

–
N∑

i=

p∑

j=

ai(tj)Lij‖ui‖
∞ –

N∑

i=

Li‖ui‖
L

≥
N∑

i=

(

 –
p∑

j=

ai(tj)LijB – LiA

)

‖ui‖
αi

≥ ( – β)
N∑

i=

‖ui‖
αi

. (.)
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Since β < , the inequality (.) shows that T is coercive. For every u, v ∈ X, it is easy to see
that

〈
T(u) – T(v), u – v

〉
=

N∑

i=

‖ui – vi‖
αi

–
N∑

i=

∫ T



[
hi
(
ui(t)

)
– hi
(
vi(t)

)][
ui(t) – vi(t)

]
dt

+
N∑

i=

p∑

j=

ai(tj)
[
Iij
(
ui(tj)

)
– Iij
(
vi(tj)

)](
ui(tj) – vi(tj)

)

≥ ( – β)
N∑

i=

‖ui – vi‖
αi

,

which implies that T is uniformly monotone. According to Theorem .A(d) in [], the
inverse operator T– of T exists and T– is continuous on X∗.

For a given nonnegative constant r and a function ω, let

δω(r) =

∫ T
 max|u|≤

√
B
–β

r
F(t, u(t)) dt –

∫ T
 F(t,ω(t)) dt

r – 
 ( + β)

∑N
i= ‖ωi‖

αi

,

where ω = (ω, . . . ,ωN ) ∈ X. �

Theorem . If there exist constants r ≥ , r > , and a function ω = (ω, . . . ,ωN ) ∈ X
such that:

(H) r
–β

<
∑N

i= ‖ωi‖
αi

< r
+β

;
(H) there exist b ∈ L([, T], R), b ∈ L([, T], R), and a positive constant μ <  such

that

∣
∣F(t, u)

∣
∣≤ b(t)|u|μ + b(t)

for almost every t ∈ [, T] and for all u ∈ RN ;
(H) δω(r) < δω(r).
Then, for every λ ∈ ] 

δω(r) , 
δω(r) [, the problem (Pλ) has at least two nontrivial solutions

u∗, u∗ ∈ X such that

r <



N∑

i=

∥
∥u∗

i
∥
∥

αi
+

N∑

i=

p∑

j=

∫ u∗
i (tj)


Iij(s) ds –

N∑

i=

∫ T


Hi
(
u∗

i (t)
)

dt < r. (.)

Remark A In Theorem . and in the results below, by u∗, u∗ one means the vectors
u∗ = (u∗

 , . . . , u∗
N ), u∗ = (u∗,, . . . , u∗,N ), respectively.

Proof of Theorem . To apply Lemma . to the problem (Pλ), we define the functional
Iλ : X → R by

Iλ(u) = 	(u) – λ
(u)
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for all u = (u, . . . , uN ) ∈ X, where

	(u) =



N∑

i=

‖ui‖
αi

+
N∑

i=

p∑

j=

∫ ui(tj)


Iij(s) ds –

N∑

i=

∫ T


Hi
(
ui(t)

)
dt (.)

and


(u) =
∫ T


F
(
t, u(t)

)
dt. (.)

Due to the continuous embedding X → (C([, T], R))N being compact, we know that 


is a well-defined Gâteaux differentiable functional whose Gâteaux derivative at the point
u ∈ X is the functional 
 ′(u) ∈ X∗, given by


 ′(u)x =
N∑

i=

∫ T


Fui

(
t, u(t)

)
xi(t) dt

for every x = (x, . . . , xN ) ∈ X, and 
 ′ is a sequentially weakly upper semicontinuous func-
tional on X. Moreover, 
 ′ : X → X∗ is a compact operator. In fact, for a given u ∈ X, if
{un = (un,, . . . , un,N )} ⊂ X, un ⇀ u in X as n → +∞, then un converges uniformly to u on
[, T]. Hence, we have Fui (t, un) → Fui (t, u) as n → +∞. So 
 ′(un) → 
 ′(u) as n → +∞.
Therefore, 
 ′ is strongly continuous on X, which implies that 
 ′ is a compact opera-
tor.

It is not difficult to verify that the functional 	 is a continuously differentiable whose
differential at the point u ∈ X is

	′(u)(x) =
N∑

i=

∫ T


ai(t)c

Dαi
t ui(t)c

Dαi
t xi(t) dt –

N∑

i=

∫ T


hi
(
ui(t)

)
xi(t) dt

+
N∑

i=

p∑

j=

ai(tj)Iij
(
ui(tj)

)
xi(tj) – λ

N∑

i=

∫ T


Fui

(
t, u(t)

)
xi(t) dt

for every x ∈ X. From Proposition ., it is easy to see that 	′ is a continuous in-
verse on X∗. Furthermore, 	 admits also sequentially weakly lower semicontinuous
on X.

Clearly, the solutions of the equation I ′
λ(u) =  are exactly the weak solutions of the prob-

lem (Pλ). Similarly to (.), we get




( – β)
N∑

i=

‖ui‖
αi

≤ 	(u) ≤ 


( + β)
N∑

i=

‖ui‖
αi

. (.)

From the condition (H), we have r < 	(u) < r.
According to (.), one has

max
t∈[,T]

N∑

i=

∣
∣ui(t)

∣
∣ ≤ B

N∑

i=

‖ui‖
αi

.
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So, for every r > , from the definition of 	 and by using (.) one has

	–(] – ∞, r]
)

:=
{

u ∈ X : 	(u) ≤ r
}

⊆
{

u ∈ X :



( – β)
N∑

i=

‖ui‖
αi

≤ r

}

⊆
{

u ∈ X :
N∑

i=

‖ui‖
∞ ≤ B

 – β
r

}

⊆
{

u ∈ X :
∣
∣u(t)

∣
∣≤
√

B

 – β
r, for all t ∈ [, T]

}

. (.)

Therefore,

χ (r, r) = inf
ω∈	–(]r,r[)

supu∈	–(]r,r[) 
(u) – 
(ω)
r – 	(ω)

≤ supu∈	–((–∞,r[) 
(u) – 
(ω)
r – 	(ω)

≤ supu∈	–((–∞,r[)
∫ T

 F(t, u(t)) dt – 
(ω)
r – 	(ω)

≤
∫ T

 max|u|≤
√

B
–β

r
F(t, u(t)) dt –

∫ T
 F(t,ω(t)) dt

r – 
 ( + β)

∑N
i= ‖ωi‖

αi

= δω(r).

On the other hand, we also have

ρ(r, r) = sup
ω∈	–(]r,r[)


(ω) – supu∈	–(]–∞,r[) 
(u)
	(ω) – r

≥ 
(ω) – supu∈	–((–∞,r[) 
(u)
	(ω) – r

≥ 
(ω) – supu∈	–((–∞,r[)
∫ T

 F(t, u(t)) dt
	(ω) – r

≥
∫ T

 max|u|≤
√

B
–β

r
F(t, u(t)) dt –

∫ T
 F(t,ω(t)) dt

r – 
 ( + β)

∑N
i= ‖ωi‖

αi

= δω(r).

According to condition (H), one has ρ(r, r) > χ (r, r). Hence, applying Lemma ., for
every λ ∈ ] 

δω(r) , 
δω(r) [, the functional Iλ(u) has at least one critical point u∗ ∈ X such that

r < 	(u∗) < r. Obviously, u∗ is a nontrivial local minimum for Iλ in X.
Next we show that the existence of a second local minimum of Iλ in X is distinct from

the first one. To this aim, we will prove the hypothesis of the mountain pass theorem for
the functional Iλ. Obviously, the functional Iλ ∈ C[, T] and Iλ(u) = . From the above
proof, we know that u∗ ∈ X is a nontrivial local minimum for Iλ in X. So there exists a
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ζ >  such that inf‖u–u∗‖X =ζ Iλ(u) > Iλ(u∗), that is, the condition [[], I, Theorem .] is
satisfied. Choosing u �= , it follows from (.), (.), (.), (H), and the Hölder inequality
that

Iλ(τu) ≥ τ 



N∑

i=

‖ui‖
αi

–
τ 



N∑

i=

p∑

j=

∣
∣u(tj)

∣
∣ –

τ 



N∑

i=

∫ T


Li
∣
∣ui(t)

∣
∣dt

– λτμ

N∑

i=

∫ T


b(t)

∣
∣ui(t)

∣
∣μ dt – λ

∫ T


b(t) dt

≥ τ 


( – β)

N∑

i=

‖ui‖
αi

– λτμ‖b‖L

N∑

i=

‖ui‖μ

L – λ‖b‖L → +∞

as τ → ∞, since μ < . Hence the condition [[], I, Theorem .] is satisfied.
Furthermore, by standard computations Iλ satisfies (P-S) condition. Therefore, it fol-

lows from the classical theorem of Ambrosetti and Rabinowitz that there exists a critical
point u∗ of Iλ(u) such that Iλ(u∗) > Iλ(u∗). So, the problem (Pλ) has at least two distinct
nontrivial weak solutions u∗, u∗, and u∗ satisfies (.). The proof of Theorem . is com-
plete. �

For a given constant θ ∈ (, 
 ), set

Pi(αi, θ ) =


θT

{∫ θT


ai(t)t(–αi) dt +

∫ (–θ )T

θT
ai(t)p

i (t) dt +
∫ T

(–θ )T
ai(t)q

i (t) dt
}

,

where

pi(t) = t–αi – (t – θT)–αi ,

qi(t) = t–αi – (t – θT)–αi –
(
t – ( – θ )T

)–αi

and

K = min
{

Pi(αi, θ ),  ≤ i ≤ N
}

,

K = max
{

Pi(αi, θ ),  ≤ i ≤ N
}

.

For a given nonnegative constant η and a positive constant ξ , let

δξ (η) =
∫ T

 max|u|≤√
Bη F(t, u(t)) dt –

∫ T
 F(t,�( – α)ξ , . . . ,�( – αN )ξ ) dt

( – β)η – N( + β)Kξ  ,

where ( – β)η �= N( + β)Kξ
.

Theorem . Assume that the condition (H) satisfies. Furthermore, if there exist con-
stants c ≥ , b >  and ξ with

√
c

NK
< ξ <

√
(–β)b

NK(+β) such that:
(H) F(t, u) ≥  for all (t, u) ∈ ([, θT] ∪ [( – θ )T , T]) × [–ξ , ξ ]N ;
(H) δξ (b) < δξ (c).
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Then, for every λ ∈ ] 
δξ (c) , 

δξ (b) [, the problem (Pλ) admits at least two nontrivial solutions
u∗, u∗ ∈ X such that

( – β)c <



N∑

i=

∥
∥u∗

i
∥
∥

αi
+

N∑

i=

p∑

j=

∫ u∗
i (tj)


Iij(s) ds –

N∑

i=

∫ T


Hi
(
u∗

i (t)
)

dt < ( – β)b. (.)

Proof We shall show that all the assumptions of Theorem . are fulfilled by choosing
r = ( – β)c, r = ( – β)b, and ω = (ω(t), . . . ,ωN (t)) with

ωi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

�(–αi)ξ
θT t, t ∈ [, θT[,

�( – αi)ξ , t ∈ [θT , ( – θ )T],
�(–αi)ξ

θT (T – t), t ∈ ]( – θ )T , T].

(.)

Clearly ωi() = ωi(T) =  and ωi ∈ L[, T] for i = , . . . , N . By direct calculation we have

c
Dαi

t ωi(t) =
ξ

θT

⎧
⎪⎪⎨

⎪⎪⎩

t–αi , t ∈ [, θT[,

pi(t), t ∈ [θT , ( – θ )T],

qi(t), t ∈ ]( – θ )T , T].

Furthermore,

∫ T


ai(t)

∣
∣c
Dαi

t ωi(t)
∣
∣ dt

=
∫ θT


+
∫ (–θ )T

θT
+
∫ T

(–θ )T
ai(t)

∣
∣
Dαi

t ωi(t)
∣
∣ dt

=
ξ 

θT

{∫ θT


ai(t)t(–αi) dt +

∫ (–θ )T

θT
ai(t)p

i (t) dt +
∫ T

(–θ )T
ai(t)q

i (t) dt
}

= Pi(αi, θ )ξ  < +∞.

Thus, ω ∈ X, this and (.) show that

NKξ
 ≤

N∑

i=

‖ωi‖
αi

≤ NKξ


and

N( – β)Kξ
 ≤ 	(ω) ≤ N( + β)Kξ

.

This together with the condition
√

c
NK

< ξ <
√

(–β)b
NK(+β) implies (H) is satisfied.

It follows from (H) that


(ω) =
∫ θT


+
∫ (–θ )T

θT
+
∫ T

(–θ )T
F(t,ω) dt ≥

∫ (–θ )T

θT
F(t,ω) dt

=
∫ (–θ )T

θT
F
(
t,�( – α)ξ , . . . ,�( – αN )ξ

)
dt. (.)



Zhao and Zhao Boundary Value Problems  (2016) 2016:129 Page 12 of 16

Therefore, one has

χ (r, r) ≤ supu∈	–((–∞,r[) 
(u) – 
(ω)
r – 	(ω)

≤
∫ T

 max|u|≤√
Bb F(t, u(t)) dt –

∫ T
 F(t,�( – α)ξ , . . . ,�( – αN )ξ ) dt

( – β)b – N( + β)Kξ 

= δξ (b)

and

ρ(r, r) ≥ 
(ω) – supu∈	–((–∞,r[) 
(u)
	(ω) – r

≥
∫ T

 max|u|≤√
Bc F(t, u(t)) dt –

∫ T
 F(t,�( – α)ξ , . . . ,�( – αN )ξ ) dt

( – β)c – N( + β)Kξ 

= δξ (c),

which implies that (H) is verified. Therefore, Theorem . ensures the conclusion. �

Corollary . In addition to (H), assume that there exist two constants b >  and ξ with
ξ <
√

(–β)b
NK(+β) such that the assumption (H) in Theorem . holds. Furthermore, suppose

that:

(H)
∫ T

 F(t,�( – α)ξ , . . . ,�( – αN )ξ ) dt
N( + β)Kξ  >

∫ T
 max|u|≤√

Bb F(t, u(t)) dt
( – β)b

.

Then, for every

λ ∈
]

N( + β)Kξ


∫ T
 F(t,�( – α)ξ , . . . ,�( – αN )ξ ) dt

,
( – β)b

∫ T
 max|u|≤√

Bb F(t, u(t)) dt

[

,

problem (Pλ) has at least two nontrivial solutions u∗, u∗ ∈ X such that

 <



N∑

i=

∥
∥u∗

i
∥
∥

αi
+

N∑

i=

p∑

j=

∫ u∗
i (tj)


Iij(s) ds –

N∑

i=

∫ T


Hi
(
u∗

i (t)
)

dt < ( – β)b. (.)

Proof The conclusion follows from Theorem . by choosing c = . From our assump-
tions, we have

δξ (b) <
( – N(+β)Kξ

(–β)b )
∫ T

 max|u|≤√
Bb F(t, u(t)) dt

( – β)b – N( + β)Kξ 

=
∫ T

 max|u|≤√
Bb F(t, u(t)) dt

( – β)b

<
∫ T

 F(t,�( – α)ξ , . . . ,�( – αN )ξ ) dt
N( + β)Kξ  = δξ ().

Hence, Theorem . ensures the conclusion. �
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Theorem . Assume that there exist a positive constant r and a function ω = (ω(t), . . . ,
ωN (t)) ∈ X with r

–β
<
∑N

i= ‖ωi‖
αi

such that:

(H)
∫ T


max

|u|≤
√

B
–β r

F
(
t, u(t)

)
dt <

∫ T


F(t,ω) dt;

(H) lim inf|u|→+∞
F(t, u)
|u| ≤  uniformly for t ∈ [, T].

Then, for every λ ∈ ]λ, +∞), where

λ =
r – 

 ( + β)
∑N

i= ‖ωi‖
αi

∫ T
 max|u|≤

√
B
–β

r
F(t, u(t)) dt –

∫ T
 F(t,ω(t)) dt

,

problem (Pλ) has at least one nontrivial solution u∗ ∈ X such that

r <



N∑

i=

∥
∥u∗

i
∥
∥

αi
+

N∑

i=

p∑

j=

∫ u∗
i (tj)


Iij(s) ds –

N∑

i=

∫ T


Hi
(
u∗

i (t)
)

dt. (.)

Proof We may take the functionals 	 and 
 and the space as in the proof of Theorem .,
and choose λ as in the conclusion of the theorem. Obviously, all the regularity assumptions
required in Lemma . are satisfied. According to (H) there exist a positive constant ε > 
and a function mε(t) ∈ L[, T] with ε < –β

Aλ
such that

∣
∣F(t, u)

∣
∣≤ ε

∣
∣u(t)

∣
∣ + mε(t) (.)

for each t ∈ [, T].
It follows from (.), (.), (.), and (.) that

Iλ(u) =



N∑

i=

‖ui‖
αi

+
N∑

i=

p∑

j=

∫ ui(tj)


Iij(s) ds –

N∑

i=

∫ T


Hi
(
ui(t)

)
dt – λ

∫ T


F
(
t, u(t)

)
dt

≥ 


( – β)
N∑

i=

‖ui‖
αi

– λε

N∑

i=

∫ T



∣
∣ui(t)

∣
∣ dt – λ

∫ T


mε(t) dt

≥ 


( – β)
N∑

i=

‖ui‖
αi

– λε

N∑

i=

‖ui‖
L – λ‖mε‖L

≥ 


( – β – Aλε)
N∑

i=

‖ui‖
αi

– λ‖mε‖L

and then

lim‖u‖X→+∞ Iλ(u) = +∞,
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which implies that the functional Iλ(u) is coercive. Similarly to the proof of Theorem .,
it follows from (H) and (H) that

ρ(r) ≥
∫ T

 max|u|≤
√

B
–β

r
F(t, u(t)) dt –

∫ T
 F(t,ω(t)) dt

r – 
 ( + β)

∑N
i= ‖ωi‖

αi

> .

Hence, from Lemma ., the functional Iλ has at least a local minimum u∗ ∈ X such that
(.) holds. �

Corollary . Assume that the condition (H) holds. Furthermore, suppose that there exist
positive constants c̄ and ξ̄ with c̄ < NKξ̄

 such that:
(H) F(t, u) ≥  for all (t, u) ∈ ([, θT] ∪ [( – θ )T , T]) × [–ξ̄ , ξ̄ ]N ;

(H)
∫ T


max

|u|≤√
B c̄

F
(
t, u(t)

)
dt <

∫ (–θ )T

θT
F
(
t,�( – α)ξ̄ , . . . ,�( – αN )ξ̄

)
dt.

Then, for every λ ∈ ]λ, +∞), where

λ =
( – β)c̄ – N( + β)Kξ̄



∫ T
 max|u|≤√

B c̄ F(t, u(t)) dt –
∫ (–θ )T
θT F(t,�( – α)ξ̄ , . . . ,�( – αN )ξ̄ ) dt

,

problem (Pλ) has at least one nontrivial solution u∗ ∈ X such that

( – β)c̄ <



N∑

i=

∥
∥u∗

i
∥
∥

αi
+

N∑

i=

p∑

j=

∫ u∗
i (tj)


Iij(s) ds –

N∑

i=

∫ T


Hi
(
u∗

i (t)
)

dt.

Proof The conclusion follows from Theorem . by choosing r̄ = ( – β)c̄ and taking ω̄ as
in (.) with ξ replaced by ξ̄ .

Finally, we present the following example to illustrate the applicability of Theorem ..�

Example . Consider the following fractional differential systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tD.
 (( + t) · c

D.
t u(t)) = λFu (t, u, u) + h(u),  < t < ,

tD.
 ((. + t) · c

D.
t u(t)) = λFu (t, u, u) + h(u),  < t < ,

�(tD–.
T (c

D.
t u))(t) = I(u(t)),

�(tD–.
T (c

D.
t u))(t) = I(u(t)),

u() = u() = , u() = u() = ,

(.)

where a(t) =  + t, a(t) = . + t, F(t, u, u) = ( + t)(u
 + u

) 
 for u, u ∈ R, h(u) =


 sin(u), h(u) = 

 ln( + u
) for u, u ∈ R, t = 

 , Ii(x) = 
 x for x ∈ R and for i = , .

Obviously, h, h : R → R are two Lipschitz continuous functions with Lipschitz con-
stants L = 

 , L = 
 and h() = h() = ; Ii : R → R (i = , ) are also Lipschitz contin-

uous functions with Lipschitz constants L = L = 
 . F(t, , ) =  for all t ∈ [, ] and by

taking μ = 
 , b(t) =  + t, b(t) = t, then the condition (H) holds. By simple calculations,

we see that a∗ = , L = 
 , L = 

 , A ≈ ., B ≈ ., and β ≈ ..
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By choosing, for instance, ω = (ω,ω), where ω(t) = �(.)t(–t), ω(t) = �(.)t(–t),
and r = 

 , r = , then the conditions (H) and (H) are verified. In fact, ωi() = ωi() =
, i = , , and ‖ω‖

. ≈ ., ‖ω‖
. ≈ .. It is easy to show that the condition

(H) holds and

δω(r) =
∫ 

 max|u|≤. F(t, u(t)) dt –
∫ 

 F(t,ω(t)) dt
r – .(‖ω‖

. + ‖ω‖
.)

≈ .,

δω(r) =
∫ 

 max|u|≤. F(t, u(t)) dt –
∫ 

 F(t,ω(t)) dt
r – .(‖ω‖

. + ‖ω‖
.)

≈ .,

which imply that the condition (H) is satisfied. Therefore, according to Theorem .,
for every λ ∈ ]., .[ the problem (.) has at least two nontrivial solutions in
E.

 × E.
 .
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