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1 Introduction
In this paper, we investigate the following ¢-Laplacian Rayleigh equation:
(B ®)) +f (64 ©®) +g(ult - 1)) = e(?), 1L1)

@ Springer

where f : R — R is a L2-Carathéodory function, ie., it is measurable in the first variable
and continuous in the second variable, and for every 0 < r < s there exists 4, € L?[0, ]
such that |g(¢,x(¢))| < h, s forallx € [r,s] and a.e. t € [0, w]; f is a T-periodic function about
tand f(t,0) = 0; g : (0,+00) — R is a continuous function that has a strong singularity at
the origin;

1
lim g(s)ds = +00. 1.2)

u—0+ u
e € I?(R) is a T-periodic function and 1 < p < 00, T is a constant,and 0 <t < 7.
Moreover, let ¢ : R — R be a continuous function, with ¢(0) = 0, which satisfies

(A1) (P(u1) — d(u2)) (1 — uz) > O for Yuy # uy, ur, up € R;
(A,) there exists a function d : [0, +00] — [0, +00], and d(#) — +00 as u — +00, such that
¢(u) - u > d(|u|)|u| for Vu € R.

It is easy to see that ¢ represents a large class of nonlinear operators, including ¢, : R —
R is a p-Laplacian, i.e., ¢, (u) = |u[’~2u for u € R.
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As is well known, the Rayleigh equation can be derived from many fields, such as
the physics, mechanics, and engineering technique fields, and an important question is
whether this equation can support periodic solutions. In 1977, Gaines and Mawhin [1]
introduced some continuation theorems and applied this theorem to a discussion of the
existence of solutions for the Rayleigh equation [1], p.99,

u’(t) +f(u/(t)) +g(t, u(t)) =0. (1.3)

Gaines and Mawhin’s work has attracted the attention of many scholars in differential
equations. More recently, the existence of periodic solutions for the Rayleigh equation was
extensively studied (see [2—11] and the references therein). In 2001, by using the method of
upper and lower solutions, Habets and Torres [3] investigated the existence 27 -periodic
solutions of (1.3) by assuming that g = g(¢,u, #’) is bounded (or bounded from below).
Afterwards, by application of the time map continuation theorem, Wang [11] discussed
the existence of periodic solutions of a kind of Rayleigh equation

u(t) +f (u (1) + g(u(t) = p(t).

In this direction, the researchers in [12-20] discussed the p-Laplacian Rayleigh equation.
In 2006, by employing Mawhin’s continuous theorem, Cheung and Ren [12] studied how
the existence of the p-Laplacian Rayleigh equation

(0o (' ©))) +£(u/ ®) + Bg(u(t - T(2))) = e(t)

under various assumptions is obtained. Recently, Xin and Cheng [21] discussed a kind of
¢-Laplacian Rayleigh equation,

(¢ (u/(t)))/ +f (6 () + g (6 u(®)) = e(). (1.4)

By using the Mandsevich-Mawhin continuation theorem and some analysis techniques,
the authors established a sufficient condition for the existence and uniqueness of positive
periodic solutions for (1.4).

In the above papers, the authors investigated several kinds of Rayleigh and p-Laplacian
Rayleigh equations. However, as far as we know, the study of periodic solutions for the
¢-Laplacian differential equation with strong singularity is relatively rare. In this paper,
we try to fill this gap and establish the existence of positive periodic solutions of (1.1) by
employing the Mandasevich-Mawhin continuation theorem. Finally, a numerical example
demonstrates the validity of the method.

2 Positive periodic solution for (1.1)

In this section, we will consider the existence of positive periodic solution for (1.1) with
strong singularity. First of all, we embed equation (1.1) into the following equation family
with a parameter A € (0,1]:

(p(®)) +Af (£, (8)) + rg(ult - 7)) = re(t). (2.1)

The following lemma is a consequence of Theorem 3.1 of [22].
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Lemma 2.1 Assume that there exist positive constants E1, Ey, E3, and Ey < E; such that the
following conditions hold:
(1) Each possible periodic solution u to equation (2.1) such that Ey < u(t) < E, for all
t€[0,T] and |u'|| < Es, here ||| := maX;ejo,1) |44/ (£)].
(2) Each possible solution C to the equation

1 T
QO—?Ae@m:O

satisfies E; < C < E,.
(3) We have

T T
(g(El) - %/0 e(t) dt> (g(Eg) - %/0 e(t) dt> <0.

Then (1.1) has at least one T-periodic solution.

For the sake of convenience, we list the following assumptions which will be used re-

peatedly in the sequel:

(Hi1) There exist constants 0 < ¢ < dy such that g(u) — e(t) > 0 for u € (0,d;) and g(u) —
e(t) < 0 for u € (dy, +00).

(Hy) There exist positive constants a, b such that

gu) <au+b, foralus>0. (2.2)
(H3) There exist constants o and m > 1 such that

ft, u)u > alul™, for (t,u)€[0,T] x R.
(H4) There exist positive constants 8 and y such that

[f(t,u)| <Blu/"t+y, for(t,u)el0,T] xR.
Lemma 2.2 Assume that (A1) and (Hy) hold. Then there exists a point t, € [0, T such that

di <u(ty) <d,. (2.3)

Proof Let t, t, respectively, be the global minimum point and the global maximum point
u(t) on [0, T]; then /(¢) = 0 and #/(¢) = 0, and we claim that

(¢(u (®))) = 0. (2.4)

In fact, if (2.4) does not hold, then (¢(u'(¢£))) < 0 and there exists ¢ > 0 such that
(/' (8)) <Ofort e (t—e,t+¢). Therefore, p(u/(¢)) is strictly decreasing for £ € (t—¢,t+¢).
From (A;), we know that u/(¢) is strictly decreasing for ¢ € (¢ — ¢,¢ + ¢€). This contradicts
the definition of ¢. Thus, (2.4) is true. From f(¢,0) = 0, (2.1) and (2.4), we have

g(ut—1)) —e(®) 0. (2.5)
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Similarly, we can get

g(u@-1))—e@) =0. (2.6)
From (H;), (2.5), and (2.6), we have

ut-t)>d; and u(t-rt)<d,.
In view of u being a continuous function, there exists a point ; € [0, T], such that

d <u(ty) <d. O

Lemma 2.3 Assume that (A1) and (Hy), (H3) hold. Then there exists a positive constant
M, such that

u(t) < M. (2.7)

Proof Multiplying both sides of (2.1) by #/(¢) and integrating over the interval [0, T], we
have

T ) T T
/ (p(' @) ' (2) dt + A/ F(&u' @) (6) dt + A/ g(u(t— 1)) (t) de
0 0 0
T
= ! d . B
AA e(t)u'(t)dt (2.8)
Moreover, we have
T ) T
/ (6(u/®))) u(0) dit = / W (Od(( ()
0 0
. T
= [¢(u’(t))u’(t)]0 —/0 ¢(u’(t)) du'(t)=0 (2.9)
and
T T
/ g(u(t - t))u’(t) dt = / g(u(t - r)) du(t)
0 0
T
= / g(u(t - r)) du(t-7)=0, (2.10)
0

since du(t) = ;((f__:)) dt =du(t—1).

Substituting (2.9) and (2.10) into (2.8), we have

T T
/ (& u/(t))u/(t) dt = / e(t)u'(t) dt. (2.11)
0 0
Thus, we have

T T
/ f(t,b/(t))u’(t)dt’z / e(t)u/(t)dt'.
0 0
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From (H3), we can get

T T
f f(6u @) @) dt‘ >a / AGIN
0 0

Therefore, we can get

T T
a/o |u/(t)|mdt§/0 le(8)| |« (2)| dt

m-1
m

T - T

m-T "™ d

([ ) ([ o)
T i
=||e||m»««1(/0 {u/(t)|’”dt) :

m m-1
where ||e|| = ( fOT le(£)|m-1 dt) m . It is easy to see that there exists a positive constant
M (independent of A) such that

3=

T
/ |/ (8)|" dt < M. (2.12)
0
From Lemma 2.2 and the Holder inequality, we have

u(t) =

t T
/u/(t)dt’gu(t1)+/ |/ (t)| dt
t 0

T
<d, +/ |u’(t)| dt
0

T
<d,+ T (f ‘u’(t)‘mdt)
0

= Ml. O

3=

N

<dy+ T"% (M)

Lemma 2.4 Assume that (A1), (As), and (Hy)-(Hy) hold. Then there exists a positive con-
stant M, such that

||| < M. (2.13)

Proof Integrating both sides of (2.1) over [0, T], we have

T
/0 [F(61®) + g (e - 1) - e(®)] dit = 0. (2.14)

Therefore, we get from (2.7), (2.14), (Hz), and (Ha)

T
/ lg(u(t - 1))| dt = / g(u(t-1)) dt—/ g(ult-1))dt
0 gu(t-1))=0

g(u(t-1))<0

T T
-2 r»zog(u(t_r))d“/o f(t,u @) dt—/o e(t) dt

(
glu(t
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r T
=2 /g(u(t—r))zo (anlt —7) + b)dt + /O If (¢, (0))| dt + fo |e(1)| dt

T T
< 2(1/ {x(t— t)|dt+2bT+,B/ |u’(t)|m_ldt+ yT + ||e||2T%
0 0

m=1

m

T
< 2aM,T +2bT + BT (/ }u/(t){’”dt) +yT + |lell, T2
0

ym=1

< 2aMiT +2bT + BTwM, " +yT + el T?. (2.15)

As u(0) = u(T), there exists t, € [0, T] such that #/'(t;) = 0, while ¢(0) = 0, and we have

6(¢0)| = | [ (6(wo)) as

2

T T T
< )\/O If (&, (0))| dt + A/O lg(u(t —1))| dt + A/O |e(t)| dt, (2.16)
where ¢t € [£y, 8 + T]. In view of (2.7), (2.12), (2.15), (2.16), and (H,), we have
o) = max ([ (o))
= ze[ltlzl,‘t?lz)iT]{ /to (¢(u/(5)))/ds }

T T T
E/O lf(t,u(t))|dt+/0 |g(u(t—r))|dt+/0 le(t)| dt

T T T
/ m-1 B
Eﬂ/o 1 (0)| dt+yT+f0 ot T))|dt+/0 (o) de

ma

m=1

Lo 1 /
<2(aM T +bT + BTwM, "™ +yT +|el2T?) := M. (2.17)
We claim that there exists a positive constant M, > M), + 1 such that, for all £ € R,
'] = M. (218)

In fact, if # is not bounded, then from the definition of d, there exists a positive constant
M) such that d(|#/|) > M., for some u' € R. However, from (A;), we have

()] = o(ul o < |0 )] o] = M|
Then we can get
d(|e|) <M, forallueR,
which is a contradiction. So, (2.18) holds. O

Lemma 2.5 Assume that (A1), (Ay), and (Hy)-(Hy) hold. Then there exists a positive con-
stant M3 such that

u(t) = Ms. (2.19)
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Proof From (2.1), we have

(qﬁ(u/(t + r)))/ + )»f(t +T,u(t + r)) + Ag(u(t)) =Xe(t+ 7). (2.20)

Multiplying both sides of (2.20) by #/(¢) and integrating on [§, £], here & € [0, T], we get
u(t) t
)»/ g(u)du = Af g(u(s))u'(s)ds
u(&) 3
= —/ (¢ (' (s + r)))/u/(s) ds — A/ fls+t,uls+1))u(s)ds
3 3
t
+ A/ e(s + 1)u'(s) ds. (2.21)
3

By (2.13) and (2.17), we can get

‘ / (p(u'(t+7))) s (5)ds

/| s+r ||u |ds
<Hu||/| W(t+7)) | de
T T
§x||u/||(/ et 0) e+ [ aute ) e+ [ |e(t)|dt>
0 0 0
< ZAMz(aM1T+bT+,3T%M1m74 YT+ T2 llell2).

Moreover, from (Hz) and (2.18), we have

t T
|f f(s+r,u(s+t))u’(s)ds 5/ V(s+t,u(s+t))||u’(s)|ds§M2(,3M§"_lT+yT),
§ 0

’/ e(t + T)u/ () dt| < MoN/T|le]]».
&

Form (2.21), we have

u(t)
/ go(u)du
u(§)

,m-1
< My(aMyT + BT + BTHM, ™ +yT + T |lelly + BMP™T +y T + VTell,)
= M, (2.22)

From the strong force condition (1.2), we know that there exists a constant M3 > 0 such
that

u(t)>Ms, VielE Tl (2.23)

Similarly, we can consider ¢ € [0, £]. (|
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By Lemmas 2.1-2.5, we obtain the following main result.

Theorem 2.1 Assume that conditions (A1), (Ay), and (Hy)-(Hy) hold. Then (1.1) has a pos-

itive T-periodic solution.

Proof Let E; < min{dy, Ms}, E; > max{dy, M1}, E3 > M, are constants, from Lemmas 2.2-
2.5, we see that the periodic solution u to (2.1) satisfies

E; < u(t) < Es, || < Es. (2.24)

Then condition (1) of Lemma 2.1 is satisfied. For a possible solution D to the equation

T
g(D) - % /0 e(t)dt =0,

Ei < D < E, is satisfied. Therefore, condition (2) of Lemma 2.1 holds. Finally, we consider
condition (3) of Lemma 2.1 also to be satisfied. In fact, from (H;), we have

T
g(El)_%/o e(t)dt>0

and

T
g(Ey) - %/(; e(t)dt < 0.

So condition (3) is also satisfied. By application of Lemma 2.1, we see that (1.1) has at least
one positive periodic solution. d

We illustrate our results with one example.

Example 2.1 Consider the following second-order ¢-Laplacian Rayleigh equation:

(B ®)) + (20 —165in’ £) (i (£)" ™" + —— — 10u(t) = &*, (2.25)

1
u*(t)
where ¢(u) = ue? m>1,and k > 1.

Comparing (2.25) to (1.1), it is easy to see that g(t,u) = u%(z) — 10u(t), f(t,w) = (20 -

16 sin” w1, e(t) = e, T = 7r. Obviously, we get

(ue'”‘2 - ve""z)(u -v) > (|u|e'”‘2 - |V|e|"|2)(|u| - |v|) >0
and

o(u) - u= |u|26"“2.

So, conditions (A;) and (A;) hold. Moreover, it is easily seen that there exists a constant
dy =1 such that (H;) holds. As a =10 and b =1, condition (H;) holds. Consider f(t, w)w =
(20 — 16 cos? )w™ > 4w™, here a = 4, and |f(t, w)| = |(20 — 16 cos? )w™ 1| < 20|w|" ! + 1,
here B = 20, y =1; thus, we see that conditions (H3) and (H4) hold. Therefore, by Theo-
rem 2.1, we know that (2.25) has one positive periodic solution.
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