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Abstract
This paper deals with the existence and multiplicity of positive solutions for a system
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1 Introduction
We discuss the following multi-point boundary problem of the system for nonlinear sin-
gular higher-order fractional differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
+u(x) + h(x)f(x, u(x), v(x)) = , x ∈ (, ),

Dβ
+v(x) + h(x)f(x, u(x), v(x)) = , x ∈ (, ),

u(i)() = ,  ≤ i ≤ n – , Dμ
+u() =

∑p
k= akDμ

+u(ξk),
v(j)() = ,  ≤ j ≤ m – , Dν

+v() =
∑q

k= bkDν
+v(ηk),

()

where Dα
+, Dβ

+ are the standard Riemann-Liouville fractional derivative of order α ∈ (n –
, n], β ∈ (m – , m], μ ∈ [, n – ], ν ∈ [, m – ] for n, m ∈ N

+ and n, m ≥ , ai, bj ∈ R
+,

i = , , . . . , p, j = , , . . . , q for p, q ∈ N
+, fk ∈ C([, ] × R

+ × R
+,R+), hk ∈ C((, ),R+),

R
+ = [, +∞), hk(x) (k = , ) is allowed to be singular at x =  and/or x =  and

 < ξ < ξ < · · · < ξp < ,  < η < η < · · · < ηq < .

Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s analysis
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of feedback amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry,
biology, control theory, fitting of experimental data, and so forth. Hence fractional differ-
ential equations have attracted great research interest in recent years, and for more de-
tails we refer the reader to [–] and the references cited therein. Recently, the existence
and multiplicity of positive solutions for the nonlinear fractional differential equations
have been researched, see [–] and the references therein. For instance, Zhang et al.
[] studied the existence of two positive of following singular fractional boundary value
problems:

{
Dα

+u(t) + f (t, u(t)) = ,  < t < ,
u() = , Dβ

+u() = , Dβ
+u() =

∑∞
i= ξiDβ

+u(ηi),

where Dα
+ is the standard Riemann-Liouville fractional derivative of order α ∈ (, ],

β ∈ [, ], ξi,ηi ∈ (, ),α – β ≥  with
∑∞

i= ξiη
α–β–
i < .

In [–], the authors studied the existence of a positive solutions of two types of sys-
tems for nonlinear fractional differential equations

{
Dα

+u(t) + λf (t, u(t), v(t)) = , t ∈ (, ),
Dβ

+v(t) + μg(t, u(t), v(t)) = , t ∈ (, ),
()

with boundary conditions:

{
u() = u′() = · · · = u(n–)() = , u() =

∫ 
 v(t) dH(t),

v() = v′() = · · · = v(n–)() = , v() =
∫ 

 u(t) dK(t),
()

{
u(i)() = ,  ≤ i ≤ n – , u() =

∑p
k= aku(ξk),

v(j)() = ,  ≤ j ≤ m – , v() =
∑q

k= bkv(ηk),

and

{
u(i)() = v(i)() = ,  ≤ i ≤ n – ,
Dγ

+u() = φ(u), Dγ
+v() = φ(v),

where Dα
+, Dβ

+, and Dγ
+ are the standard Riemann-Liouville fractional derivative, α,β ∈

(n – , n],γ ∈ [, n – ] for n ≥ ,λ,μ > . Equations () with λf (t, u, v) and μg(t, u, v) re-
placed by f̃ (t, v) and g̃(t, u), respectively, the existence and multiplicity of positive solutions
of the system (), () was investigated in []. The extreme limits

f s
δ =: lim sup

u+v→δ

max
t∈[,]

f (t, u, v)
u + v

, gs
δ =: lim sup

u+v→δ

max
t∈[,]

g(t, u, v)
u + v

,

f i
δ =: lim inf

u+v→δ
min

t∈[θ ,–θ ]

f (t, u, v)
u + v

, gi
δ =: lim inf

u+v→δ
min

t∈[θ ,–θ ]

g(t, u, v)
u + v

,

are used in [, ], where θ ∈ (, 
 ), δ = + or +∞. Some similar extreme limits are used

in [, , –]. However, for equation systems [–, –] and a single equation
using the extreme limits, there is no essential difference.
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Motivated by the above mentioned work, in this paper, we present some limit type con-
ditions and discuss the existence and multiplicity of positive solutions of the singular frac-
tional multi-point boundary problems () by using fixed point index theory in a cone. The
results obtained here are different from those in [–, –], and some examples ex-
plain our conditions are applicable for more general functions.

2 Preliminaries
Definition . [] The Riemann-Liouville fractional integral of order α >  of a function
u : (, +∞) →R is given by

Iα
+u(t) =


�(α)

∫ t


(t – s)α–u(s) ds, t > ,

provided the right side is pointwise defined on (, +∞), where �(α) is the Euler gamma
function. The Riemann-Liouville fractional derivative of order α >  of a continuous func-
tion u : (, +∞) →R is given by

Dα
+u(t) =


�(n – α)

dn

dtn

∫ t


(t – s)n–α–u(s) ds, t > ,

where n = [α] + , [α] denotes the integer part of number α, provided the right side is
pointwise defined on (, +∞).

Lemma . [] Let x ∈ Lp(, ) ( ≤ p ≤ +∞), ρ > σ > .
(i) Dσ

+Iρ
+x(t) = Iρ–σ

+ x(t), Dσ
+Iσ

+x(t) = x(t), Iρ
+Iσ

+x(t) = Iρ+σ
+ x(t) hold at almost every

point t ∈ (, ). If ρ + σ > , then the above third equation holds at any point of [, ];
(ii) Dσ

+tρ– = �(ρ)tρ–σ–/�(ρ – σ ), t > .

Lemma . [] Let α > , n = [α] +  for α /∈ N and n = α for α ∈ N, n is the smallest
integer greater than or equal to α. Then, for any y ∈ L(, ), the solution of the fractional
differential equation Dα

+u(t) + y(t) =  ( < t < ) is

u(t) +


�(α)

∫ t


(t – s)α–y(s) ds = ctα– + ctα– + · · · + cntα–n,  < t < ,

where c, c, . . . , cn are arbitrary real constants.

Lemma . Let
∑p

j= ajξ
α–μ–
j ∈ [, ),α ∈ (n – , n],μ ∈ [, n – ] (n ≥ ) and y ∈ C[, ].

Then the solution of the fractional boundary value problem

⎧
⎪⎨

⎪⎩

Dα
+u(t) + y(t) = ,  < t < ,

u(i)() = ,  ≤ i ≤ n – ,
Dμ

+u() =
∑p

j= ajDμ
+u(ξj),

()

is given by

u(t) =
∫ 


G(t, s)y(s) ds, ()
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G(t, s) = g(t, s) +
tα–

d

p∑

j=

ajh(ξj, s), ()

where d =  –
∑p

j= ajξ
α–μ–
j ,

g(t, s) =


�(α)

{
tα–( – s)α–μ– – (t – s)α–,  ≤ s ≤ t ≤ ,
tα–( – s)α–μ–,  ≤ t ≤ s ≤ ,

()

h(t, s) =


�(α)

{
tα–μ–( – s)α–μ– – (t – s)α–μ–,  ≤ s ≤ t ≤ ,
tα–μ–( – s)α–μ–,  ≤ t ≤ s ≤ .

()

Proof By using Lemma ., the solution for the above equation is

u(t) =
–

�(α)

∫ t


(t – s)α–y(s) ds + ctα– + ctα– + · · · + cntα–n,

where c, c, . . . , cn are arbitrary real constants. By u() = , we have cn = . Then

u(t) =
–

�(α)

∫ t


(t – s)α–y(s) ds + ctα– + ctα– + · · · + cn–tα–n+. ()

Differentiating (), we have

u′(t) =
 – α

�(α)

∫ t


(t – s)α–y(s) ds + c(α – )tα– + · · · + cn–(α – n + )tα–n.

By u′() = , we have cn– = . Similarly, we get c = c = · · · = cn– = . Hence

u(t) =
–

�(α)

∫ t


(t – s)α–y(s) ds + ctα–. ()

By Dμ
+u() =

∑p
j= ajDμ

+u(ξj) and Lemma ., we get

Dμ
+u(t) =


�(α – μ)

[

c�(α)tα–μ– –
∫ t


(t – s)α–μ–y(s) ds

]

,

c =


d�(α)

[∫ 


( – s)α–μ–y(s) ds –

p∑

j=

aj

∫ ξj


(ξj – s)α–μ–y(s) ds

]

.

Substituting c into (), we see that the unique solution of the problem () is

u(t) =
tα–

d�(α)

[∫ 


( – s)α–μ–y(s) ds –

p∑

j=

aj

∫ ξj


(ξj – s)α–μ–y(s) ds

]

–


�(α)

∫ t


(t – s)α–y(s) ds

=


�(α)

[∫ t



[
tα–( – s)α–μ– – (t – s)α–]y(s) ds

+
∫ 

t
tα–( – s)α–μ–y(s) ds –

 – d

d

∫ 


tα–( – s)α–μ–y(s) ds
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+
p∑

j=

aj

∫ ξj


(ξj – s)α–μ–y(s) ds

]

=
∫ 


g(t, s)y(s) ds +

tα–

d

p∑

j=

aj

[∫ 

ξj

ξ
α–μ–
j ( – s)α–μ–y(s) ds

+
∫ ξj



[
ξ

α–μ–
j ( – s)α–μ– – (ξj – s)α–μ–]y(s) ds

]

=
∫ 


g(t, s)y(s) ds +

tα–

d

p∑

j=

aj

∫ 


h(ξj, s)y(s) ds

=
∫ 


G(t, s)y(s) ds,

i.e. () holds.
Conversely, if u ∈ C[, ] is a solution of the integral equation (), from Lemma . we

easily see that u satisfies the equation and boundary conditions of (). �

Lemma . Under the assumptions of Lemma ., the functions g(t, s) and h(ξj, s) defined
by () and () have the following properties:

(i) g(t, s) ≥  is continuous on [, ] × [, ] and g(t, s) >  for all t, s ∈ (, ).
(ii) maxt∈[,] g(t, s) = g(, s) for all s ∈ [, ], where

g(, s) =


�(α)
[
( – s)α–μ– – ( – s)α–].

(iii) g(t, s) ≥ tα–g(, s) for all t, s ∈ [, ], and there are θ ∈ (, 
 ),γα ∈ (, ) such that

mint∈Jθ g(t, s) ≥ γαg(, s) for each s ∈ [, ], where Jθ = [θ ,  – θ ],γα = θα–.
(iv) h(t, s) ≥  is continuous on [, ] × [, ] and h(t, s) >  for all t, s ∈ (, ).

Proof For the proof of (i), (ii), and (iv), respectively, see Theorem . in [] and
Lemma . in []. It remains to prove (iii). We have by ()

g(t, s) ≥ 
�(α)

tα–
[

( – s)α–μ– –
(

 –
s
t

)α–]

≥ tα–g(, s),  ≤ s < t ≤ ,

g(t, s) ≥ 
�(α)

tα–( – s)α–μ– ≥ tα–g(, s),  ≤ t ≤ s ≤ .

Hence g(t, s) ≥ tα–g(, s) for all t, s ∈ [, ], and so mint∈Jθ g(t, s) ≥ γαg(, s) for all s ∈
[, ]. �

From Lemma . it is easy to get the following result.

Lemma . Under the assumptions of Lemma ., the Green’s function G(t, s) defined by
() has the following properties:

(i) G(t, s) ≥  is continuous on [, ] × [, ] and G(t, s) >  for all t, s ∈ (, ).
(ii) maxt∈[,] G(t, s) = G(, s) for each s ∈ [, ], where

G(, s) = g(, s) +

d

p∑

j=

ajh(ξj, s) ≤ ( – s)α–μ–

d�(α)
. ()
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(iii) G(t, s) ≥ tα–G(, s) for all t, s ∈ [, ], there are θ ∈ (, 
 ),γα ∈ (, ) such that

mint∈Jθ G(t, s) ≥ γαG(, s) for each s ∈ [, ], where Jθ = [θ ,  – θ ],γα = θα–.

We can also formulate similar results as Lemmas .-. above, for the fractional differ-
ential equation with fractional multi-point boundary conditions

⎧
⎪⎨

⎪⎩

Dβ
+v(t) + y(t) = ,  < t < ,

v(i)() = ,  ≤ i ≤ m – ,
Dν

+v() =
∑q

j= bjDν
+v(ηj),

where m, q ∈N
+, m ≥ ,  < η < · · · < ηq < , bj ≥  for all j = , , . . . , q and y ∈ C[, ]. We

denote by d =  –
∑q

j= bjη
β–ν–
j ,γβ and g(t, s), h(ηj, s), G(t, s), G(, s) the correspond-

ing constants and functions for the problem () defined in a similar manner to d,γα and
g(t, s), h(ξj, s), G(t, s), G(, s), respectively. From Lemma . we know that G(t, s) and
G(t, s) have the same properties, and there exists γβ = θβ– such that mint∈Jθ G(t, s) ≥
γβG(, s). Let γ = min{γα ,γβ},

δk =
∫ –θ

θ

Gk(, y)hk(y) dy, μk =
∫ 


Gk(, y)hk(y) dy (k = , ).

For convenience we list the following assumptions:
(H) hk ∈ C((, ),R+), hk(x) �≡  on any subinterval of (, ) and

 <
∫ 


( – y)α–μ–h(y) dy =: l < +∞,  <

∫ 


( – y)β–ν–h(y) dy =: l < +∞.

(H) There exist a, b ∈ C(R+,R+) such that
() a(·) is concave and strictly increasing on R

+ with a() = ;
() f = lim infv→+

f(x,u,v)
a(v) > , f = lim infu→+

f(x,u,v)
b(u) >  uniformly with respect to

(x, u) ∈ Jθ ×R
+ and (x, v) ∈ Jθ ×R

+, respectively (specifically, f = f = +∞);
() limu→+

a(Cb(u))
u = +∞ for any constant C > .

(H) There exists τ ∈ (, +∞) such that

f ∞
 = lim sup

v→+∞
f(x, u, v)

vτ
< +∞, f ∞

 = lim sup
u→+∞

f(x, u, v)
u 

τ

= 

uniformly with respect to (x, u) ∈ [, ] ×R
+ and (x, v) ∈ [, ] ×R

+, respectively (specifi-
cally, f ∞

 = f ∞
 = ).

(H) There exist p, q ∈ C(R+,R+) such that
() p is concave and strictly increasing on R

+;
() f∞ = lim infv→+∞ f(x,u,v)

p(v) > , f∞ = lim infu→+∞ f(x,u,v)
q(u) >  uniformly with respect to

(x, u) ∈ Jθ ×R
+ and (x, v) ∈ Jθ ×R

+, respectively (specifically, f∞ = f∞ = +∞);
() limu→+∞ p(Cq(u))

u = +∞ for any constant C > .
(H) There exists ς ∈ (, +∞) such that

f 
 = lim sup

v→+

f(x, u, v)
vς

< +∞, f 
 = lim sup

u→+

f(x, u, v)

u

ς

= 

uniformly with respect to (x, u) ∈ [, ] ×R
+ and (x, v) ∈ [, ] ×R

+, respectively (specifi-
cally, f 

 = f 
 = ).
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(H) There exists r >  such that f(x, u, v) and f(x, u, v) are nondecreasing in the second
variable and the third variable u, v ∈ [, r] for all x ∈ [, ], and

f(x,γ r,γ r) ≥ (γ δ)–r, f(x,γ r,γ r) ≥ (γ δ)–r, ∀x ∈ [θ ,  – θ ].

(H) There exists R > r >  such that f(x, u, v) and f(x, u, v) are nondecreasing in the
second variable and the third variable u, v ∈ [, R] for all x ∈ [, ], and

f(x, R, R) ≤ (μ)–R, f(x, R, R) ≤ (μ)–R, ∀x ∈ [, ].

Let E = C[, ],‖u‖ = maxt∈[,] |u(t)|, the product space E × E be equipped with norm
‖(u, v)‖ = ‖u‖ + ‖v‖ for (u, v) ∈ E × E, and

P =
{

u ∈ E : u(t) ≥ , t ∈ [, ], min
t∈Jθ

u(t) ≥ γ ‖u‖
}

.

Then E is a real Banach space and P is a cone of E. By (H), we can define operators Ak :
P × P → E as follows:

Ak(u, v)(x) =
∫ 


Gk(x, y)h(y)fk

(
y, u(y), v(y)

)
dy (k = , ), ()

A(u, v) = (A(u, v), A(u, v)). Clearly (u, v) is a positive solution of the system () if and only
if (u, v) ∈ P × P \ {(, )} is a fixed point of A. Let Br = {u ∈ E : ‖u‖ < r} for r > .

Lemma . Assume that the condition (H) is satisfied, then A : P × P → P × P is a com-
pletely continuous operator.

Proof First of all, we show that A : P × P → P is uniformly bounded continuous operator.
For any (u, v) ∈ P × P, it follows from () that A(u, v)(x) ≥ , x ∈ [, ],

∥
∥A(u, v)

∥
∥ ≤

∫ 


G(, y)h(y)f

(
y, u(y), v(y)

)
dy

and

min
x∈Jθ

A(u, v)(x) ≥ γ

∫ 


G(, y)h(y)f

(
y, u(y), v(y)

)
dy ≥ γ

∥
∥A(u, v)

∥
∥.

Hence A(P × P) ⊂ P.
Let � ⊂ P × P be a bounded set, we assume that ‖(u, v)‖ ≤ d for any (u, v) ∈ �. Let

M = maxx∈[,],(u,v)∈� f(x, u, v) + . Equation () and (H) imply that

∥
∥A(u, v)

∥
∥ ≤

∫ 


G(, y)h(y)f

(
y, u(y), v(y)

)
dy ≤ M

∫ 


G(, y)h(y) dy < +∞,

from this we know that A(�) is a bounded set.
We show that A : P × P → P is continuous. Let (un, vn), (u, v) ∈ P × P, ‖(un, vn) –

(u, v)‖ = ‖(un – u, vn – v)‖ →  (n → ∞). Then {(un, vn)} is a bounded set, we assume



Xie and Xie Boundary Value Problems  (2016) 2016:134 Page 8 of 18

that ‖(un, vn)‖ ≤ d (n = , , , . . .). From (H), f ∈ C([, ] ×R
+ ×R

+,R+),

∥
∥A(un, vn) – A(u, v)

∥
∥ ≤

∫ 


G(, y)h(y)

∣
∣f

(
y, un(y), vn(y)

)
– f

(
y, u(y), v(y)

)∣
∣dy

and the Lebesgue control convergent theorem, we know that A is a continuous operator.
Now we show that A is equicontinuous on �. For any given ε > , taking δ ∈

(, min{ d�(α)ε
Ml(α–) , }), for each (u, v) ∈ �, x, x ∈ [, ], x < x, and x – x < δ, we have by

() and ()

∣
∣A(u, v)(x) – A(u, v)(x)

∣
∣

=
∣
∣
∣
∣

∫ 



[
G(x, y) – G(x, y)

]
h(y)f

(
y, u(y), v(y)

)
dy

∣
∣
∣
∣

=
(∫ x


+

∫ x

x

+
∫ 

x

)
[
G(x, y) – G(x, y)

]
h(y)f

(
y, u(y), v(y)

)
dy

≤ M
d�(α)

(
xα–

 – xα–


)
(∫ x


+

∫ x

x

+
∫ 

x

)

( – y)α–μ–h(y) dy

=
Ml

d�(α)
(
xα–

 – xα–


)
<

Ml(α – )
d�(α)

(x – x) <
Ml(α – )

d�(α)
δ < ε.

By means of the Arzela-Ascoli theorem, A : P × P → P is completely continuous. Simi-
larly, we can prove that A : P ×P → P is completely continuous. Hence A : P ×P → P ×P
is a completely continuous operator. �

Lemma . [] Assume that A : Br ∩ P → P is a completely continuous operator. If there
exists u ∈ P \ {} such that

u �= Au + λu, ∀λ ≥ , u ∈ ∂Br ∩ P,

then the fixed point index i(A, Br ∩ P, P) = .

Lemma . [, ] Assume that A : Br ∩ P → P is a completely continuous operator.
() If u � Au or ‖Au‖ ≤ ‖u‖ for all u ∈ ∂Br ∩ P, then the fixed point index

i(A, Br ∩ P, P) = .
() If u � Au or ‖Au‖ ≥ ‖u‖ for all u ∈ ∂Br ∩ P, then the fixed point index

i(A, Br ∩ P, P) = .

In the following, we adopt the convention that C, C, C, . . . stand for different positive
constants. Let �r = {(u, v) ∈ E × E : ‖(u, v)‖ < r} for r > .

3 Existence of a positive solution
Theorem . Assume that the conditions (H)-(H) are satisfied, then the system () has
at least one positive solution.

Proof By (H), there are ξ > ,η >  and a sufficiently small ρ >  such that

f(x, u, v) ≥ ξa(v), ∀(x, u) ∈ Jθ ×R
+,  ≤ v ≤ ρ,

f(x, u, v) ≥ ηb(u), ∀(x, v) ∈ Jθ ×R
+,  ≤ u ≤ ρ,

()
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and

a
(
Kb(u)

) ≥ K

ξηδδγ  u, ∀u ∈ [,ρ], ()

where K = max{ηγ G(, y)h(y) : y ∈ Jθ }. We claim that

(u, v) �= A(u, v) + λ(ϕ,ϕ), ∀λ ≥ , (u, v) ∈ ∂�ρ ∩ (P × P),

where ϕ ∈ P \ {}. If not, there are λ ≥  and (u, v) ∈ ∂�ρ ∩ (P × P) such that (u, v) =
A(u, v) + λ(ϕ,ϕ), then u ≥ A(u, v), v ≥ A(u, v). By using the monotonicity and concavity
of a(·), Jensen’s inequality and Lemma ., we have by () and ()

u(x) ≥
∫ 


G(x, y)h(y)f

(
y, u(y), v(y)

)
dy

≥ ξγα

∫ 


G(, y)h(y)a

(
v(y)

)
dy

≥ ξγα

∫ 


G(, y)h(y)a

(∫ 


ηG(y, z)h(z)b

(
u(z)

)
dz

)

dy

≥ ξγ

∫ –θ

θ

G(, y)h(y)
∫ 


a
(
ηγ G(, z)h(z)b

(
u(z)

))
dz dy

≥ ξγ

∫ –θ

θ

G(, y)h(y)
∫ 


a
(
K–

 ηγ G(, z)h(z)Kb
(
u(z)

))
dz dy

≥ ξηγ
K–



∫ –θ

θ

∫ –θ

θ

G(, y)h(y)G(, z)h(z)a
(
Kb

(
u(z)

))
dz dy

≥ ξηγ
δK–



∫ –θ

θ

G(, z)h(z)a
(
Kb

(
u(z)

))
dz

≥ 
δγ

∫ –θ

θ

G(, z)h(z)u(z) dz ≥ ‖u‖, x ∈ Jθ . ()

Consequently, ‖u‖ = . Next, () and () yield

a
(
v(x)

) ≥ a
(∫ 


G(x, y)h(y)f

(
y, u(y), v(y)

)
dy

)

≥
∫ 


a
(
ηγ G(, y)h(y)b

(
u(y)

))
dy

≥ ηγ K–


∫ –θ

θ

G(, y)h(y)a
(
Kb

(
u(y)

))
dy

≥ 
ξδδγ 

∫ –θ

θ

G(, y)h(y)u(y) dy

≥ 
δδγ

∫ –θ

θ

G(, y)h(y) dy
∫ 


G(, z)h(z)a

(
v(z)

)
dz

≥ 
δγ

∫ –θ

θ

G(, z)h(z)a
(
v(z)

)
dz ≥ a

(‖v‖), x ∈ Jθ , ()
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this means that a(‖v‖) = . It follows from the strict monotonicity of a(v) and a() =  that
‖v‖ = . Hence ‖(u, v)‖ = , which is a contradiction. Lemma . implies that

i
(
A,�ρ ∩ (P × P), P × P

)
= . ()

On the other hand, by (H), there exist ζ >  and C > , C >  such that

f(x, u, v) ≤ ζvτ + C, ∀(x, u, v) ∈ [, ] ×R
+ ×R

+,

f(x, u, v) ≤ εu

τ + C, ∀(x, u, v) ∈ [, ] ×R

+ ×R
+,

()

where

ε = min

{


μ(ζμ) 
τ

,


μ(ζμ) 
τ

}

.

Let

W =
{

(u, v) ∈ P × P : (u, v) = λA(u, v),  ≤ λ ≤ 
}

.

We prove that W is bounded. Indeed, for any (u, v) ∈ W , there exists λ ∈ [, ] such that
u = λA(u, v), v = λA(u, v). Then () implies that

u(x) ≤ A(u, v)(x) ≤ ζ

∫ 


G(, y)h(y)vτ (y) dy + C,

v(x) ≤ A(u, v)(x) ≤ ε

∫ 


G(, y)h(y)u


τ (y) dy + C.

Consequently,

u(x) ≤ ζ

∫ 


G(, y)h(y) dy

(

ε

∫ 


G(, z)h(z)u


τ (z) dz + C

)τ

+ C

≤ ζμ

(

ε

∫ 


G(, z)h(z)‖u‖ 

τ dz + C

)τ

+ C

≤ ζμ

[(‖(u, v)‖
ζμ

) 
τ

+ C

]τ

+ C, ()

v(x) ≤ ε

∫ 


G(, y)h(y) dy

(

ζ

∫ 


G(, z)h(z)vτ (z) dz + C

) 
τ

+ C

≤ εμ

(

ζ

∫ 


G(, z)h(z)‖v‖τ dz + C

) 
τ

+ C

≤ 
(ζμ) 

τ

(
ζμ

∥
∥(u, v)

∥
∥τ + C

) 
τ + C. ()

Since

lim
w→+∞

ζμ[( w
ζμ

) 
τ + C]τ

w
=




, lim
w→+∞

(ζμwτ + C) 
τ

(ζμ) 
τ w

=



,
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there exists r > r, when ‖(u, v)‖ > r, () and () yield

u(x) ≤ 


∥
∥(u, v)

∥
∥ + C, v(x) ≤ 


∥
∥(u, v)

∥
∥ + C.

Hence ‖(u, v)‖ ≤ (C + C) and W is bounded.
Select G > (C + C). We obtain from the homotopic invariant property of fixed point

index that

i
(
A,�G ∩ (P × P), P × P

)
= i

(
θ ,�G ∩ (P × P), P × P

)
= . ()

Equations () and () yield

i
(
A, (�G \ �ρ) ∩ (P × P), P × P

)

= i
(
A,�G ∩ (P × P), P × P

)
– i

(
A,�ρ ∩ (P × P), P × P

)
= .

So A has at least one fixed point on (�G \ �ρ) ∩ (P × P). This means that the system ()
has at least one positive solution. �

Theorem . Assume that the conditions (H), (H), and (H) are satisfied. Then the sys-
tem () has at least one positive solution.

Proof By (H), there are ξ > ,η > , C > , C > , and C >  such that

f(x, u, v) ≥ ξp(v) – C, f(x, u, v) ≥ ηq(u) – C, (x, u, v) ∈ Jθ ×R
+ ×R

+,

and

p
(
Kq(u)

) ≥ K

ξηδδγ  u – C, u ∈ R
+, ()

where K = max{ηγ G(, y)h(y) : y ∈ Jθ }. Then we have

A(u, v)(x) ≥ ξ

∫ 


G(x, y)h(y)p

(
v(y)

)
dy – C, x ∈ Jθ ,

A(u, v)(x) ≥ η

∫ 


G(x, y)h(y)q

(
u(y)

)
dy – C, x ∈ Jθ .

()

We affirm that the set

W =
{

(u, v) ∈ P × P : (u, v) = A(u, v) + λ(ϕ,ϕ),λ ≥ 
}

is bounded, where ϕ ∈ P \ {}. Indeed, (u, v) ∈ W implies that u ≥ A(u, v), v ≥ A(u, v) for
some λ ≥ . We have by ()

u(x) ≥ ξ

∫ 


G(x, y)h(y)p

(
v(y)

)
dy – C, x ∈ Jθ , ()

v(x) ≥ η

∫ 


G(x, y)h(y)q

(
u(y)

)
dy – C, x ∈ Jθ . ()



Xie and Xie Boundary Value Problems  (2016) 2016:134 Page 12 of 18

By the monotonicity and concavity of p(·) as well as Jensen’s inequality, () implies that

p
(
v(x) + C

) ≥ p
(∫ 


ηG(x, y)h(y)q

(
u(y)

)
dy

)

≥
∫ 


p
(
ηγ G(, y)h(y)q

(
u(y)

))
dy

≥ ηγ K–


∫ –θ

θ

G(, y)h(y)p
(
Kq

(
u(y)

))
dy, x ∈ Jθ . ()

Since p(v(x)) ≥ p(v(x) + C) – p(C), we have by (), (), and ()

u(x) ≥ ξγ

∫ 


G(, y)h(y)

[
p
(
v(y) + C

)
– p(C)

]
dy – C

≥ ξγ

∫ –θ

θ

G(, y)h(y)p
(
v(y) + C

)
dy – C

≥ ξηγ
K–



∫ –θ

θ

G(, y)h(y)
∫ –θ

θ

G(, z)h(z)p
(
Kq

(
u(z)

))
dz dy – C

≥ ξηγ
δK–



∫ –θ

θ

G(, z)h(z)p
(
Kq

(
u(z)

))
dz – C

≥ (δγ )–
∫ –θ

θ

G(, z)h(z)u(z) dz – C ≥ ‖u‖ – C, x ∈ Jθ . ()

Hence ‖u‖ ≤ C.
Since p(v(x)) ≥ γ p(‖v‖) for x ∈ Jθ , v ∈ P, it follows from (), (), and () that

p
(
v(x)

) ≥ p
(
v(x) + C

)
– p(C)

≥ ηγ K–


∫ –θ

θ

G(, y)h(y)p
(
Kq

(
u(y)

))
dy – p(C)

≥ 
ξδδγ 

∫ –θ

θ

G(, y)h(y)u(y) dy – C

≥ 
δδγ

∫ –θ

θ

G(, y)h(y) dy
∫ 


G(, z)h(z)p

(
v(z)

)
dz – C

≥ δ–


∫ –θ

θ

G(, z)h(z)p
(‖v‖)dz – C

= p
(‖v‖) – C, x ∈ Jθ .

Hence p(‖v‖) ≤ C. By () and () of the condition (H), we know that limv→+∞ p(v) = +∞,
thus there exists C >  such that ‖v‖ ≤ C. This shows W is bounded. Then there exists
a sufficiently large K >  such that

(u, v) �= A(u, v) + λ(ϕ,ϕ), ∀(u, v) ∈ ∂�K ∩ (P × P),λ ≥ .

Lemma . yields

i
(
A,�K ∩ (P × P), P × P

)
= . ()
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On the other hand, by (H), there is a σ >  and sufficiently small ρ >  such that

f(x, u, v) ≤ σvς , ∀(x, u) ∈ [, ] ×R
+, v ∈ [,ρ],

f(x, u, v) ≤ εu

ς , ∀(x, v) ∈ [, ] ×R

+, u ∈ [,ρ],
()

where

ε = min
{(

σμμ
ς

)– 

ς ,μ–


}
.

We claim that

(u, v) � A(u, v), ∀(u, v) ∈ ∂�ρ ∩ (P × P). ()

If not, there exists a (u, v) ∈ ∂�ρ ∩ (P × P) such that (u, v) ≤ A(u, v), that is, u ≤
A(u, v), v ≤ A(u, v). Then () implies that

u(x) ≤
∫ 


G(x, y)h(y)f

(
y, u(y), v(y)

)
dy

≤ σ

∫ 


G(, y)h(y)vς (y) dy

≤ σ

∫ 


G(, y)h(y)

(∫ 


G(y, z)h(z)f

(
z, u(z), v(z)

)
dz

)ς

dy

≤ σ

∫ 


G(, y)h(y) dy

(∫ 


G(, z)h(z)f

(
z, u(z), v(z)

)
dz

)ς

= σμ

(∫ 


G(, z)h(z)f

(
z, u(z), v(z)

)
dz

)ς

≤ σμε
ς


(∫ 


G(, z)h(z)u


ς (z) dz

)ς

≤ σμε
ς
 μ

ς
 ‖u‖ ≤ 


‖u‖, x ∈ [, ], ()

and

v(x) ≤
∫ 


G(x, y)h(y)f

(
y, u(y), v(y)

)
dy

≤ ε

∫ 


G(, y)h(y)u


τ (y) dy ≤ εμ‖u‖ 

ς ≤ ‖u‖ 
ς , x ∈ [, ]. ()

Equations () and () imply that ‖(u, v)‖ = , which contradicts ‖(u, v)‖ = ρ , and the
inequality () holds. Lemma . yields

i
(
A,�ρ ∩ (P × P), P × P

)
= . ()

We have by () and ()

i
(
A, (�K \ �ρ) ∩ (P × P), P × P

)

= i
(
A,�K ∩ (P × P), P × P

)
– i

(
A,�ρ ∩ (P × P), P × P

)
= –.
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Hence A has a fixed point on (�K \ �ρ) ∩ (P × P). This means that the system () has at
least one positive solution. �

Theorem . Assume that the conditions (H), (H), and (H) are satisfied. Then the sys-
tem () has at least one positive solution.

Proof Since γ r ≤ u(x), v(x) ≤ r for (u, v) ∈ ∂�r ∩ (P × P), x ∈ [θ ,  – θ ], we know from (H)
that

A(u, v)(x) ≥
∫ –θ

θ

G(x, y)h(y)f(y,γ r,γ r) dy

≥ δ–
 r

∫ –θ

θ

G(, y)h(y) dy = r, x ∈ [θ ,  – θ ],

A(u, v)(x) ≥ –θ
θ G(x, y)h(y)f(y,γ r,γ r) dy

≥ δ–
 r

∫ –c

c
G(, y)h(y) dy = r, x ∈ [θ ,  – θ ].

Hence ‖A(u, v)‖ > r = ‖(u, v)‖ for any (u, v) ∈ ∂�r ∩ (P × P). Lemma . yields

i
(
A,�r ∩ (P × P), P × P

)
= . ()

On the other hand, for any x ∈ [, ],  ≤ u, v ≤ R, (H) implies that

A(u, v)(x) ≤
∫ 


G(, y)h(y)f(y, R, R) dy ≤ R


,

A(u, v)(x) ≤
∫ 


G(, y)h(y)f(y, R, R) dy ≤ R


.

Hence ‖A(u, v)‖ ≤ R = ‖(u, v)‖ for (u, v) ∈ ∂�R ∩ (P × P). Lemma . yields

i
(
A,�R ∩ (P × P), P × P

)
= . ()

We have by () and ()

i
(
A, (�R \ �r) ∩ (P × P), P × P

)

= i
(
A,�R ∩ (P × P), P × P

)
– i

(
A,�r ∩ (P × P), P × P

)
= . ()

So A has a fixed point on (�R \ �r) ∩ (P × P). This means that the system () has at least
one positive solution. �

4 Existence of multiple positive solutions
Theorem . Assume that the conditions (H), (H), (H), and (H) hold. Then the system
() has at least two positive solutions.

Proof We may take G > r > σ such that (), (), and () hold. Then we have

i
(
A, (�G \ �r) ∩ (P × P), P × P

)

= i
(
A,�G ∩ (P × P), P × P

)
– i

(
A,�r ∩ (P × P), P × P

)
= ,
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i
(
A, (�r \ �σ ) ∩ (P × P), P × P

)

= i
(
A,�r ∩ (P × P), P × P

)
– i

(
A,�σ ∩ (P × P), P × P

)
= –. ()

Hence A has a fixed point on (�G \ �r) ∩ (P × P) and (�r \ �σ ) ∩ (P × P), respectively.
This means the system () has at least two positive solutions. �

Theorem . Assume that the conditions (H), (H), (H), and (H) hold. Then the system
() has at least two positive solutions.

Proof We may take K > R > ρ such that (), (), and () hold. Then we have

i
(
A, (�K \ �R) ∩ (P × P), P × P

)

= i
(
A,�K ∩ (P × P), P × P

)
– i

(
A,�R ∩ (P × P), P × P

)
= –, ()

i
(
A, (�R \ �ρ) ∩ (P × P), P × P

)

= i
(
A,�R ∩ (P × P), P × P

)
– i

(
A,�ρ ∩ (P × P), P × P

)
= .

Hence A has a fixed point on (�K \ �R) ∩ (P × P) and (�R \ �ρ) ∩ (P × P), respectively.
This means the system () has at least two positive solutions. �

Theorem . Assume that the conditions (H), (H), (H), (H), and (H) hold. Then the
system () has at least three positive solutions.

Proof We may take K > R > r > σ such that (), (), (), and () hold. From the proof
of Theorem ., Theorem ., and Theorem . we know that (), (), and () hold.
Hence A has a fixed point on (�K \�R)∩ (P×P), (�R \�r)∩ (P×P) and (�r \�σ )∩ (P×P),
respectively. Hence the system () has at least three positive solutions. �

Similar to the proof of Theorem ., we can get the following result.

Theorem . Assume that (H) holds. If there are l positive numbers dk , Dk (k = , , . . . , l)
with

d < D < d < D < · · · < dl < Dl,

such that f(x, u, v) and f(x, u, v) are nondecreasing in the second variable and the third
variable u, v ∈ [, Dl] for all x ∈ [, ], and

(H) f(x,γ dk ,γ dk) ≥ (γ δ)–dk , f(x,γ dk ,γ dk) ≥ (γ δ)–dk for all x ∈ Jθ , k = , , . . . , l,
(H) f(x, Dk , Dk) ≤ μ–


Dk
 , f(x, Dk , Dk) ≤ μ–


Dk
 for all x ∈ [, ], k = , , . . . , l.

Then the system () has at least l positive solutions (uk , vk) satisfying

dk ≤ ∥
∥(uk , vk)

∥
∥ ≤ Dk , k = , , . . . , l.

5 Some examples
In the following, we give some examples to illustrate our main results. In Examples .-.,
the meaning of α,β ,μ,ν is the same as in the system ().
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Example . Let h(x) = /( – x)α–μ–, h(x) = /( – x)β–ν–, x ∈ (, ), f(x, u, v) = ex( +
e–(u+v)), f(x, u, v) =  – e–(u+v), x ∈ [, ], u, v ∈R

+, a(v) = v 
 , b(u) = u 

 , τ = /. Clearly,

∫ 


( – y)α–μ–h(y) dy =

∫ 


( – y)β–ν–h(y) dy = ,

but
∫ 

 hk(y) dy = +∞ (k = , ) for α – μ –  ≥ ,β – ν –  ≥ . The results of [–, ,
] are not suitable for the problem. It is easy to verify that the conditions (H)-(H) hold,
hence Theorem . implies that the system () has at least one positive solution. Here
f(x, u, v) and f(x, u, v) are sublinear on u and v at  and +∞.

Example . Let hk(x) be as in Example ., f(x, u, v) = ex(+e–(u+v)), f(x, u, v) = u 
 , a(v) =

v 
 , b(u) = u, τ = /. It is easy to verify that the conditions (H)-(H) hold, Theorem .

implies that the system () has at least one positive solution. Here f(x, u, v) is sublinear on
u and v at  and +∞, whereas f(x, u, v) is superlinear on u at  and +∞.

Example . Let hk(x) be as in Example ., f(x, u, v) = ( + e–u)v, f(x, u, v) = u, p(v) =
v 

 , q(u) = u,ς = . It is easy to verify that the conditions (H), (H), and (H) hold. The-
orem . shows that the system () has at least one positive solution. Here f(x, u, v) is
superlinear on v at  and +∞, f(x, u, v) is superlinear on u at  and +∞.

Example . Let hk(x) be as in Example ., f(x, u, v) = ( + e–u)v 
 , f(x, u, v) = ( + e–v)u,

p(v) = v 
 , q(u) = u,ς = /. It is easy to see that the conditions (H), (H), and (H) hold.

Theorem . shows that the system () has at least one positive solution. Here f(x, u, v) is
sublinear on v at  and +∞, whereas f(x, u, v) is superlinear on u at  and +∞.

Example . Consider the system of nonlinear singular fractional differential equations
with fractional three-point boundary conditions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D


+u(x) + h(x)f(x, u(x), v(x)) = , x ∈ (, ),

D


+v(x) + h(x)f(x, u(x), v(x)) = , x ∈ (, ),

u() = u′() = , u′() =
√


 u′( 

 ),
v() = v′() = , v′() =

√


 v′( 
 ),

()

where α = β = 
 ,μ = ν = , a = b =

√


 , ξ = η = 
 , h(x) = ( – x)– 

 ,

f(x, u, v) = 
√

πv

 , x ∈ [, ], v ≥ , f(x, u, v) = 

√
π

{
u, x, u ∈ [, ],
u 

 , x ∈ [, ], u ≥ .

By a simple calculation, we have d = 
 ,γ = 

 , δ =
∫ 





G(, s)h(s) ds = 
√

–

√

π
. Take r =

, τ = ς = 
 in (H) and (H), it is easy to verify that the conditions (H), (H), (H), and (H)

hold. From Theorem . one concludes that the system () has two positive solutions.

Example . Consider the singular system (), where

f(x, u, v) = 
√

πv, x ∈ [, ], v ≥ , f(x, u, v) = 
√

π

{
u 

 , x, u ∈ [, ],
u 

 , x ∈ [, ], u ≥ .
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Take r = , τ = ς =  in (H) and (H), it is easy to verify that the conditions (H), (H), (H),
and (H) hold. From Theorem . one concludes that the system () has two positive
solutions.

Example . Consider the singular system (), where

f(x, u, v) =
√

π



{

 v 

 , x, v ∈ [, ],
v

 , x ∈ [, ], v ≥ ,

f(x, u, v) =
√

π



{
u+u




 , x, u ∈ [, ],
u

 , x ∈ [, ], u ≥ .

By a simple calculation, we get μ = μ =
∫ 

 G(, s)h(s) ds = (
√

–)

√

π
. Take R = , a(v) =

p(v) = v 
 , b(u) = u 

 , q(u) = u, it is easy to see that the conditions (H), (H), (H), and (H)
hold. From Theorem . one concludes that the system () has two positive solutions.

Example . Consider the singular system (), where

f(x, u, v) =
√

π


v


 , x ≥ , v ≥ , f(x, u, v) =

√
π


u


 , x ≥ , u ≥ .

Take R = , a(v) = p(v) = v 
 , b(u) = q(u) = u 

 , it is easy to see that the conditions (H),
(H), (H), and (H) hold. From Theorem . one concludes that the system () has two
positive solutions.

Remark . From Examples .-. we know that the conditions (H)-(H) are applicable
to more general functions and our results are different from those in [–, –].

Remark . If n, m ≥ , n –  < α ≤ n, m –  < β ≤ m,μ = ν =  in the system (), all
our conclusion is true because the corresponding Green’s function gk(t, s) (k = , ) satis-
fies a Harnack-like inequality (see []). Hence our results improve and generalize some
corresponding results in [, , ] and [].
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