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Abstract
A sufficient and necessary condition for existence of solution for the boundary
blow-up problem in one dimensional case is obtained. This problem can be seen as
the Keller-Osserman conjecture, which comes from the study on elliptic equations.
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1 Introduction
The boundary blow-up problem

{
�u(x) = f (u(x)), x ∈ �,
u|∂� = +∞,

(.)

where � is a bounded domain in RN (N ≥ ), arises in many fields, such as the theory of
automorphic functions and Riemann surfaces of constant negative curvature, the study of
the electric potential in a glowing hollow metal body, etc. In , this type of problem
was first studied by Bieberbach (see []). A very famous result is the following.

Theorem A Assume that f () = , f ′(t) is continuous and f ′(t) ≥  for all t ≥ , then (.)
has a solution if and only if

∫ +∞



(∫ t


f (s) ds

)–/

dt < +∞. (.)

The condition (.) plays an important role in the study of the boundary blow-up prob-
lem, it was first proposed by Keller [] and Osserman [], thus lately, this condition was
called the Keller-Osserman condition. Also see [] and []. For later investigations on
boundary blow-up problems we refer to [–] etc. An interesting problem is the fol-
lowing.

Keller-Osserman conjecture When N = , the conclusion of Theorem A is also true.

For the Keller-Osserman conjecture, see Anuradha et al. (see []) who first considered
the following autonomous two point boundary value problem:
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{
–u′′(t) = λf (u(t));  < t < ,
limt→+ u(t) = limt→– u(t) = +∞.

(.)

Using the quadratic method, they gave some necessary, sufficient conditions for the ex-
istence of nonnegative solutions. As they said, ‘The gap between the class of functions
that satisfy the necessary condition but not the sufficient condition is quite small.’ In their
paper, they gave some examples to illustrate their conclusions.

Remark  Anuradha et al. [], Remarks . and ., showed that, to problem (.):
(i) for f (u) = –u(ln u + ), there are no solutions,

(ii) for f (u) = –u[(ln u) + (ln u)], there exist solutions for some λ > .
It is easy to verify that f (u) = –u(ln u + ) does not satisfy the Keller-Osserman condition

(.), but f (u) = –u[(ln u) + (ln u)] satisfies this Keller-Osserman condition.

Recently, Wang [] used the same method as Anuradha’s and generalized the results of
Anuradha’s; he obtained a more suitable condition for the existence of solutions for (.).
The gap between the class of functions that satisfy the necessary condition but not the
sufficient condition becomes smaller than that of Anuradha’s, but we still have a distance
to Keller-Osserman’s conjecture. Later Zhang [] considered this problem again. In this
paper, we want to study problem (.) again and solve this conjecture.

In this paper, we investigate the following boundary blow-up problem:

{
u′′(t) = f (u(t));  < t < ,
limt→+ u(t) = limt→– u(t) = +∞,

(.)

where f (t) ≥ , f (t) is continuous and monotone increasing for all t ≥ . For convenience,
we set u( – ) = +∞ if limt→– u(t) = +∞, for short, denote u().

First we introduce the definition of regularly varying which can be found in [].

Definition  A positive measurable function R defined on [D, +∞), for some D > , is
called regularly varying (at infinity) with index q ∈R, written R ∈ Rq, if for all ξ > ,

lim
u→∞ R(ξu)/R(u) = ξ q.

When the index of regular variation q is zero, we say that the function is slowly varying.

Remark
(a) Any function R ∈ Rq can be written in terms of a slowly varying function. Indeed,

set R(u) = uqL(u), then L varies slowly.
(b) For any m > , umL(u) → +∞, u–mL(u) →  as u → +∞.

Here come our main results.

Theorem  If f () = , then equation (.) has a positive solution if and only if the Keller-
Osserman condition (.) holds true.

Theorem  If f () > , then equation (.) has a positive solution if and only if the Keller-
Osserman condition (.) and maxa≥ g(a) ≥

√


 hold true, where the function g is defined
in (.).
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Theorem  Assume that f () =  and f (t) ∈ Rq, q > . Then the solution u(t) of (.) sat-
isfies

lim
t→∂I

u(t)
φ(δ(t))

= , (.)

where

δ(t) = dist(t, ∂I), I = [, ], φ(s) = ψ–(s), F(t) =
∫ t


f (s) ds and

ψ(s) =
∫ +∞

s

√
F(t)

dt.

Theorem  Assume that f () = , f (u)
u is increasing on (, +∞) and f (t) ∈ Rq, q > . Then

equation (.) has only one positive solution.

From Theorem , we can easily obtain the following.

Corollary  If f () = , then for any λ > , equation (.) has a positive solution if and only
if the Keller-Osserman condition (.) holds true.

Corollary  generalizes Theorem ., Theorem . and Theorem . in [], also gener-
alizing Theorem . and Theorem . in [].

2 The proof of main results
In order to prove our main results, we need some lemmas, presented below.

Lemma  If u(t) is a solution of (.), then u( – t) is also a solution of (.).

The proof of this lemma is trivial, we omit it here.

Lemma  If u(t) is a solution of (.), then there exists only one point t ∈ (, ) such that
u′(t) = , in fact, t = 

 .

The proof of this lemma can be obtained by the generalized Rolle theorem. t = 
 can

be obtained easily by Lemma .

Lemma  If u(t) ∈ C[ 
 , ) is a solution of the following problem:

{
u′′(t) = f (u(t)); 

 ≤ t < ,
u′( 

 ) = , u() = +∞,
(.)

then

w(t) =

{
u(t), t ∈ (, 

 );
u( – t), t ∈ [ 

 , ),
(.)

is a solution of (.), in the contrary case, the conclusion also holds true.
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Proof The proof is trivial, we omit it. �

Lemma  Assume that the Keller-Osserman condition holds true. If f () > , then the func-
tion

g(a) =
∫ +∞

a

(∫ t

a
f (s) ds

)–/

dt (.)

is well defined on the interval [, +∞) and satisfies

lim
a→+∞ g(a) = .

If f () = , then the function g(a) is well defined on the interval (, +∞) and satisfies

lim
a→+

g(a) = +∞, lim
a→+∞ g(a) = .

Proof Notice that f (s) is increasing, thus

f (a)(t – a) ≤
∫ t

a
f (s) ds ≤ f (t)(t – a), for t ≥ a.

Therefore

[
f (t)(t – a)

]–/ ≤
(∫ t

a
f (s) ds

)–/

≤ [
f (a)(t – a)

]–/,

set

g(a) = I(a, b) + J(a, b),

where

I(a, b) =
∫ b

a

(∫ t

a
f (s) ds

)–/

dt, J(a, b) =
∫ +∞

b

(∫ t

a
f (s) ds

)–/

dt, b > a.

By the Keller-Osserman condition, we know that J(a, b) < +∞.
If f () > , then

I(a, b) ≤
∫ b

a

[
f (a)(t – a)

]–/ dt ≤ 

√
b – a
f (a)

< +∞, (.)

which means that the function g(a) is well defined on the interval [, +∞).
If f () = , notice that f ′() exists, thus there exist some positive constants c and k such

that f (t) ≤ kt, c < b for t ∈ [, c], therefore

I(, b) ≥
∫ c



[
f (t)t

]–/ dt ≥ k–/
∫ c




t

dt = +∞, (.)

which means that the function g(a) is well defined on the interval (, +∞) (equation (.)
holds for any a > ) and lima→+ g(a) = +∞.
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From the Keller-Osserman condition (.) and noticing that (
∫ t

 f (s) ds)–/ is monotone
decreasing, we have

lim
t→+∞ t

(∫ t


f (s) ds

)–/

= .

Hence

lim
t→+∞ t–

∫ t


f (s) ds = +∞,

therefore

lim
t→+∞

f (t)
t

= +∞,

by (.), we get

lim
a→+∞ I(a, a) = .

Note that

J(a, b) =
∫ +∞

b

(∫ t

a
f (s) ds

)–/

dt < +∞,

then

lim
a→+∞ J(a, a) = ,

therefore

lim
a→+∞ g(a) = . �

Lemma  If f () = , then equation (.) has a solution if and only if the Keller-Osserman
condition holds true.

Proof Sufficiency. Conversely, suppose that there is no solution u(t). Given any real num-
ber a, let u(t) be a solution of the following problem:

{
u′′(t) = f (u(t)); 

 ≤ t < ,
u′( 

 ) = , u( 
 ) = a.

(.)

Its maximal existence interval is [ 
 , ra), where ra such that limt→r–

a u(t) = +∞ and 
 < ra

and ra 	= . Notice that (.) implies that

u′(t) =

√

∫ u(t)

a
f (s) ds for t ∈

[



, ra

)
, (.)
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here we used the inequality u′(t) ≥  for t ∈ [ 
 , ra). From (.), we have

∫ +∞

a

(∫ t

a
f (s) ds

)–/

dt =
√


(

ra –



)
. (.)

By Lemma  and the zero theorem, we know that there exists a >  such that

g(a) =
√




,

then (.) implies that ra = , which is a contradiction.
Necessity. Assume that

∫ +∞



(∫ t


f (s) ds

)–/

dt = +∞,

then for any a > , we have g(a) = +∞, by (.), we know that equation (.) has no solution,
which is a contradiction. �

From (.) and Lemma , we can easily obtain the following.

Lemma  If f () > , then equation (.) has a solution if and only if the Keller-Osserman
condition and maxa≥ g(a) ≥

√


 are all satisfied.

Proof of Theorem  From Lemma  and Lemma , the conclusion of Theorem  is obvi-
ous. �

Proof of Theorem  From Lemma  and Lemma , we can easily get it. �

3 Asymptotical stability
In this section, we want to study the behavior of large solutions near the boundary and the
uniqueness of the solution. We start with the following comparison theorem.

Lemma  (Comparison theorem) Assume that f (t) ≥ , f (t) : R → R is continuous and
monotone increasing. Let u(t), v(t) ∈ C[ 

 , ) such that

u′′(t) ≤ f
(
u(t)

)
, t ∈

[



, 
)

, (.)

v′′(t) ≥ f
(
v(t)

)
, t ∈

[



, 
)

, (.)

u′
(




)
≤ v′

(



)
, u() ≥ v(),

then u(t) ≥ v(t) for all t ∈ [ 
 , ].

Proof Assume that it is false, then there exists some t < t in [ 
 , ) such that u(t) < v(t),

u′(t) = v′(t), u(t) ≤ v(t) and u′(t) ≥ v′(t) for t ∈ [t, t]. Let w(t) = u(t) – v(t), t ∈ [t, t],
then (.) and (.) imply that

w′′(t) ≤ f
(
u(t)

)
– f

(
v(t)

)
. (.)
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Multiplying w′(t) to both sides of (.), we have

(


[
w′(t)

]
)′

≤ [
f
(
u(t)

)
– f

(
v(t)

)]
w′(t) for t ∈ [t, t],

integrating from t to t (t ∈ [t, t]), we get



[
w′(t)

] ≤
∫ t

t

[
f
(
u(t)

)
– f

(
v(t)

)]
w′(t) dt < ,

which is a contradiction. �

Remark In Lemma , if we replace 
 and  by any other real numbers a and b (a < b),

then the conclusion is also true.

Corollary  (Comparison theorem) Assume that f : R → R is continuous and monotone
increasing with f () = . Let u(t) ∈ C[ 

 , ) such that

u′′(t) ≤ f
(
u(t)

)
, t ∈

[



, 
)

,

u′
(




)
≤ , u() ≥ ,

then u(t) ≥  for all t ∈ [ 
 , ].

Proof In Lemma , let v(t) ≡ , then we can immediately get the conclusion. �

Proof of Theorem  First, we claim that if h ∈ Rp is continuous and nonnegative on
[a, +∞), here p < –, then h ∈ L([a, +∞)). To see this, suppose that h /∈ L([a, +∞)), then
lims→+∞ H(s) =

∫ +∞
a h(s) ds = ∞, by the L’Hospital rule, we have

lim
t→∞

H(ξ t)
H(t)

= ξp+.

Notice that H is increasing, it follows that ξ → ξ p+ is increasing as well, therefore p ≥ –,
which contradicts p < –. f (t) ∈ Rq implies F(t) ∈ Rq+ (by the L’Hospital rule), hence
F–/(t) ∈ R– q+


. Notice that q >  implies – q+

 < –, then the above claim shows that
F–/(t) ∈ L([a, +∞)), that is, the Keller-Osserman condition (.) holds true, then from
Theorem , we know that the solution of (.) exists, by Corollary , these solutions (this
solution) u(t) satisfy (satisfies) u(t) ≥ . Then (.) implies that

u′(t) =

√

∫ u(t)

u( 
 )

f (s) ds. (.)

From (.), we have

u′(t) =

√

(∫ u(t)


f (s) ds –

∫ u( 
 )


f (s) ds

)
,
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thus

u′(t)√

∫ u(t)

 f (s) ds
=

√√√√ –
∫ u( 

 )
 f (s) ds∫ u(t)
 f (s) ds

, (.)

for any boundary blow-up solution u(t) of (.), we can easily obtain

lim
t→–

∫ u( 
 )

 f (s) ds∫ u(t)
 f (s) ds

= .

Then (.) implies that

ψ
(
u(t)

)
=

∫ 

t

(
 + o()

)
dt = ( – t)

(
 + o()

)
,

therefore

u(t) = φ
(
β(t)( – t)

)
,

where β(t) satisfies

lim
t→–

β(t) =  and β(t) < . (.)

In order to prove (.), we only need to prove

lim
t→–

φ(β(t)( – t))
φ( – t)

= . (.)

From (.), we see, for any ε > , that there exists some δ < / such that

 – ε < β(t) <  for  – δ < t < .

Notice that

φ′(s) = –
√

F
(
φ(s)

)
< ,

thus

φ( – t) ≤ φ
(
β(t)( – t)

) ≤ φ
(
( – t)( – ε)

)
,

which implies that

 ≤ φ(β(t)( – t))
φ( – t)

≤ φ(( – t)( – ε))
φ( – t)

. (.)

In the following, we prove that φ(t) ∈R/(–q) (at zero) provided that f (t) ∈ Rq. In fact, if
f (t) ∈ Rq, then

lim
t→+∞

F(ξ t)
F(t)

= lim
t→+∞

ξF ′(ξ t)
F ′(t)

= lim
t→+∞

ξ f (ξ t)
f (t)

= ξ q+,
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which implies that

lim
t→+∞

ψ(ξ t)
ψ(t)

= lim
t→+∞

ξψ ′(ξ t)
ψ ′(t)

= lim
t→+∞

ξ
√

F(t)√
F(ξ t)

= ξ
–q

 ,

therefore

lim
t→+∞

φ(ξ (–q)/ψ(t))
t

= ξ ,

thus

lim
t→+

φ(ξ t)
φ(t)

= lim
y→+∞

φ(ξψ(y))
y

= lim
y→+∞

φ(σ (–q)/ψ(y))
y

= σ = ξ


–q .

So

lim
t→–

φ(( – t)( – ε))
φ( – t)

= ( – ε)


–q ,

letting ε → +, and then by (.), (.) holds true. �

Proof of Theorem  Let u(t), v(t) be the solutions of (.), by (.), we have

lim
t→–

u(t)
v(t)

= ,

also notice that f (t) ∈Rq, q > . Then for any ε > , there exists δ >  such that

( – ε)v(t) ≤ u(t) ≤ ( + ε)v(t) and f
(
v(t)

)
( + ε) ≤ f

(
( + ε)v(t)

)
, for t ∈ ( – δ, ),

set u(t) = ( + ε)v(t), then

u′
(




)
= u′

(



)
=  and u(t) ≤ u(t), for t ∈ ( – δ, ).

We claim that for any t ∈ [ 
 , ), u(t) ≤ u(t). Notice that

u′′(t) = ( + ε)v′′(t) = ( + ε)f
(
v(t)

) ≤ f
(
u(t)

)
,

from Lemma , the above claim is obvious. Similarly, we can prove that for any t ∈ [ 
 , ),

u(t) ≥ u(t), where u(t) = ( – ε) v(t). Passing to the limit ε → +, we conclude that u(t) ≡
v(t). �

Remark From the proof of Theorem  and Theorem , we can easily see that the condi-
tion f (u)

u is increasing on (, +∞) and f (t) ∈Rq, q >  can be replaced by the following.
(H) There exists q >  such that for any ε >  sufficiently small, the function f satisfies

f
[
( + ε)s

] ≥ ( + ε)qf (s) and f
[
( – ε)s

] ≤ ( – ε)qf (s), s ∈ (, +∞).
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