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Abstract
This paper concerns the approximate controllability of a class systems governed by
coupled degenerate equations. The equations may be weakly degenerate and
strongly degenerate on the boundary. It is shown that the systems are approximately
controllable by constructing the controls via the conjugate problems.
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1 Introduction
In this paper, we investigate the approximate controllability of the coupled degenerate
parabolic equations

∂y
∂t

– div
(
a(x, t)∇y

)
+ c(x, t)y = h(x, t)χω , (x, t) ∈ QT , (.)

∂u
∂t

– div
(
a(x, t)∇u

)
+ c(x, t)u = y(x, t)χω , (x, t) ∈ QT , (.)

where QT = � × (, T), � is a bounded domain in R
n, T > , h ∈ L(QT ) is the control

function, χ is the characteristic function, ω and ω are open subsets of � satisfying
ω ∩ ω �= ∅, aj ∈ C(QT ) is positive in � × (, T) with 

aj

∂aj
∂t ∈ L∞(QT ) and cj ∈ L∞(QT )

for j = , .
Equations (.) and (.) can be used to describe some physical models. For instance, in

[] we can find a motivating example of a Crocco-type equation coming from the study
of the velocity field of laminar flow on a flat plate. It is noted that (.) and (.) may be
degenerate at some points on ∂�× (, T). According to [], we can prescribe the following
boundary and initial values:

y(x, t) = , (x, t) ∈ �, (.)

u(x, t) = , (x, t) ∈ �, (.)

y(x, ) = y(x), x ∈ �, (.)

u(x, ) = u(x), x ∈ �, (.)
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where y, u ∈ L(�) and

�j =
{

(x, t) ∈ ∂� × (, T) : there exists  < δ < min{t, T – t} such that

∫ t+δ

t–δ

∫

{y∈�:|y–x|<δ}


aj(y, s)
dy ds < +∞

}
, j = , .

Note that �j denotes the nondegenerate and weak degenerate part of the lateral bound-
ary, which does not include the strong degenerate part. For example, if n = , � = (, ),
a(x, t) = a(x, t) = xα , then if α = , the boundary x =  is nondegenerate part; if  < α < ,
the boundary x =  is weak degenerate part; if α ≥ , the boundary x =  is strong degen-
erate part. When �j = ∅, the equations are in strong degeneracy at each point of the lateral
boundary.

Controllability theory has been widely investigated for the systems governed by nonde-
generate parabolic equations over the last  years and there have been a great number of
results (see for instance [–] and the references therein for a detailed account). However,
the study of the systems governed by degenerate parabolic equations just began several
years ago and there are some results (see [–] and the references therein). Different from
nondegenerate parabolic equations, the null controllability and the approximate control-
lability for the systems governed by degenerate parabolic equations may be inconsistent.
Indeed, if n = , � = (, ), and

a(x, t) = xα , (x, t) ∈ QT (α > ),

it is shown that the system (.), (.), (.) is null controllable if  < α <  [, , , ],
while not if α ≥  [], while it is approximately controllable for α >  [, ]. More gen-
erally, the authors [, ] proved the approximate controllability of the system (.), (.),
(.) governed by one single equation in the multi-dimensional case. Besides, [, ] are
concerned with the null controllability of the degenerate coupled equations. Particularly,
the authors studied the null controllability of the system (.)-(.) for the special case
that

n = , � = (, ) and a(x, t) = a(x, t) = xα (α > )

and showed that the system is null controllable if  < α <  in [].
In the present paper, we prove the approximate controllability of the system (.)-(.).

That is to say, for any admissible error value ε >  and the desired datum (yd, ud) ∈ L(�)×
L(�), there exists a control function h such that the solution (y, u) to the problem (.)-
(.) approximately approaches (yd, ud) at time T , i.e.

∥
∥y(·, T) – yd(·)∥∥L(�) ≤ ε,

∥
∥u(·, T) – ud(·)∥∥L(�) ≤ ε. (.)

2 Well-posedness and approximate controllability
The solutions to the problem (.)-(.) are defined as follows.
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Definition . A pair of functions (y, u) is called a weak solution to the problem (.)-(.),
if y ∈ C([, T]; L(�)) ∩ B, u ∈ C([, T]; L(�)) ∩ B satisfy

∫∫

QT

(
–y

∂ϕ

∂t
+ a∇y · ∇ϕ + cyϕ

)
dx dt –

∫

�

y(x)ϕ(x, ) dx =
∫∫

QT

hχωϕ dx dt,

∫∫

QT

(
–u

∂ψ

∂t
+ a∇u · ∇ψ + cuψ

)
dx dt –

∫

�

u(x)ψ(x, ) dx =
∫∫

QT

yχωψ dx dt

for any ϕ ∈ L∞((, T); L(�)) ∩ B, ψ ∈ L∞((, T); L(�)) ∩ B with ∂ϕ

∂t , ∂ψ

∂t ∈ L(QT ) and
ϕ(·, T)|� = ψ(·, T)|� = . Here, Bj is the closure of C∞

 (QT ) with respect to the norm

‖w‖Bj =
(∫∫

QT

aj(x, t)
((

w(x, t)
) +

∣∣∇w(x, t)
∣∣)dx dt

)/

, w ∈ Bj

for j = , .

Similar to the single equation case (Theorem . in []), one can prove the following
well-posedness.

Theorem . Assume aj ∈ C(QT ) is positive in � × (, T) with 
aj

∂aj
∂t ∈ L∞(QT ) and cj ∈

L∞(QT ) for j = , . Then for any h ∈ L(QT ) and y, u ∈ L(�), the problem (.)-(.)
admits uniquely a weak solution (y, u). Furthermore, the solution (y, u) satisfies

‖y‖L∞((,T);L(�)) + ‖u‖L∞((,T);L(�)) +
∥∥a|∇y|∥∥L(QT ) +

∥∥a|∇u|∥∥L(QT )

≤ C
(‖h‖L(QT ) + ‖y‖L(�) + ‖u‖L(�)

)
,

where C >  depends only on �, T , ‖c‖L∞(QT ), and ‖c‖L∞(QT ).

Remark . If u ∈ Bj, then u|�j =  in the trace sense, while there is no trace on (∂� ×
(, T)) \ �j in general.

The study of the approximate controllability of the system (.)-(.) is related to its
conjugate system

–
∂z
∂t

– div
(
a(x, t)∇z

)
+ c(x, t)z = vχω , (x, t) ∈ QT , (.)

–
∂v
∂t

– div
(
a(x, t)∇v

)
+ c(x, t)v = , (x, t) ∈ QT , (.)

z(x, t) = , (x, t) ∈ �, (.)

v(x, t) = , (x, t) ∈ �, (.)

z(x, T) = z(x), x ∈ �, (.)

v(x, T) = v(x), x ∈ �. (.)

Define the mapping

L : H → L(ω × (, T)
)
, (z, v) �−→ zχω ,
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where H = L(�) × L(�) with the norm

∥∥(w, w)
∥∥

H
=

(‖w‖
L(�) + ‖w‖

L(�)
)/, (w, w) ∈ H .

Proposition . The conjugate problem (.)-(.) possesses the property of unique con-
tinuation. That is to say, if z =  a.e. in ω × (, T), then z = v =  a.e. in QT .

Proof From (.) and z =  a.e. in ω × (, T), one gets v =  a.e. in (ω ∩ ω) × (, T). For
sufficiently small δ > , denote

�δ =
{

x ∈ � : dist(x, ∂�) > δ
}

.

Since (.) is nondegenerate in �δ × (, T), one gets from the classical unique continuation
[] v =  a.e. in �δ ×(, T). It follows from the arbitrariness of δ that v =  a.e. in QT , which
also shows that z satisfies the homogeneous equation. Then the same discussion as for v
leads to z =  a.e. in QT . �

Define the functional

J
(
(z, v)

)
=




∫ T



∫

ω

∣
∣L

(
(z, v)

)
(x, t)

∣
∣ dx dt + ε

∥
∥(z, v)

∥
∥

H

–
〈
(yd, ud), (z, v)

〉
H

, (z, v) ∈ H ,

where 〈(·, ·), (·, ·)〉H is the inner product in H .

Proposition . J(·) is strictly convex and satisfies

lim
‖(z,v)‖H →+∞

inf
J((z, v))

‖(z, v)‖H
≥ ε. (.)

Furthermore, J(·) reaches its minimum at a unique point (ẑ, v̂) in H and

(ẑ, v̂) =  a.e. in � ⇐⇒ ∥
∥(yd, ud)

∥
∥

H
≤ ε. (.)

Proof Note that L is a linear operator, one can easily prove that J(·) is strictly convex
and continuous. Now we prove (.) by contradiction. Otherwise, there exists a sequence
{(z(k)

 , v(k)
 )}∞k= ⊂ H satisfying

lim
k→∞

∥∥(
z(k)

 , v(k)


)∥∥
H

= +∞, lim
k→∞

J((z(k)
 , v(k)

 ))
‖(z(k)

 , v(k)
 )‖H

< ε. (.)

Define

(
z̃(k)

 , ṽ(k)


)
=

(z(k)
 , v(k)

 )
‖(z(k)

 , v(k)
 )‖H

, k = , , . . . .

There exists a subsequence of {(z̃(k)
 , ṽ(k)

 )}∞k=, denoted like the sequence for convenience,
which weakly converges in H to a function (z̃, ṽ) ∈ H with ‖(z̃, ṽ)‖H ≤ . De-
note by (z̃, ṽ) and (z̃(k), ṽ(k)) the weak solutions of the conjugate problem (.)-(.) with
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(z, v) = (z̃, ṽ) and (z, v) = (z̃(k)
 , ṽ(k)

 ), respectively. Then it follows from Theorem .
that (z̃(k), ṽ(k)) converges weakly in H to (z̃, ṽ). Additionally, (.) yields

lim
k→∞

∫ T



∫

ω

∣∣L
((

z̃(k)
 , ṽ(k)


))

(x, t)
∣∣ dx dt = .

Hence

∫ T



∫

ω

∣
∣L

(
(z̃, ṽ)

)
(x, t)

∣
∣ dx dt ≤ lim inf

k→∞

∫ T



∫

ω

∣
∣L

((
z̃(k)

 , ṽ(k)


))
(x, t)

∣
∣ dx dt = ,

which, together with Proposition ., leads to (z̃, ṽ) = (, ) in QT and thus (z̃, ṽ) = (, )
in �. Thus

lim
k→∞

J((z(k)
 , v(k)

 ))
‖(z(k)

 , v(k)
 )‖H

≥ ε – lim
k→∞

〈(yd, ud), (z(k)
 , v(k)

 )〉H
‖(z(k)

 , v(k)
 )‖H

= ε,

which contradicts (.) and completes the proof of (.).
From (.), the strict convexity and the continuity of J(·), J(·) must achieve its minimum

at a unique point in H .
Finally, we prove (.). On the one hand, if ‖(yd, ud)‖H ≤ ε, it follows from the Hölder

inequality that

J
(
(z, v)

) ≥ , (z, v) ∈ H ,

and thus (ẑ, v̂) = (, ). On the other hand, if (ẑ, v̂) = (, ), then


τ

J
(
(τyd, τud)

) ≥ , τ > ,

i.e.

τ



∫∫

DT

∣∣L
(
(yd, ud)

)
(x, t)

∣∣ dx dt + ε
∥∥(yd, ud)

∥∥
H

–
∥∥(yd, ud)

∥∥
H

≥ , τ > .

Letting τ → + yields ‖(yd, ud)‖H ≤ ε. �

Now, we are ready to prove the approximate controllability of the system (.)-(.).

Theorem . Assume aj ∈ C(QT ) is positive in � × (, T) with 
aj

∂aj
∂t ∈ L∞(QT ) and

cj ∈ L∞(QT ) for j = , . The system (.)-(.) is approximately controllable. That is to say,
for any given y, u, yd, ud ∈ L(�) and ε > , there exists h ∈ L(QT ) such that the weak
solution (y, u) to the problem (.)-(.) satisfies (.).

Proof Since equations (.), (.) are linear and the terminal data yd , ud are arbitrary, one
can assume that

y(x) = , u(x) =  a.e. x ∈ �, (.)
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without loss of generality. Otherwise, one can divide (y, u) into two solutions; one solves
the fixed system with nonhomogeneous initial data and the other solves the control system
with homogeneous initial data.

Let (ẑ, v̂) be the unique point of minimum of J(·) and denote by (ẑ, v̂) the weak solution
of the conjugate problem (.)-(.) with (z, v) = (ẑ, v̂). Below, let us show that h = ẑ is
a control to the system (.)-(.) under the assumption (.) by distinguishing into two
cases.

The case ‖(yd, ud)‖H ≤ ε. In this case, Proposition . yields (ẑ, v̂) = (, ) a.e. in �

and thus (ẑ, v̂) = (, ) a.e. in QT from the uniqueness result in Theorem .. Therefore
h =  a.e. in QT and thus (y, u) = (, ) a.e. in QT , which leads to

∥
∥(

y(·, T) – yd(·), u(·, T) – ud(·))∥∥
H

=
∥
∥(yd, ud)

∥
∥

H
≤ ε.

First of all, we have the case ‖(yd, ud)‖H > ε. In this case, Proposition . yields (ẑ, v̂) �=
(, ). For any (θ,ψ) ∈ H , denote by (θ ,ψ) the weak solutions of the conjugate problem
(.)-(.) with (z, v) = (θ,ψ). Since (ẑ, v̂) is the unique point of minimum of J(·), one
gets

∫ T



∫

ω

ẑ(x, t)θ (x, t) dx dt + ε
〈(ẑ, v̂), (θ,ψ)〉H

‖(ẑ, v̂)‖H
–

〈
(yd, ud), (θ,ψ)

〉
H

= . (.)

It follows from the definition of the weak solution (y, u) to the problem (.)-(.) with (.)
and h = ẑ that

∫∫

QT

∂y
∂t

θ dx dt +
∫∫

QT

a∇y · ∇θ dx dt +
∫∫

QT

cyθ dx dt

=
∫∫

QT

ẑχωθ dx dt, (.)

∫∫

QT

∂u
∂t

ψ dx dt +
∫∫

QT

a∇u · ∇ψ dx dt +
∫∫

QT

cuψ dx dt

=
∫∫

QT

yχωψ dx dt. (.)

Additionally, the definition of the weak solution (θ ,ψ) of the problem (.)-(.) gives

∫∫

QT

θ
∂y
∂t

dx dt +
∫∫

QT

a∇θ · ∇y dx dt +
∫∫

QT

cθy dx dt

=
∫∫

QT

ψχω y dx dt +
∫

�

θ(x)y(x, T) dx, (.)

∫∫

QT

ψ
∂u
∂t

dx dt +
∫∫

QT

a∇ψ · ∇u dx dt +
∫∫

QT

cψu dx dt

=
∫

�

ψ(x)u(x, T) dx. (.)

From (.)-(.), one can get

∫∫

QT

ẑχωθ dx dt =
∫

�

ψ(x)u(x, T) dx +
∫

�

θ(x)y(x, T) dx. (.)
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Combining (.) with (.) yields

∫

�

(
yd(x) – y(x, T)

)
θ(x) dx +

∫

�

(
ud(x) – u(x, T)

)
ψ(x) dx = ε

〈(ẑ, v̂), (θ,ψ)〉H
‖(ẑ, v̂)‖H

,

which implies (.) due to the arbitrariness of (θ,ψ) ∈ H . �
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