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Abstract
The aim of this paper is to investigate the dynamics of the solution for a class of
reaction-diffusion-advection logistic model with a free boundary in heterogeneous
environment. The species undergoes diffusion and advection in a one dimensional
heterogeneous environment, and it invades the environment with a spreading front
evolving as the free boundary. To understand the effects of the advection rate α and
the expansion capacity μ on the dynamics of this model, we derive a
spreading-vanishing dichotomy and obtain the sharp criterion for the spreading and
vanishing by choosing α and μ as variable parameters. That is, the invasion species
can unconditionally survive for a slow advection rate, while, for a fast advection rate,
whether it can survive or not depends on the expansion capacity and initial values of
the invasion species.

Keywords: reaction-diffusion-advection; free boundary condition; heterogeneous
environment; spreading; vanishing

1 Introduction
Due to the serious threat of invasive species to bio-diversity conservation and the global
economy, mathematical modeling has become an important tool in analyzing the predic-
tion and prevention of biological invasions [, ]. Recently, a great deal of attention has
been paid to developing more realistic mathematical models for the invasion dynamics.
There have been a number of works on modeling the invasion of a species described by a
reaction-diffusion system; see [–] and the references cited therein for further details.

There is growing interest in modeling and understanding spatial species dynamics in ad-
vection environments, i.e., environments where individuals are exposed to unidirectional
flow or biased dispersal []. For example, water flow imposes directional bias (advection)
buoyancy and turbulence leads to unbiased movement (diffusion) []. The West Nile virus
appeared for the first time in New York city in the summer of . In the second year the
wave front traveled  km to the North and , km to the South []. It should be no-
ticed that the term ‘advection’ was used in a series of works, see [, –], to show move-
ment toward a higher quality habitat. In [], Lou and Lutscher established the existence
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of a critical advection speed for the persistence of a single species as follows:

⎧
⎨

⎩

ut = duxx – αux + u(r(x) – u), t > ,  < x < L,

αu(, t) – dux(, t) = , u(L, t) = , t > ,
(.)

where u denotes the density of the invasion species at time t and location x in the bounded
interval [, L], d and α are the diffusion and advection rates, respectively. The function r(x)
stands for the quality of the habitat, the population can grow if r(x) >  and will decline
if r(x) < . They showed that if the species cannot persist for α = , then it cannot persist
for any advection, otherwise it can persist for some α in the interval [,α∗], where α∗ is
the critical advection speed and can be obtained by considering the following eigenvalue
problem:

⎧
⎨

⎩

dφxx – αφx + φr(x) = λφ,  < x < L,

αφ() – dφx() = , φ(L) = .

Moreover, it is shown that α∗ < c, where c = 
√

dr is the minimal speed of the traveling
waves of (.) and r = maxx∈[,L] r(x).

However, it is still considered that model (.) is not very realistic for describing the
invasion dynamics because of the lack of information as regards the precise invasion dy-
namics. Thus, it is necessary to consider the impact of the free boundary on the dynamics
of the new invasion species. That is, the species evolves according to the free boundary
condition

h′(t) = –μux
(
h(t), t

)
, (.)

where μ is a given positive constant and denotes the expansion capacity, x = h(t) denotes
the spreading front, i.e., the free boundary that needs to be determined. The equation
(.) implies that the spreading front expands at a speed that is proportional to the species
gradient at the front. Note that (.) is a special case of the well-known Stefen condition.
Systems with the free boundary condition have been used in describing ecological mod-
els over bounded spatial dynamics in several earlier papers; see [–]. The results of
free boundary problems have been used in the modeling many practical problems, such
as wound healing [], the combustion process [], the American option pricing prob-
lem [], the chemical vapor deposition on a hot wall reactor [], image processing [],
tumor growth [, ], and so on. For example, Zhou and Xiao [] introduced a free
boundary to describe the spreading of an invasion species as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – duxx = u(r(x) – u), t > ,  < x < h(t),

ux(, t) = , u(h(t), t) = , t > ,

h′(t) = –μux(h(t), t), t > ,

u(x, ) = u(x) ≥ , h() = h > ,  ≤ x ≤ h.

The authors divided the heterogeneous environment into a strong heterogeneous envi-
ronment and a weak heterogeneous environment. They derived sufficient conditions for
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species spreading (resp. vanishing) in the strong heterogeneous environment, further-
more, they obtained sharp criteria for the spreading and vanishing in a weak heteroge-
neous environment by varying the parameters d and μ. A large number of related works
about diffusive problem with a free boundary in homogeneous and heterogeneous envi-
ronments can be found; see [–].

Inspired by the previous work, in this paper, we consider the following free boundary
condition problem based on the reaction-diffusion-advection logistic model (.):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – uxx + αux = u(r(x) – u), t > ,  < x < h(t),

αu(, t) – ux(, t) = , u(h(t), t) = , t > ,

h′(t) = –μux(h(t), t), t > ,

h() = h, u(x, ) = u(x),  ≤ x ≤ h,

(.)

and the initial function u(x) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ C([, h]),

αu() – u′
() = , u(h) = ,

u′
(h) < , u(x) > ,  ≤ x ≤ h.

(.)

The biological meanings of all parameters are the same as model (.) and equation (.),
and h is a positive constant. Furthermore, we assume that r(x) satisfies

(H) : r(x) ∈ C([,∞)
)

and  < m ≤ r(x) ≤ m < ∞ for x ∈ [,∞),

where m and m are two positive constants. Throughout this paper, we always assume
that (H) holds true. For simplicity, in the following we always denote c = 

√
dr, which

is the minimal speed of the traveling waves of (.). The aim of this paper is to study the
effects of advection and the free boundary condition on the dynamics of model (.) in
the heterogeneous environment. To the best of our knowledge, no work has been done
for model (.).

The rest of our paper is arranged as follows. In the next section, we present some pre-
liminaries including the global existence and uniqueness of the solution of model (.)
and the comparison principle in the moving domain. In order to show the results of the
spreading-vanishing dichotomy, the eigenvalue problems associated with model (.) are
given in Section , and a sharp criterion for spreading and vanishing is established in Sec-
tion . In Section , the asymptotic spreading speed of the free boundary is estimated if
spreading of the invasion species occurs. In Section , we give a brief discussion.

2 Preliminaries
In this section, we first present the local existence and uniqueness of the solution of model
(.) and then use suitable estimates to show that the solution is global.

First, we show that the local existence and uniqueness of the solution of model (.). Sim-
ilar to those presented in [] and [], the proof can be shown via minor modifications.
Thus, we omit it here.
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Theorem . For any given u(x) satisfying (.) and any η ∈ (, ), there exists a T > 
such that model (.) admits a unique solution

(u, h) ∈ C+η, +η


([
, h(t) × [, T]

]) × C+ η

(
[, T]

)
.

Moreover,

‖u‖
C+η, +η

 ([,h(t)]×[,T])
+ ‖h‖

C+ η
 ([,T])

≤ C,

where C and T depend on h, η, and ‖u‖C([,h]).

Next, we show the global existence of the solution of model (.) gained in Theorem ..
The following lemma is needed.

Lemma . Let (u, h) be a solution of model (.) defined for t ∈ (, T) for some T > , then
there exist constants M, M independent of T such that

 < u(x, t) ≤ M, for  < t < T ,  ≤ x < h(t),

 < h′(t) ≤ M, for  < t < T .

Proof The strong maximum principle implies that u(x, t) >  and ux(h(t), t) <  in
[, h(t)] × [, T]. By using the free boundary condition of model (.), we have h′(t) >  for
t ∈ (, T). Note that u(x, t) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ut – uxx + αux = u(r(x) – u), t > ,  < x < h(t),

αu(, t) – ux(, t) = , u(h(t), t) = , t > ,

u(x, ) = u(x),  ≤ x ≤ h.

Thus, we get

u(x, t) ≤ M � max
{‖u‖L∞([,h]),

∥
∥r(x)

∥
∥

L∞([,∞])

}

for  < t < T and  ≤ x < h(t).
Now, we show that h′(t) is bounded from above. To do this, we construct an auxiliary

function

ω(x, t) = M
[
M

(
h(t) – x

)
– M(h(t) – x

)], for (x, t) ∈ �M,

where �M = {(x, t) : h(t) – M– < x < h(t),  < t < T}. In the following, we will choose M
(> h–

 ) such that u(x, t) ≥ ω(x, t) holds over �M .
Direct calculations show that for (x, t) ∈ �M , one has

⎧
⎪⎪⎨

⎪⎪⎩

ωt – ωxx + αωx ≥ MM(M – α) ≥ u(r(x) – u),

ω(h(t) – M–, t) = M ≥ u(h(t) – M–, t),

ω(h(t), t) = u(h(t), t) = ,

provided M ≥ α/ +
√

α + ‖r(x)‖L∞[,∞)/.
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It remains to show that u(x) ≤ w(x, ) for x ∈ [h – M–, h]. To do this, the interval
[h – M–, h] is divided into two subsets: [h – M–, h – (M)–] and [h – (M)–, h].
For [h – (M)–, h], if M ≥ ‖u‖C([,h])/(M), then we have

ωx(x, ) = –MM
(
 – M(h – x)

) ≤ –MM ≤ u′
(x),

which, together with ω(h, ) = u(h, ) = , shows that u(x) ≤ w(x, ) for [h – (M)–,
h]. For [h – M–, h – (M)–], if M ≥ ‖u‖C([,h])/(M), we have

w(x, ) ≥ MM


≥ ‖u‖C([,h])M– ≥ u(x).

Therefore, we choose

M = max

{
α


+

√
α + ‖r(x)‖L∞[,∞)


,

‖u‖C([,h])

M
,


h

}

.

Applying the maximum principle to w – u over �M , one finds u(x, t) ≤ w(x, t) for (x, t) ∈
�M . Furthermore, one has

ux
(
h(t), t

) ≥ ωx
(
h(t), t

)
= –MM

and

h′(t) = –μux
(
h(t), t

) ≤ MMμ� M.

This completes the proof. �

Following the standard proof in [], we obtain the following theorem for the global
existence of the solution of model (.).

Theorem . The solution of model (.) exists and is unique for t ∈ (,∞).

Finally, we introduce the comparison principle for model (.).

Lemma . (The comparison principle []) Suppose that T ∈ (,∞). Let (u, h) be the
solution of model (.), suppose that (u, h) ∈ C,(DT ) ∩ C(DT ) with DT = {(x, t) ∈ R

 :  <
t < T ,  < x < h(t)} satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ut – uxx + αux ≥ u(r(x) – u),  < t < T ,  < x < h(t),

αu(, t) – ux(, t) ≥ , u(h(t), t) = ,  < t < T ,

h′(t) ≥ –μux(h(t), t),  < t < T .

If h() ≥ h and u(x, ) ≥ u(x) for all  ≤ x < h, then

u(x, t) ≤ u(x, t), for  < t < T ,  < x < h(t),

h(t) ≤ h(t), for  < t < T .
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Here, we refer to the pair (u, h) as the upper solution of model (.). Similarly, the lower
solution can be defined by reversing all the inequalities.

To investigate the dependence of the solution of model (.) on the expanding capabil-
ity μ, we rewrite the solution (u, h) of model (.) as (uμ, hμ). As a direct consequence of
Lemma ., we have the following corollary.

Corollary . Let (uμ, hμ) be the solution of model (.). For fixed u, α, h, r(x), if μ ≤ μ,
then uμ (x, t) ≤ uμ (x, t) for (x, t) ∈ [, hμ (t)] × (,∞), and hμ (t) ≤ hμ (t) for t ∈ (,∞).

3 An eigenvalue problem
In this section, we mainly study the principal eigenvalue problem and the properties of its
principal eigenvalue. These results are significant for later sections.

Consider the following eigenvalue problem:

⎧
⎨

⎩

φxx – αφx + r(x)φ = τφ,  < x < h,

αφ() – φx() = , φ(h) = .
(.)

Let τ and φ denote the principal eigenvalue and the corresponding eigenfunction of
problem (.), respectively, and τ uniquely exists []. Using the transformation φ = eαxψ ,
where ψ >  is uniquely determined by the normalization

∫ h
 ψ dx = , then (.) be-

comes
⎧
⎨

⎩

ψxx + αψx + rψ = τψ ,  < x < h,

ψx() = , ψ(h) = .
(.)

By (.), it follows the variational method that τ has the following form (refer to [] for
the detailed derivation):

–τ = inf
ϕ∈S(h)

{∫ h
 exp(αx)(ϕ

x – rϕ) dx
∫ h

 exp(αx)ϕ dx

}

, (.)

where

S(h) =
{
ϕ ∈ W ,([, h]

)
: ϕ �= ,ϕ(h) = 

}
.

If we set ψ = e αx
 ϕ, then (.) is equivalent to

–τ = inf
ψ∈S(h)

{∫ h
 [(ψx – α

 ψ) – rψ] dx
∫ h

 ψ dx

}

= inf
ψ∈S(h)

{∫ h
 (ψ

x – rψ) dx + α
 ψ()

∫ h
 ψ dx

+
α



}

. (.)

First, we fix r(x) and α. Note that α is bounded. Then we have the following theorem.

Theorem . Assume that α < c. Let τ(h) denote the principal eigenvalue of (.), then
(i) τ(h) is strictly increasing function of h;
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(ii) limh→ τ(h) = –∞;
(iii) limh→∞ τ(h) = maxx∈[,h] r(x) – α

 > .

Proof For the proof of part (i), it is similar to [], Theorem ., with some minor modi-
fications. Here, we omit it.

Now we show the proof of part (ii) and (iii). In fact, according to (.), we have

–τ = inf
ψ∈S(h)

{∫ h
 (ψ

x – rψ) dx + α
 ψ()

∫ h
 ψ dx

+
α



}

≥ π

h


+
α


– max

x∈[,h]
r(x),

which implies that the conclusions of (ii) and (iii) hold true. This completes the proof.
�

As a consequence of the above theorem, we have the following corollary.

Corollary . Assume that α < c. There exists h∗ = h∗(r,α) >  such that

τ(h) <  if  < h < h∗; τ(h) =  if h = h∗; τ(h) >  if h > h∗.

Next, we fix r(x) and h. To consider the effects of advection on dynamics of model (.),
we introduce the following theorem, which is the counterpart of Theorem ., and we refer
to [], Lemmas ., . and Theorem ., for a detailed proof.

Theorem . For fixed h and r(x) > , let τ(α) denote the principal eigenvalue of problem
(.), then

(i) τ(α) is a strictly decreasing function of α;
(ii) limα→∞ τ(α) = –∞;

(iii) limα→ τ(α) > .

The above theorem implies the following corollary.

Corollary . For fixed h and r(x) > , there exists α∗ = α∗(r, h) >  such that

τ(α) >  if  < α < α∗; τ(α) =  if α = α∗; τ(α) <  if α > α∗.

Note that the domain of model (.) changes with t, we replace h of τ defined in (.)
by h(t), i.e.,

–τ
(
h(t)

)
= inf

ψ∈S(h(t))

{∫ h(t)
 (ψ

x – rψ) dx + α
 ψ()

∫ h(t)
 ψ dx

+
α



}

,

where

S
(
h(t)

)
=

{
ψ ∈ W ,([, h(t)

])
: ψ �= ,ψx() = ψ

(
h(t)

)
= 

}
.

Thus, Lemma . implies that the following theorem holds true.

Theorem . τ(h(t)) is a strictly monotone increasing function of t, it is equivalent to
τ(h(t)) being a strictly monotone increasing function of h(t).
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4 Spreading and vanishing of an invasive species
This section is devoted to the proofs of the spreading-vanishing dichotomy, and the sharp
criteria for spreading and vanishing.

4.1 Spreading-vanishing dichotomy
It follows from Lemma . that x = h(t) is a monotone increasing function of t. There
exists h∞ ∈ (h,∞] such that limt→∞ h(t) = h∞. The spreading-vanishing dichotomy is a
consequence of the following three theorems.

First, we show that the species will die out if the species cannot spread to the whole
domain. Thus, the following theorem holds true.

Theorem . Assume that α < c. If h∞ < ∞, then h∞ ≤ h∗ and limt→∞ ‖u(x, t)‖C([,h(t)]) =
.

Proof Theorem . can be proved by the following two steps.
Step . Proof of h∞ ≤ h∗ if h∞ < ∞. By contradiction, we assume that there exists T =

T(ε) for small enough ε >  such that h∞ > h(t) > h∞ – ε > h∗ for all t ≥ T. Consider the
following auxiliary problem:

⎧
⎪⎪⎨

⎪⎪⎩

wt – wxx + αwx = w(r(x) – w), t > T,  < x < h∞ – ε,

αw(, t) – wx(, t) = , w(h∞ – ε, t) = , t > T,

w(x, T) = u(x, T),  < x < h∞ – ε.

(.)

Following Corollary . and h∞ – ε > h∗, we know problem (.) is a logistic problem with
τ = τ(α, h∞ – ε) > . It follows from [], Proposition ., that problem (.) admits a
unique positive solution w = wε(x, t) satisfying

wε(x, t) → vh∞–ε(x), in C([, h∞ – ε]
)

as t → ∞,

where vh∞–ε(x) is the unique positive solution of the following problem:
⎧
⎨

⎩

–vxx + αvx = v(r(x) – v),  < x < h∞ – ε,

αv() – vx() = , v(h∞ – ε) = .

By the comparison principle, one has

u(x, t) ≥ wε(x, t) ≥ vh∞–ε(x), for  ≤ x ≤ h∞ – ε and t > T,

which implies

lim
t→∞

u(x, t) ≥ vh∞–ε(x), for  ≤ x ≤ h∞ – ε and t > T. (.)

Furthermore, consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

wt – wxx + αwx = w(r(x) – w), t > T,  ≤ x ≤ h∞,

αw(, t) – wx(, t) = , w(h∞, t) = , t > T,

w(x, T) = u(x, T),  ≤ x ≤ h∞,

(.)
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where

u(x, T) =

⎧
⎨

⎩

u(x, t),  ≤ x ≤ h(T),

, h(T) < x < h∞.

Obviously, (.) admits a unique positive solution w = w(x, t) which satisfies

w(x, t) → vh∞ (x), in C([, h∞]
)

as t → ∞,

where vh∞ (x) is the unique positive solution of the problem

⎧
⎨

⎩

–vxx + αvx = v(r(x) – v),  ≤ x ≤ h∞,

αv() – vx() = , v(h∞) = .

The comparison principle leads to

u(x, t) ≤ w(x, t), for  ≤ x ≤ h∞ and t > T.

Thus, we have

lim
t→∞ u(x, t) ≤ vh∞ (x), for  ≤ x ≤ h∞ and t > T. (.)

By a standard compactness and uniqueness argument, we can easily show

vh∞–ε → vh∞ , in C
loc

(
[, h∞]

)
as ε → +.

Combining (.), (.), and the arbitrariness of ε yields

lim
t→∞ u(x, t) = vh∞ (x), for  ≤ x ≤ h∞, (.)

which implies

∥
∥u(x, t) – vh∞ (x)

∥
∥

C([,h(t)]) →  as t → ∞.

Thus, one has

ux
(
h(t), t

) → v′
h∞ (h∞) <  as t → ∞.

It follows from the boundary condition that

h′(t) = –μux
(
h(t), t

) → –μv′
h∞ (h∞) >  as t → ∞,

which implies h∞ = ∞, a contradiction with h∞ < ∞. Therefore we have h∞ ≤ h∗.
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Step . Proof of limt→∞ ‖u(x, t)‖C([,h(t)]) = . Let u(x, t) be the unique solution of the
problem

⎧
⎪⎪⎨

⎪⎪⎩

ut – uxx + αux = u(r(x) – u), t > ,  < x < h∞,

αu(, t) – ux(, t) = , u(h(t), t) = , t > ,

u(x, ) = u(x),  < x < h∞,

(.)

with

u(x) =

⎧
⎨

⎩

u(x),  ≤ x ≤ h,

, h < x < h∞.

From the comparison principle, one has  ≤ u(x, t) ≤ u(x, t), for t >  and  ≤ x ≤ h(t).
Since h∞ ≤ h∗, we have τ(α, r, h∞) ≤  from Corollary .. Following [], Corollary .,
we obtain u(x, t) →  uniformly for x ∈ [, h∞] as t → ∞. Thus limt→∞ ‖u(x, t)‖C([,h(t)]) =
. �

Next, we show the case that the species can spread to the whole domain. Thus, we have
the following theorem.

Theorem . If  < α ≤ α∗, then limt→∞ ‖u(x, t)‖C([,h(t)]) >  and h∞ = ∞, i.e., spreading
occurs.

Proof Here, we still use τ and φ to denote the principal eigenvalue and the corresponding
eigenfunction of problem (.), respectively.

Consider the case  < α < α∗. It follows from Corollary . that we have τ > . Define

u(x, t) =

⎧
⎨

⎩

δφ(x), t > ,  ≤ x ≤ h,

, t > , x > h,

where δ is sufficient small such that δφ ≤ min{τ, u(x)} for x ∈ [, h]. Direct computa-
tions yield

ut – uxx + αux – u
(
r(x) – u

)
= δφ(x)(–τ + δφ) ≤ .

Furthermore, one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – uxx + αux ≤ u(r(x) – u), t > ,  ≤ x ≤ h,

ux(, t) – αu(, t = u(h, t) = , t > ,

 = h′
 ≤ –μux(h, t) = –μδφ′

(h), t > ,

u(x, ) ≤ u(x),  ≤ x ≤ h.

Following Lemma ., we conclude that u(x, t) ≥ u(x, t) in [, h] × (,∞). Then
limt→∞ ‖u(x, t)‖C([,h(t)]) ≥ δφ() >  and h∞ = ∞ hold from Theorem ..

Consider the case α = α∗. By Corollary ., one has τ = . The monotonicity of
h(t) shows that h(t) > h for small t > . It follows from Theorem . that we have
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τ(α∗, r, h(t)) > τ(α∗, r, h). Hence, replacing h by h(t), we can repeat the same process
as above to construct a lower solution over [, h(t)] × [t,∞). And so, the desired result
follows. The proof is finished. �

Finally, we study the long time behavior of the spreading species. The proof is similar
with those in [], Theorem ., and [], Propositions , . Here, we omit the proof for
brevity.

Theorem . If τ >  or h∞ = ∞, then the solution of model (.) satisfies limt→∞ u(x, t) =
u∗(x) uniformly in any bounded subset of (,∞), where u∗ is the unique positive equilibrium
of the stationary problem

–u∗
xx + αu∗

x =
(
r(x) – u∗)u∗, for  < x < ∞. (.)

Combining Theorems ., . and ., we obtain the following spreading-vanishing di-
chotomy theorem.

Theorem . Let (u(x,t),h(t)) be the solution of model (.). The following alternatives
hold.

(i) Spreading: h∞ = ∞ and limt→∞ u(x, t) = u∗(x) uniformly in any bounded subset of
(,∞);

(ii) Vanishing: h∞ < ∞ and limt→∞ ‖u(x, t)‖C([,h(t)]) = .

4.2 Sharp criteria for spreading and vanishing
From Theorem ., we see that vanishing is possible only when α > α∗. The following theo-
rem reveals the sharp criteria for spreading and vanishing, which provides some sufficient
conditions for vanishing.

Theorem . If α > α∗ and ‖u‖C([,h]) is sufficiently small, then h∞ < ∞ and

lim
t→∞

∥
∥u(x, t)

∥
∥

C([,h(t)]) = .

Proof For t > , we define

σ (t) = h

(

 + δ –
δ


e–δt

)

, w(x, t) = εe–δte– α
 (σ (t)–x) cos

(
πx

σ (t)

)

,  ≤ x ≤ σ (t),

where  < δ <  and ε are positive constants to be determined later. It is easy to observe
that for t > , one has

(

 +
δ



)

h ≤ σ (t) ≤ ( + δ)h and  ≤ σ ′(t) =
hδ

e–δt


≤ hδ




.

By Corollary ., we have τ <  if α > α∗. It follows from (.) that we may choose suffi-
ciently small δ >  such that

–δ –
αδh


+

α


+

π

h
( + δ) – r̂ > ,
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where r̂ = maxx∈[,σ (t)] r(x). For t >  and  ≤ x ≤ σ (t), direct calculations give

wt – wxx + αwx – r(x)w

= w
[

–δ –
ασ ′(t)φ


+

α


+

π

σ (t)
– r(x)

]

+
πxσ ′(t)
σ (t)

εe–δte– α
 (σ (t)–x) sin

πx
σ (t)

≥ w
[

–δ –
αδh


+

α


+

π

h
( + δ) – r̂

]

> .

Obviously,

αw(, t) – wx(, t) ≥ , and w
(
σ (t), t

)
= .

Thus, we choose  < ε ≤ δh


μπ
( + δ

 ) such that σ ′(t) ≥ –μwx(σ (t)). Furthermore, let u be
small enough such that

‖u‖C([,h]) ≤ εe
αδh

 cos
π

 + δ
= w(h, t).

Therefore, (w(x, t),σ (t)) is an upper solution of model (.). Applying Lemma ., we show
that h(t) ≤ σ (t) and u(x, t) ≤ w(x, t) for t >  and  ≤ x ≤ h(t). Clearly,

lim
t→∞σ (t) = h( + δ) < ∞.

Thus, h∞ < ∞. Applying Theorem ., we have limt→∞ ‖u(x, t)‖C([,h(t)]) = . �

As a direct consequence of Theorem ., we are able to show the following theorem.

Theorem . If α > α∗ and μ is sufficiently small, then h∞ < ∞ and

lim
t→∞

∥
∥u(x, t)

∥
∥

C([,h(t)]) = .

The next result implies that spreading occurs for large expansion capacity and the proof
will be leaved out, since it is similar to that in [], Lemma ., or [], Lemma ..

Theorem . For α > α∗ and any given u satisfying model (.), if μ is sufficiently large
then h∞ = ∞.

Combining Theorems .-., we can derive the sharp criteria for spreading-vanishing
for the invasion species.

Theorem . (Sharp criteria) For given h, α, and u satisfying model (.), there exists
μ∗ ∈ [,∞) (depending on u and α) such that spreading occurs if μ > μ∗; and vanishing
occurs if  < μ ≤ μ∗. Furthermore, μ∗ =  if  < α ≤ α∗, while μ∗ >  if α > α∗.

Proof First, for the case  < α ≤ α�, it follows from Theorem . that spreading always
occurs if  < α ≤ α∗. Therefore, we can choose μ∗ = .
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Next, for the case α > α�, we define

μ∗ = sup
{
σ : h∞(μ) ≤ h∗, for μ ∈ (,σ]

}
.

Applying Theorems .-., it follows that μ∗ ∈ [,∞). Following Corollary ., we ob-
serve that species spreads if μ > μ∗ and species vanishes if  < μ < μ∗.

Finally, we show that vanishing happens if μ = μ∗. Otherwise, h∞ = ∞ for μ = μ∗. It
follows from Corollary . that there exists T >  such that h(T) > h∗. Now, the symbol
(uμ, hμ) is used to emphasize the dependence of solution (u, h) of model (.) on μ. Hence,
hμ(T) > h∗ follows. Since (uμ, hμ) has a continuous dependence on μ, we see that there
exists small ε >  such that μ = μ∗ –ε, which implies that the species spreads, contradicting
the definition of μ∗. Hence, vanishing occurs if μ = μ∗. The proof is completed. �

5 Asymptotic spreading speed
This section is devoted to rough estimates of the asymptotic spreading speed. Following
[], Proposition ., we have the following proposition.

Proposition . ([]) Let (u, h) be the unique solution of model (.) with α = , if h∞ =
+∞, then limt→∞ h(t)/t = k, where (k, q(z)) is the unique solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

–q′′ + kq′ = q(r – q), z > , k ≥ ,

q() = , q(∞) = r, q(z) > , z > ,

μq′() = k.

Furthermore, we introduce the following problem:

⎧
⎨

⎩

q′′ – (k – α)q′ + q(r – q) = , z > , k ≥ ,

q() = , q(∞) = r, q(z) > , z > .
(.)

The following proposition is useful for the proof of the main result.

Proposition . ([]) Consider problem (.), the following statements hold:
(i) Problem (.) has exactly one solution (k∗, q∗) such that μ(q∗)′() = k∗. Moreover,

k∗ = k∗(α, r) ∈ (, 
√

r + α);
(ii)  < k∗ < k∗, where k∗ is the speed of problem (.) with α = ;

(iii) k∗ is strictly increasing of parameter r, i.e., for any r > r > , we have

k∗(α, r) > k∗(α, r), lim
ε→

k∗(α, r + ε) = k∗(α, r).

Now, we have the following estimates of the asymptotic spreading speed for model (.)
when spreading happens.

Theorem . Assume that r̃ = limx→∞ r(x) exists. If h∞ = ∞, then

lim
t→∞

h(t)
t

= k∗(α, r̃).
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Proof By assumption (H) and Theorem ., the unique positive solution u∗(x) of the sta-
tionary problem (.) satisfies

 < m ≤ lim inf
x→∞ u∗(x) ≤ lim sup

x→∞
u∗(x) ≤ m.

For any ε > , there exists L = L(ε) >  such that for all x ≥ L

m – ε ≤ r(x) ≤ m + ε and m –
ε


< u∗(x) < m +

ε


.

It follows from the comparison principle and [], Theorem . that we can derive

lim inf
t→∞

h(t)
t

≥ k∗(α, m – ε), lim sup
t→∞

h(t)
t

≤ k∗(α, m + ε).

Due to the arbitrariness of ε, we have

lim inf
t→∞

h(t)
t

≥ k∗(α, m), lim sup
t→∞

h(t)
t

≤ k∗(α, m).

Furthermore, we suppose that m = m = r̃, then it follows from (iii) of Proposition . that
we have

lim
t→∞

h(t)
t

= k∗(α, r̃). �

6 Discussion
In this paper, we incorporated the free boundary and heterogenous environment into the
reaction-diffusion-advection logistic model, which is more realistic for describing the in-
vasion dynamics of a new species, investigated the influence of the advection term and
spatial heterogeneous environment features on the dynamics of the invading species, and
gave a rough estimates of the asymptotic spreading speed.

According to the analysis, we determined the spreading-vanishing dichotomy and the
sharp criteria for the spreading and vanishing by choosing the advection rate α and the
expansion capacity μ as variable parameters. Therefore, whether the invasion species will
spread or vanish depends on the advection rate α, the expansion capacity μ, and the initial
function u(x). More specifically, we found a positive threshold α∗ such that the invasive
species always spreads if  < α ≤ α∗, which is consistent with the result of []. However,
for α > α∗, there exists a critical criterion, μ∗ > , such that species spreads if μ > μ∗ and
species vanishes if  < μ ≤ μ∗, which is distinct from that in []. Biologically, these results
mean that the invasive species spreads either under a small advection rate, or under a big
advection rate when it is favored by its expansion capacity and initial values. Furthermore,
species with a large expansion capacity will benefit to survive.

Now, we make some comparisons with the previous work. Compared with the work of
[, ], we considered the influence of the advection term on the dynamics of the invading
species. Compared with the work of [], we considered the influence of spatial heteroge-
neous environment features on the dynamics of the invasive population. Compared with
the work of [, ], our work implied that spreading or vanishing of invasive population
not only depends on advection term and no-flux boundary condition but it also relates to
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free boundary condition. It should be noticed that we found two thresholds, α∗ and μ∗,
which are different from the previous work. Therefore, our work and the corresponding
conclusions are more general. It should be noticed that, due to the assumption of the het-
erogeneous environment, we only obtain the weaker result on the asymptotic behavior of
the invasive species.
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