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Abstract
In this paper, we prove the existence of a solution between a well-ordered
subsolution and supersolution of a class of nonlocal elliptic problems and give some
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1 Introduction
In this paper, we consider the following problem:

⎧
⎪⎨

⎪⎩

–a(
∫

�
|u|γ dx)�u = fλ(x, u), x in �,

u > , x in �,
u = , x on ∂�,

(.)

where � ⊆ RN is a smooth bounded domain, γ ∈ (, +∞), and a : [, +∞) → (, +∞) is a
continuous function with

inf
t∈[,+∞)

a(t) ≥ a = a() > .

Chipot and Lovat [] considered the following model problem:

⎧
⎪⎨

⎪⎩

ut – a(
∫

�
u(z, t) dz)�u = f in � × (, T),

u(x, t) =  on � × (, T),
u(x, ) = u(x) on �.

Here � is a bounded open subset in RN , N ≥ , with smooth boundary �, and T is an
arbitrary time. The diffusion coefficient a is a function from R into (, +∞), which depends
on the entire population in the domain rather than on the local density, and u describes
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the density of a population subject to spreading. If γ = , then we get the well-known
Carrier equation. The fact that (.) appears in some applied mathematics attracts a lot
of attention. With the aid of the Krasnoselskii fixed point theorem and the Schaefer fixed
point theorem, by the monotonicity of fλ, Corrêa [] considered the existence of positive
solutions of (.) for γ ≥ . By establishing a comparison principle, Corrêa et al. [] proved
the existence of positive solutions to (.) also for γ = . Under the assumption that A(x, u)
(which is generalized from the nonlocal term a(s)) is bounded, there are some results on
the existence of positive solutions and the existence of n distinct solutions; see [, ].

Another nonlocal elliptic equations are the Kirchhoff elliptic problems like

⎧
⎪⎨

⎪⎩

–a(‖u‖)�u = fλ(x, u), x in �,
u > , x in �,
u = , x on ∂�,

(.)

related to nonlinear vibrations of beams, where a : R → R is a given function, and ‖ · ‖
denotes the usual norm in H

(�). In this case, variational methods are used to consider the
existence of the solutions to (.) because the nonlocal operator u → a(‖u‖)�u possesses
a variational structure; see [–] and the references therein. Especially, for the Kirchhoff
elliptic equations

⎧
⎪⎨

⎪⎩

–a(‖u‖)�u = λf (x)|u|q–u + g(x)|u|p–u, x in �,
u > , x in �,
u = , x on ∂�,

(.)

Chen et al. [] examined in detail the number of solutions admitted subject to the vari-
ations of parameters embedded in nonlinear terms. For the case a(t) ≡ , the existence
and multiplicity of positive solutions for the elliptic equations has been extensively inves-
tigated; see [–]. Especially, Ambrosetti et al. [] studied the equation

⎧
⎪⎨

⎪⎩

–�u = λuq + up, x in �,
u > , x in �,
u = , x on ∂�,

(.)

and established multiple results for different λ, where � is a bounded domain in RN with
 < q <  < p ≤ ∗ (∗ = N

N– if N ≥  and ∗ = +∞ if N = , ) and λ > .
Naturally, we hope that there are some interesting results for (.) that are similar to

those in (.) and (.) in [, ] and references therein. Notice that the methods used in
[–, –, , –] are the sub-suppersolution method, theory of topological degree,
and the variational method. Unfortunately, the operator u → a(

∫

�
|u(x)|γ dx)�u has no

variational structure. Up to now, the tools to study (.) are a fixed point result with Leray-
Schauder condition and the Schaefer fixed point theorem. Very recently, Alves and Covei
[] established the sub-supersolution method, which can be used to study the existence
of weak solutions for a large class of nonlocal problems.

Motivated by the works of [, , , ], in this paper, we study the existence and
multiplicity of the classical positive solutions for (.). The paper is organized as follows.
In Section , according to the idea in [, ], we prove the existence of solutions be-
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tween well-ordered subsolution and supersolution to guarantee the existence of classical
solution to (.) and give a formula to calculate the degree. Section  presents the exis-
tence and multiplicity of positive solutions to (.)λ when p >  > q >  or  > p > q > ,
which improves the results in [], where the a(t) is bounded, or � is an annular region.
In Section , when nonlinearity is linear at u = , by bifurcation theory we discuss the un-
bounded connected component for (.)λ and present sufficient and necessary conditions
for the existence of positive solutions to (.)λ. In Section , in the case where the non-
linear term is singular at u = , we consider the existence of positive solutions to (.)λ.
In Section , sufficient and necessary conditions of positive solutions to (.) are given to
guarantee that positive solutions to (.) are in C[, ] or C[, ] when N = .

Notation In this paper we use the following notation.
Let u : � → R is continuous, and |u|∞ = maxx∈� |u(x)|;
C(�) = {u : � → R|u(x) is continuous on �} with norm ‖u‖ = |u|∞;
C(�) = {u ∈ C(�)|∇u(x) is continuous on �} with norm ‖u‖ = max{|u|∞, |∇u|∞}.

2 Sub-supersolution method
Now we consider the general problem

{
–a(

∫

�
|u|γ dx)�u = F(x, u), x in �,

u = , x on ∂�,
(.)

where � ⊆ RN is a smooth bounded domain, γ ∈ (, +∞), and a : [, +∞) → (, +∞) is a
continuous function with

a = a() > .

Definition . The pair functions α,β ∈ C(�)∩C(�) are subsolution and supersolution
of (.) if

{
–�α(x) ≤ 

a(
∫

� |χ (x,u(x))|γ dx) F(x,α(x)), x in �,∀u ∈ C(�) ∩ C(�),
α|∂� ≤ ,

and
{

–�β(x) ≥ 
a(

∫

� |χ (x,u(x))|γ dx) F(x,β(x)), x in �,∀u ∈ C(�) ∩ C(�),
β|∂� ≥ ,

where χ (x, u) = α(x) + (u – α(x))+ – (u – β(x))+.

Definition . Let u, v ∈ C(�). We say that u ≺ v if u(x) < v(x) on � and u(x) ≤ v(x) for
all x ∈ ∂�, and if u(x) = v(x) for some x ∈ � ⊆ ∂�, then we write ∂u

∂n |x∈∂� > ∂v
∂n |x∈� .

Remark . S = {u ∈ C(�) : α ≺ u ≺ β} is an open set if α ≺ β .

We say that an open set S ⊆ C(�) is admissible for the degree if the compact operator
A has no fixed point on its boundary ∂S and the set of fixed points of A in S is bounded.
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In this case, we define

deg(I – A, S, θ ) = deg
(
I – A, S ∩ B(, R), θ

)
,

where R is such that every fixed point u of A in S satisfies ‖u‖ < R. By excision property
this degree does not depend on R.

To be able to associate a degree with a pair of subsolution and supersolution, we have to
reinforce the definition.

Definition . A subsolution α of (.) is said to be strict if every solution u of (.) such
that α ≤ u satisfies α ≺ u.

In the same way, a strict supersolution β of (.) is a supersolution such that every solu-
tion u of (.) such that u ≤ β satisfies u ≺ β .

Definition . The function F : � × R is an Lp-Carathéodory function if
. F(·, u) is measurable for all u ∈ �;
. F(x, ·) is continuous for a.e. x ∈ �;
. for all bounded set B ⊆ RN , there exists hB ∈ Lp(�) such that for a.e. x ∈ � and all

u ∈ B,

∣
∣F(x, u)

∣
∣ ≤ hB(x).

Remark . The idea of the above definitions comes from [].

If F is an Lp-Carathéodory function with p > N , then the operator

N : C(�) → Lp(�) : u �→ F(x, u(x))
a(

∫

�
|u(x)|γ dx)

is well defined, continuous, and maps bounded sets to bounded sets. Then the operator
A : C(�) → C(�) defined as

Au = (–� + λ)–(Nu + λu), λ > ,

is completely continuous, and problem (.) is

u = Au, λ > .

Theorem . Let � ⊆ RN (N ≥ ) be a smooth bounded domain, and γ ∈ (, +∞). Suppose
that F : � × R → R is a continuous function. Assume that α and β are the subsolution and
supersolution of (.), respectively. If there exists h ∈ Lp(�) (p > N ) such that

∣
∣F(x, u)

∣
∣ ≤ h(x), x ∈ �,α(x) ≤ u ≤ β(x). (.)

Then problem (.) has at least one solution u such that, for all x ∈ �,

α(x) ≤ u(x) ≤ β(x).
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If, moreover, α(x) and β(x) are strict and satisfy α ≺ β , then

S =
{

u ∈ C(�)|α ≺ β
}

is admissible for the degree, and

deg(I – A, S, θ ) = .

Proof By Lp-theory there exists R >  greater than max{‖α‖,‖β‖} such that, for every F
satisfying (.) and every solution of (.) with α ≤ u ≤ β , we have

‖u‖ < R.

Let

F(x, u) =

⎧
⎪⎨

⎪⎩

F(x,α(x)) if u < α(x),
F(x, u) if α(x) ≤ u ≤ β(x),
F(x,β(x)) if u > β(x).

We will study the modified problem (λ > )

{
–�u + λu = F(x,u)

a(
∫

� |χ (x,u(x))|γ dx) + λχ (x, u), x ∈ �,
u|∂� = ,

(.)

where χ (x, u) = α(x) + (u – α(x))+ – (u – β(x))+.
Step . Every solution u of (.) is such that α(x) ≤ u(x) ≤ β(x), x ∈ �.
We prove that α(x) ≤ u(x) on �. By contradiction assume that maxx∈�(α(x) – u(x)) =

M > . Note that α(x) – u(x) �≡ M on � (α(x) – u(x) ≤ , x ∈ ∂�). If x ∈ � is such that
α(x) – u(x) = M, then

 ≤ –�
(
α(x) – u(x)

)

≤ 
a(

∫

�
|χ (x, u(x))|γ dx)

F
(
x,α(x)

)

–


a(
∫

�
|χ (x, u(x))|γ dx)

F
(
x, u(x)

)
– λχ

(
x, u(x)

)
+ λu(x)

= –λ
(
α(x) – u(x)

)

< .

This is a contradiction.
Now we prove that β(x) ≥ u(x) on �. By contradiction assume that maxx∈�(β – u(x)) =

–m < . Note that β(x) – u(x) �≡ –m on � (β(x) – u(x) ≥ , x ∈ ∂�). If x ∈ � is such that:
β(x) – u(x) = –m, then

 ≥ –�
(
β(x) – u(x)

)

≥ 
a(

∫

�
|χ (x, u(x))|γ dx)

F
(
x,β(x)

)
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–


a(
∫

�
|χ (x, u(x))|γ dx)

F
(
x, u(x)

)
– λχ

(
x, u(x)

)
+ λu(x)

= λ
(
β(x) – u(x)

)

> .

This is a contradiction.
Consequently,

α(x) ≤ u(x) ≤ β(x), x ∈ �.

Step . Every solution of (.) is a solution of (.). Every solution of (.) is such that
α(x) ≤ u(x) ≤ β(x). Since F satisfies (.), we also have that ‖u‖ < R. Hence,

F
(
x, u(x)

)
= F

(
x, u(x)

)
,


a(

∫

�
|χ (x, u(x))|γ dx)

=


a(
∫

�
|u(x)|γ dx)

,

and u is a solution of (.).
Step . Problem (.) has at least one solution.
Define the operator

N : C(�) → Lp(�) : u �→ F(x, u(x))
a(

∫

�
|u(x)|γ dx)

.

It is easy to see that N is well defined, continuous, and maps bounded sets to bounded
sets. Then the operator A : C(�) → C(�) defined as

Au = (–� + λ)–(Nu + λu)

is completely continuous.
By the hypothesis on F and the construction of F there exists h ∈ Lp(�) such that, for

every u ∈ C(�),

∣
∣
∣
∣

F(x, u(x))
a(

∫

�
|χ (x, u(x))|γ dx)

+ λχ
(
x, u(x)

)
∣
∣
∣
∣ < h(x), (.)

which guarantees that there exists K >  large enough such that, for all v ∈ A(C(�)),

‖v‖ ≤ K .

Then there exists K > max{‖α‖,‖β‖} large enough such that

A
(
BC (, K)

) ⊆ BC (, K)

and, by a classical result of degree theory [],

deg
(
I – A, BC (, K), θ

)
= .
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Therefore, there exists u ∈ BC (, K) such that

u = Au.

Steps  and  yield that

α(x) ≤ u(x) ≤ β(x), x ∈ �.

Step . If α(x) and β(x) are the strict subsolution and supersolution, then we have

deg(I – A, S, θ ) = .

Since α(x) and β(x) are the strict subsolution and supersolution, A has no fixed point
on ∂S, and so deg(I – A, S, θ ) is well defined. Step  guarantees that A has no fixed point
in B(, K) – S. Then

deg(I – A, S, θ ) = deg
(
I – A, BC (, K), θ

)
= .

The proof is complete. �

Remark . If we do not define the topological degree, we may use C(�) and obtain sim-
ilar results.

Remark . The difference between our Theorem . and Theorem  in [] is that F(x, u)
can change sign and we get the existence of classical solutions to (.).

Remark . In the particular case N = , we can also allow p = , and it is classical that,
in this case, A also is completely continuous.

Remark . The difference between Definition . and the definitions in [] is that we
define a special function χ and the classical sub-supersolutions and that in [] the sub-
supersolutions are in the sense of distribution.

In the following sections, we suppose that a(t) : [, +∞) is continuous and increasing on
[, +∞) for convenience.

3 The existence of positive solutions with concave and convex nonlinearities
In this section, we consider the problem

⎧
⎪⎨

⎪⎩

–�u = 
a(

∫

� |u|γ dx) (λuq + up), x ∈ �,
u(x) > , x ∈ �,
u|∂� = ,

(.)λ

where γ > ,  > q > , p > , � = {x ∈ RN ||x| < }.
In order to consider the existence of positive solutions for (.)λ, we list some previous

results. Let ϕ be the eigenfunction corresponding to the principle eigenvalue of

{
–�u = λu, x ∈ �,
u|∂� = .
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It is found that λ >  and ϕ(x) >  for x ∈ �; see []. Moreover, there exist u, u∗ ∈ C(�)
that satisfy

⎧
⎪⎨

⎪⎩

–�u = , x ∈ �,
u > , x ∈ �,
u|∂� = ,

and

⎧
⎪⎨

⎪⎩

–�u = uq, x ∈ �,
u > , x ∈ �,
u|∂� = ,

respectively. By [] the following results are true:

ϕ

e
∈ C(�),

ϕ

u∗ ∈ C(�). (.)

Suppose that uλ is a positive solution to (.)λ. Let

c = a
(∫

�

∣
∣uγ

λ

∣
∣dx

)– 
p–

and v = cuλ. (.)

Then v satisfies

{
–�v = λ 

(a(
∫

� |u(x)|γ dx))(p–q)/(p–) vq + vp, x ∈ �,

v|∂� = ,
(.)

and the transform (.) will be used later.
Let

K =
{

u ∈ C(�)|u(x) ≥ ,∀x ∈ �
}

.

Obviously, K is cone in C(�).
Using Theorem ., we have following theorems.

Theorem . Assume that N
N– > p >  and limt→+∞ t(p–)/γ

a(t) = +∞. Then there exist � ≥
� >  such that

() (.)λ has at least two positive solutions if λ ∈ (,�);
() (.)λ has at least one positive solution if λ = � and λ = �;
() (.)λ has no positive solutions if λ > �.
Moreover,

|uλ|∞ ≤ C, ∀ positive solutions uλ to (.)λ,λ ∈ [,�].

Theorem . Assume that  < q < p < . Then (.)λ has at least one positive solution for
λ ≥ .
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Now we consider
⎧
⎪⎨

⎪⎩

–�u = 
a

(λuq + up),
u(x) > , x ∈ �,
u|∂� = ,

(.)λ

where a = inft∈[,+∞) a(t).

Lemma . (see []) Assume that  < q < , p > . Then there exist �a and Ca >  such
that

() (.)λ has at least two positive solutions if λ ∈ (,�a );
() (.)λ has at least one positive solution if λ = �a ;
() (.)λ has no positive solutions if λ > �a .
Moreover,

|uλ|∞ ≤ Ca , ∀ positive solutions uλ to (.)λ,λ ∈ [,�a ].

Lemma . (see []) Suppose that f : � × R+ → R is a continuous function such that
s–f (x, s) is strictly decreasing for s >  at each x ∈ �. Let w, v ∈ C(�) ∩ C(�) satisfy:

(a) �w + f (x, w) ≤  ≤ �v + f (x, v) in �;
(b) w, v >  in �, and w ≥ v on ∂�;
(c) �v ∈ L(�).
Then w ≥ v in �.

Proof of Theorem . () We show that for λ ∈ (,�a ), (.)λ has at least one positive
solution.

For u ∈ P, we define the operator

(Aλu)(x) =


a(
∫

�
|u(x)|γ dx)

∫

�

G(x, y)
[
λu(y)q + u(y)p]dy, x ∈ �,

where G(x, y) is the Green function for –�u = h.
For λ ∈ (,�a ), by [] there exists a uλ ∈ C(�) such that

⎧
⎪⎨

⎪⎩

–�uλ = 
a

(λuq
λ + up

λ), x ∈ �,
uλ(x) > , x ∈ �,
u|∂� = ,

with ∂uλ

∂n < , x ∈ ∂�. Let β(x) = uλ and b = supt∈[,|β|γ∞|�|] a(t). Since  <  < q and λ > ,
we can choose ε >  small enough such that

ελϕ(x) <


b

(
λ
(
εϕ(x)

))q, x ∈ �,

εϕ(x) < β(x), ∀x ∈ �,

and

∂εϕ(x)
∂n

>
∂β(x)
∂n

, ∀x ∈ ∂�.
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Let α(x) = εϕ(x). Then

⎧
⎪⎨

⎪⎩

–�(εϕ(x)) = ελϕ(x)
< 

b
(λ(εϕ(x))q + (εϕ(x))p), x ∈ �,

εϕ(x)|∂� = .

Therefore, by the strict monotonicity of a we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–�β(x) = 
a

(λβ(x)q + β(x)p)
≥ 

a(
∫

� χ (x,u(x))γ dx) (λβ(x)q + β(x)p), x ∈ �, u ∈ C(�) ∩ C(�),
β(x) > , x ∈ �,
β(x)|∂� = ,

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–�(α(x)) = ελϕ(x)
< 

b
(λ(εϕ(x))q + (εϕ(x))p)

≤ 
a(

∫

� χ (x,u(x))γ dx) (λ(εϕ(x))q + (εϕ(x))p), x ∈ �, u ∈ C(�) ∩ C(�),
α|∂� = ,

with

∂α

∂n
>

∂β(x)
∂n

, ∀x ∈ ∂�,

which implies that α and β are the subsolution and supersolution of (.) with α ≺ β . Now
Theorem . implies that (.)λ has at least one positive solution uλ with α(x) ≤ uλ(x) ≤
β(x), x ∈ �. Moreover, if W = {u ∈ K ⊆ C(�)|α ≺ u ≺ β} and u ∈ [α,β] is a solution to
(.), then we have

{
–�(u(x) – α(x)) > , x ∈ �,
(u – α)|∂� = ,

which, together with the maximum principle, means that

∂u(x)
∂n

<
∂α(x)
∂n

, x ∈ ∂�,

that is,

α ≺ u.

A similar argument shows that

u ≺ β .

Now Theorem . guarantees that

i(Aλ, W , K) = deg(I – Aλ, W , θ ) = . (.)
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Let

� = sup
{
λ >  : (.)λ has at least one positive solution

}
.

Obviously, � > .
() We show that � < +∞.
Assume that uλ is a solution to (.)λ. Let c = a(

∫

�
|uλ|γ dx)– 

p– and v = cuλ. Then we get
(.). By Lemma . there exist C′ >  and �′ >  such that equation

{
–�v = λvq + vp,
v|∂� = 

has at least one positive solution for all  ≤ λ ≤ �′ and

sup
λ∈[,�′]

|vλ|∞ ≤ C′, (.)

which, together with (.), implies that

λ


(a(
∫

�
|uλ(x)|γ dx))(p–q)/(p–) ≤ �′, (.)

|v|∞ =
∣
∣
∣
∣a

(∫

�

∣
∣uλ(x)

∣
∣γ dx

)– 
p–

u
∣
∣
∣
∣∞

≤ C′,

and

|u|∞ ≤ a
(∫

�

∣
∣uλ(x)

∣
∣γ dx

) 
p–

C′. (.)

Now we show that {∫
�

|uλ(x)|γ dx : λ ∈ (,�)} is bounded.
In fact, if {∫

�
|uλ(x)|γ dx : λ ∈ (,�)} is unbounded, then there exists a sequence {uλn}

such that

lim
n→+∞

∫

�

∣
∣uλn (x)

∣
∣γ dx = +∞.

Now (.) means that

 ≤ a
(∫

�

∣
∣uλn (x)

∣
∣γ dx

)– 
p–

uλn (x) ≤ C′, x ∈ �.

Then

 ≤ a
(∫

�

∣
∣uλn (x)

∣
∣γ dx

)– γ
p–

uγ

λn (x) ≤ C′γ , x ∈ �.

Integration on � yields that

 ≤ a
(∫

�

∣
∣uλn (x)

∣
∣γ dx

)– γ
p–

∫

�

∣
∣uλn (x)

∣
∣γ dx ≤ |�|C′γ .
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Let sn =
∫

�
|uλn (x)|γ dx. Then

(
s(p–)/γ

n

a(sn)

) γ
p– ≤ |�|C′γ ,

which contradicts to

lim
t→+∞

t(p–)/γ

a(t)
= +∞.

Since a(t) >  is continuous on [, +∞) with inft≥ a(t) = a > , the boundedness of
{∫

�
|uλ(x)|γ dx : λ ∈ (,�)} means that

a
(∫

�

∣
∣uλ(x)

∣
∣γ dx

)

is bounded,

which, together with (.), means that

λ ≤ �′ sup
λ∈�

(

a
(∫

�

∣
∣uλ(x)

∣
∣γ dx

))(p–q)/(p–)

.

Hence,

� < +∞. (.)

From (.) we have

|uλ|∞ ≤ a
(∫

�

∣
∣uλ(x)

∣
∣γ dx

) 
p–

C′ def= C < +∞. (.)

() We show that there exists u� satisfying (.)� . By the definition of � >  there exists
a sequence λn → � and uλn is a positive solution of (.)λn . From (.), there exists C > 
such that

∣
∣�uλn (x)

∣
∣ ≤ 

a

[
λuλn (x)q + uλn (x)p] ≤ C, ∀λn ∈ [,�],

which guarantees that {uλn} is relatively compact in C(�). Then there exists u� ∈ C(�)
such that

lim
ni→+∞ uλni

(x) = u� (x) uniformly on �.

A standard bootstrap argument shows that u� ∈ C(�) ∩ C(�) is a nonnegative solution
for (.)� .

() We show that for λ ∈ (,�a ), (.)λ has at least two positive solutions.
By (.) and the Green formula there exists C >  such that

∣
∣∇uλ(x)

∣
∣ =


a(

∫

�
|uλ(x)|γ dx)

∣
∣
∣
∣

∫

�

Gx(x, y)
[
λuλ(y)q + uλ(y)p]dy

∣
∣
∣
∣

≤ C, ∀λ ∈ [,�]. (.)
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Let R > max{C, C} and λ > �. Let H(τ , u) = u – (–�)–((τλ + ( – τ )λ)uq + up) and BR =
{u|‖u‖ < R}. If there exist τ ∈ [, ] and u ∈ K ∩ ∂BR such that

H(τ, u) = u – (–�)–((τλ + ( – τ)λ
)
uq

 + up

)

= ,

then we have

⎧
⎪⎨

⎪⎩

–�u = 
a(

∫

� |u(x)|γ dx) ((τλ + ( – τ)λ)uq + up
), x ∈ �,

u(x) > , x ∈ �,
u|∂� = ,

which, together with (.) and (.), means that ‖u‖ = max{|u|∞, |∇u|∞} < R. This
contradicts to u ∈ (∂BR) ∩ K . The homotopy of H ,

deg
(
I – H(, ·), BR ∩ K , θ

)
= deg

(
I – H(, ·), BR ∩ K , θ

)
.

Next, we claim that

deg
(
I – H(, ·), BR ∩ K , θ

)
= . (.)

In fact, suppose that there exist  ≥ μ ≥  and u ∈ ∂BR ∩ K such that H(, u) = μu.
Obviously, μ >  and u satisfy

⎧
⎪⎨

⎪⎩

–�u = 
μa(

∫

� |u(x)|γ dx) (λuq
 + up

), x ∈ �,
u(x) > , x ∈ �,
u|∂� = .

Let v = μ
– 

p–
 u. Then v satisfies that

⎧
⎪⎪⎨

⎪⎪⎩

–�v = 
a(

∫

� |u(x)|γ dx) ( 
μ

(p–q)/(p–)


λvq + vp), x ∈ �,

v(x) > , x ∈ �,
v|∂� = .

Since


μ

(p–q)/(p–)


λ > λ,

this contradicts the definition of �, which means that

H(, u) �= μu, ∀μ ∈ [, ], u ∈ ∂BR ∩ K .

Therefore, (.) is true, and so,

deg
(
I – A, (BR – W ) ∩ K , θ

)
= deg(I – A, BR, θ ) – deg(I – A, W , θ ) = –. (.)
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Now for λ ∈ (,�a ), we consider

⎧
⎪⎨

⎪⎩

–�u = λuq, x ∈ �,
u(x) > , x ∈ �,
u|∂� = .

(.)

From [], (.) has one positive solution v. Let r = ‖v‖. Let  < r < min{a(Cγ |�|) 
q– ‖v‖,

‖e‖}. For τ ∈ [, ], define

H(τ , u) = u – (–�)–(λuq + up + τ
)
, u ∈ C(�) ∩ K .

We claim that

H(τ , u) �= θ , τ ∈ [, ], u ∈ K ∩ ∂B(, r).

In fact, suppose (τ, u) ∈ [, ] × K ∩ ∂B(, r). Then

{
–�u = 

a(
∫

� |u|γ dx) (λuq
 + up

 + τ), x ∈ �,
u|∂� = .

Let c = a(
∫

�
uγ

 dx)– 
q– and v = cu. Then

{
–�v = λvq + cq–pvp + cqτ,
v|∂� = .

(.)

By Lemma . we have

v = cuλ ≥ v, ∀λ ≥ , x ∈ �,

and so

u ≥ a
(
Cγ |�|) 

q– v,

which contradicts to ‖u‖ = r < a(Cγ |�|) 
q– ‖v‖. From the homotopy of H it follows that

deg(I – A, Br ∩ K , θ ) = deg
(
H(, ·), Br ∩ K , θ

)
= deg

(
H(, ·), Br ∩ K , θ

)
= ,

which, together with (.), implies that

deg
(
I – A,

(
BR – (W ∪ Br)

) ∩ K , θ
)

= –.

Consequently, A has another fixed point uλ, ∈ (BR – (W ∪ Br)) ∩ K , that is, (.)λ has an-
other positive solution uλ, for all λ ∈ (,�a ).

Consequently,

+∞ > � ≥ � ≥ �a .

Similarly, (.)� also has at least one positive solution. The proof is complete. �
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Proof of Theorem . For given λ > , since  < q < p < , there exists K >  such that

 >
λKq–

 |e|q∞ + Kp–
 |e|p∞

a
,

that is,

K >
λKq

 |e|q∞ + Kp
 |e|p∞

a
.

Let β(x) = Ke(x). Then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–�(β(x)) = –�(Ke(x))
= K

> λKq
 |e|q∞+Kp

 |e|∞
a

, x ∈ �,
β(x) = , x ∈ ∂�.

(.)

Let b = a(
∫

�
βγ (x) dx). Choose ε >  small enough such that

ελϕ(x) <


b

(
λ
(
εϕ(x)

))q, x ∈ �, (.)

and

εϕ ≤ Ke(x), ∀x ∈ �. (.)

Let α(x) = εϕ(x). Now (.), (.), and (.) guarantee that

⎧
⎪⎪⎨

⎪⎪⎩

–�(β(x)) > λKq
 |e|q∞+Kp

 |e|∞
a

≥ λ(β(x))q+(β(x))q

a(
∫

� χ (x,u(x))γ dx) , x ∈ �, u ∈ C(�) ∩ C(�),
β(x) = , x ∈ ∂�,

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–�(α(x)) = ελϕ(x)
< 

b
(λ(εϕ(x))q + (εϕ(x))p)

≤ 
a(

∫

� χ (x,u(x))γ dx) (λ(α(x))q + (α(x))p), x ∈ �, u ∈ C(�) ∩ C(�),
α(x)|∂� = ,

which guarantees that α and β are the subsolution and supersolution to (.)λ. Now The-
orem . implies that (.)λ has at least one positive solution for all λ ≥ . The proof is
complete. �

4 The existence of positive solutions when the nonlinearity is linear at u = 0
In this section, we consider the problem

⎧
⎪⎨

⎪⎩

–�u = 
a(

∫

� |u|γ dx) (λu + f (x, u)), x ∈ �,
u(x) > , x ∈ �,
u|∂� = ,

(.)λ
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where γ > , and � ⊆ RN is a bounded smooth domain. Now we list following conditions
for convenience:

(H) f (x, u) is continuous on � × (–∞, +∞), and

lim|u|→+

f (x, u)
u

=  uniformly on x ∈ �. (.)

For u ∈ C(�), we define the operator

F
(
λ, u(x)

)
=


a(

∫

�
|u(x)|γ dx)

∫

�

G(x, y)
[
λu(y) + f

(
y, u(y)

)]
dy

=
λ

a

∫

�

G(x, y)u(y) dy +
∫

�

G(x, y)
[

λu(y) + f (y, u(y))
a(

∫

�
|u(x)|γ dx)

–
λ

a
u(y)

]

dy

def= λ(Lu)(x) + H
(
λ, u(x)

)
, x ∈ �,

where G(x, y) is the Green function for –�u = h.
Of course, under these new notation, (λ, u) solves (.)λ if and only if

u = F(λ; u) := λLu + H(λ, u). (.)

Suppose that (H) holds. It is easy to see that L : C(�) → C(�) is a compact and con-
tinuous linear operator and H(λ, ·) : C(�) → C(�) is a compact and continuous nonlinear
operator. Moreover, (.) guarantees that

∣
∣H

(
λ, u(x)

)∣
∣ =

∣
∣
∣
∣

∫

�

G(x, y)
[
λu(y) + f (y, u(y))
a(

∫

�
|u(x)|γ dx)

–
λ

a
u(y)

]

dy
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

G(x, y)
[
λu(y) + f (y, u(y))

a + o()
–

λ

a
u(y)

]

dy
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

G(x, y)
[
λu(y) + f (y, u(y))

a


 + o()

–
λ

a
u(y)

]

dy
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

G(x, y)
[
λu(y) + f (y, u(y))

a

[
 + o()

]
–

λ

a
u(y)

]

dy
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

G(x, y)
f (y, u(y))

a

[
 + o()

]
dy

∣
∣
∣
∣

= o
(‖u‖), as ‖u‖ → . (.)

Now, we state the following result.

Lemma . (see []) Let E be a Banach space. Suppose that L is a compact linear operator
and that λ– ∈ σ (L) with odd multiplicity. If H satisfies condition (.), then the set

� =
{

(λ; u) ∈R× E : u = λLu + H(λ, u); u �= 
}

has a closed connected component C = Cλ such that (λ, ) ∈ C and
(i) C is unbounded in R× E, or

(ii) there exists λ̂ �= λ such that (λ̂; ) ∈ C and λ̂– ∈ σ (S).
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Suppose that λ is the principle eigenvalue to the problem

{
–�u = λ 

a
u, x ∈ �,

u|∂� = .

It is well known that the first eigenfunction φ associated to λ can be chosen positive.
Moreover, λ is an eigenvalue with odd multiplicity.

By the global bifurcation theorem, (H) guarantees that there exists a closed connected
component C = Cλ of solutions for (.)λ that satisfies (i) or (ii).

Lemma . There exists δ >  such that if (λ, u) ∈ C with |λ – λ| + |u| < δ and u �= , then
u has a defined sign, that is,

u(x) > , x ∈ � or u(x) < , x ∈ �.

Proof Take {un} in C(�) and λn → λ such that

un �= , ‖un‖ → , un = λnLuλn + H(λn, un). (.)

Considering wn = un/‖un‖, we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�wn = λn
a

wn + [
λnwn+ f (x,un)

‖un‖
a(

∫

� |un|γ dx) – λn
a

wn]
= λn

a
wn + [ λnwn+o()

a+o() – λn
a

wn]
= λn

a
wn + [ o()

a+o() ], x ∈ �,
wn(x) = , x ∈ ∂�.

(.)

It is easy to check that

‖wn‖C(�) ≤ 
a

[
λn + ‖un‖C(�) + K

]
,

where K is a positive constant.
Since that {un} is bounded in C(�), {wn} is also bounded in C(�). By the Arzelà-Ascoli

theorem, {wn} converges to some w ∈ C(�), uniformly in �, under a convenient subse-
quence. Of course, ‖w‖C(�) = , and thus w �=  in �.

Now, by (.) we know that {un} is a Cauchy sequence in C(�) and

wn = λnLwn +
H(λn, un)

‖un‖ .

Letting n → +∞, we have

w(x) =
λ

a

∫

�

G(x, y)w(y) dy,

that is,
{

–�w = λ
a

w, x ∈ �,
w(x) = , x ∈ ∂�.
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Since w �= , by spectral theory we must have

w(x) > , x ∈ � or w(x) < , x ∈ �.

Without loss of generality, we can suppose that w(x) >  for all x ∈ �. Since w is the
C(�)-limit of {wn}, we must have wn(x) >  for all x ∈ � and n large enough. Therefore,
the sign of un coincides with that of wn for n large enough. The proof is complete. �

Now we decompose C into C = C+ ∪ C–, where

C+ =
{

(λ, u) ∈ C|u(x) ≥ ,∀x ∈ �
}

and

C– =
{

(λ, u) ∈ C|u(x) ≤ ,∀x ∈ �
}

.

A simple computation gives that C+ = {(λ, u) ∈ C|(λ, –u) ∈ C–} and C+ is unbounded if
and only if C is also unbounded.

Theorem . If (H) holds, then there exists an unbounded closed connected component
C = Cλ of solutions for (.)λ.

Proof In fact, suppose that C is bounded, which implies that C+ is bounded and C contains
(λ̂, ), where λ̂ �= λ, λ̂– ∈ σ (L).

In this way, we can take {un} in C(�) and λn → λ̂ such that

λn �= , ‖un‖ →  and un = F(λn, un), (λn, un) ∈ C+.

Considering wn = un/‖un‖C(�), we know that it satisfies problem (.). Moreover, as in
the proof of Lemma ., under an adequate subsequence, {wn} converges to w in C(�),
which is a nonzero solution of the eigenvalue problem

{
–�w = λ̂ 

a
w, x ∈ �,

w =  on ∂�,

that is, w is an eigenfunction related to λ̂. Since λ̂ �= λ, w must change sign. Then, for n
large, each wn must change sign, and the same should hold for un = wn‖un‖C(�), which
contradicts to (λn, un) ∈ C+. The proof is complete. �

Now we consider the following special problem:

⎧
⎪⎨

⎪⎩

–�u = 
c+c(

∫

� |u|γ dx)α (λu – |u|p–u), x ∈ �,
u(x) > , x ∈ �,
u|∂� = ,

(.)λ

where γ > , � is a bounded smooth domain, and p > .
By Theorem . the connected component C+ of (.)λ is unbounded. Now we have

following theorem for (.)λ.
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Theorem . Suppose that p > max{αγ + ,γ – }. Then at least one positive solution of
(.)λ exists if and only if λ > λ.

Proof First, we will show that for any � > , there exists r >  such that

‖u‖H
(�) ≤ r, ∀(λ, u) ∈ C+ and λ ≤ �. (.)

From now on, we denote by ‖ · ‖ the usual norm in H
(�), that is,

‖u‖ = ‖u‖H
(�) ≤ r.

Indeed, suppose that (.) is false. Then, there are {un} ∈ H
(�) such that

‖un‖ → +∞ and un = F(λn, un), λn ≤ �.

Considering wn = un/‖un‖, it follows from (.) that

∫

�

∇wn · ∇v dx +


‖un‖


a(
∫

�
un(x)γ dx)

∫

�

up
nv dx

=
λn

a(
∫

�
un(x)γ dx)

∫

�

wnv dx, ∀v ∈ H
(�). (.)

Since that {wn} is bounded in H
(�), without loss of generality, we can suppose that there

is w ∈ H
(�) satisfying

wn → w in H
(�), wn → w in L(�),

and

wn(x) → w(x), a.e. in �.

Taking v = un/‖un‖p–αγ as a test function, (.) is


‖un‖p–αγ – +

∫

�
wp+

n dx
c‖un‖–αγ + c(

∫

�
wn(x)γ dx)α

=
∫

�
w

n dx
‖un‖p––αγ [c + c(

∫

�
un(x)γ dx)α]

.

Since p > αγ + , letting n → +∞, we derive

lim
n→+∞

∫

�
wp+

n dx
c‖un‖–αγ + c(

∫

�
wn(x)γ dx)α

= .

Since

∫

�
wp+

n dx
c‖un‖–αγ + c(

∫

�
wn(x)γ dx)α

≥
∫

�
wp+

n dx

c‖un‖–αγ + c(
∫

�
wn(x)p+ dx)

αγ
p+ |�| α(p+–γ )

p+
,
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we have

lim
n→+∞

∫

�
wp+

n dx

c‖un‖–αγ + c(
∫

�
wn(x)p+ dx)

αγ
p+ |�| α(p+–γ )

p+
= ,

which implies that

lim
n→+∞

∫

�

wp+
n dx = .

By the Fatou lemma

∫

�

w(x)p+ dx ≤ lim
n→+∞

∫

�

wn(x)p+ dx = .

Therefore, we should have w = . Thereby, {wn} converges to  in L(�). Taking v = wn as
a test function, we see that

∫

�

|∇wn| +


‖un‖[c + c(
∫

�
un(x)γ dx)α]

∫

�

un(x)pwn(x) dx

= λn


c + c(
∫

�
un(x)γ dx)α

∫

�

wn(x) dx.

Since {λn} is bounded from above by � and 
c+c(

∫

� un(x)γ dx)α
∫

�
un(x)pwn(x) dx ≥ , we

have
∫

�

|∇wn| ≤ �

c

∫

�

wn(x) dx.

Taking the limit, we have that ‖wn‖ → , which contradicts to ‖wn‖ =  for all n. Then
(.) is true, which, together with the boundedness of �, implies that

‖u‖C(�) ≤ r, ∀(λ, u) ∈ C+ and λ ≤ �.

Next, we will show the nonexistence of solution for λ ≤ λ, proving that C+ does not
intersect [,λ] × H

(�). Indeed, suppose that

(λ, u) ∈ [,λ] × H
(�), (λ, u) ∈ C+.

Using v = φ as a test function in (.), we get

λ

c + c(
∫

�
un(x)γ dx)α

∫

�

uφ dx >
λ

∫

�
uφ dx –

∫

�
upφ dx

c + c(
∫

�
un(x)γ dx)α

=
∫

�

∇u∇� dx =
λ

c

∫

�

uφ dx.

This is a contradiction.
Consequently, problem (.)λ has at least one positive solution if and only if λ > λ. The

proof is complete. �
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5 The positive solutions for singular nonlocal elliptic problems
In this section, we consider the singular elliptic equation

⎧
⎪⎨

⎪⎩

–a(
∫

�
|u(x)|γ dx)�u(x) + K(x)u–μ = λuq, x ∈ �,

u(x) > , x ∈ �,
u|∂� = ,

(.)λ

where γ > ,  > q > , � is a bounded domain in RN , N ≥ , with C,β boundary ∂�,
β ∈ (, ), K ∈ C,β (�), and  < q < , μ ∈ (, ).

Now we list some previous results for the following equation:

⎧
⎪⎨

⎪⎩

–�u(x) + K(x)u–μ = λuq, x ∈ �,
u(x) > , x ∈ �,
u|∂� = ,

(.)λ

where K ∈ C(�) and  < q < , μ ∈ (, ). Define

E =
{

u ∈ C,β (�) ∩ C(�) : u–μ ∈ L(�)
}

.

Theorem . (see []) Let K (x) < , x ∈ �. Then
(i) (.)λ has a unique solution uλ ∈ E for any λ ∈ R;

(ii) uλ is increasing with respect to λ;
(iii) cd(x) ≤ uλ(x) ≤ cd(x) for any x ∈ � and some c and c >  independent of x;
(iv) uλ ∈ C,–μ(�).

Theorem . (see []) Let minx∈� K(x) > . Then
(i) there exists λ∗ >  such that (.)λ has at least one positive solution uλ ∈ E for any

λ > λ∗;
(ii) cd(x) ≤ uλ(x) ≤ cd(x) for any x ∈ � and some c and c >  independent of x;

(iii) uλ ∈ C,–μ(�).

Using Theorems . and ., by Theorem . we have the following results for (.)λ.

Theorem . Let K (x) <  for all x ∈ �. Then
(i) (.) has at least one solution uλ ∈ E for any λ ≥ ;

(ii) cd(x) ≤ uλ(x) ≤ cd(x) for any x ∈ � and some c and c >  independent of x, and
uλ ∈ C,–μ(�).

Proof () For λ ≥ , we consider the problem

⎧
⎪⎨

⎪⎩

–a(
∫

�
|u(x)|γ dx)�u(x) + K(x)(u(x) + 

n )–μ = λuq, x ∈ �,
u(x) > , x ∈ �,
u|∂� = ,

(.)n

where n ∈ {, , . . .}.
Since μ ∈ (, ) and  < q < , there exists K >  such that

 >
maxx∈� |K(x)|K–α–

 + λKq–
 |e + |q∞

a
,
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that is,

K >
maxx∈� |K(x)|K–μ

 + λKq
 |e + |q∞

a
.

Let β(x) = K(e(x) + ). Then

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

–�(β(x)) = –K�(e(x) + )
= K

> maxx∈�
|K (x)|K–μ

 +λKq
 |e+|q∞

a

≥ –K (x)(β(x))–μ+λ(β(x))q

a
, x ∈ �,

β(x) = , x ∈ ∂�.

(.)

Let b = a(
∫

�
β(x)γ dx). Since  < q < , there exists 

n > εn >  small enough such that

εnλϕ(x) <


b

(

min
x∈�

(
–K(x)

)
(

εnϕ(x) +

n

)–μ

+ λ
(
εn

(
ϕ(x)

))q
)

, x ∈ �, (.)

and

εnϕ(x) < K
(
e(x) + 

)
, ∀x ∈ �. (.)

Let αn(x) = εnϕ(x). Then, for u ∈ C(�) ∩ C(�), (.), (.), and (.) imply that

⎧
⎪⎪⎨

⎪⎪⎩

–�(β(x)) > –K (x)(β(x))–μ+λβ(x)q

a

≥ –K (x)((β(x)+ 
n )q)–μ+λβ(x)q

a(
∫

� χ (x,u(x))γ dx) , x ∈ �,
β(x) =  > , x ∈ ∂�,

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–�(αn(x)) = ελϕ(x)
< 

b
(minx∈�(–K(x))(εnϕ(x) + 

n )–μ + (εnϕ(x))q)
≤ 

a(
∫

� χ (x,u(x))γ dx) (–K(x)(αn(x) + 
n )–μ + λ(αn(x))q), x ∈ �,

αn|∂� = ,

which means that αn(x) and β(x) are the subsolution and supersolution to (.)n. Now
Theorem . implies that (.)n has at least one positive solution un.

Now we consider set {un}. Since |un|∞ ≤ K|e + |∞, it follows that

λ

(

un(x) +

n

)q

– K(x)
(

un(x) +

n

)–μ

≥ min
x∈�

∣
∣K(x)

∣
∣

(

K
(|e + |∞

)
+


n

)–μ

,

and so
⎧
⎪⎪⎨

⎪⎪⎩

–�(un(x)) = 
a(

∫

� uγ
n (x) dx) (λun(x)q – K(x)(un(x) + 

n )–μ)

≥ 
b

minx∈� |K(x)|(K(|e + |∞) + 
n )–μ, x ∈ �,

un|∂� = .
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Lemma ., together with (.), implies there exists c >  such that

un(x) ≥ 
b

min
x∈�

∣
∣K(x)

∣
∣
(
K

(|e + |∞ + 
))–μe(x) ≥ cϕ(x), x ∈ �,

where b = a(
∫

�
βγ (x) dx). Then

∣
∣∇un(x)

∣
∣ ≤ 

a

∫

�

∣
∣Gx(x, y)

∣
∣
(

max
x∈�

∣
∣K(x)

∣
∣
(
cϕ(y)

)–μ + λ
(
K|e + |∞

)q
)

dy

and

∣
∣∇un(x) – ∇un(x)

∣
∣

≤ 
a

∫

�

∣
∣Gx(x, y) – Gx(x, y)

∣
∣
(

max
x∈�

∣
∣K(x)

∣
∣
(
cϕ(y)

)–μ + λ
(
K|e + |∞

)q
)

dy.

The same technique as in [], Theorem ., yields

∣
∣∇un(x) – ∇un(x)

∣
∣ ≤ C|x – x|–μ.

Therefore, un ∈ C,–μ(�). The sequence {un} has a subsequence {uni} such that

lim
ni→+∞ uni = uλ uniformly on �.

Now a straightforward calculation yields

{
–�(uλ(x)) = 

a(
∫

� uγ
λ (x) dx) (λuλ(x)q – K(x)u(x)–μ), x ∈ �,

uλ|∂� = .

() Suppose that uλ satisfies (.)λ. Let c = a(
∫

�
uγ

λ (x) dx) >  and v(x) = a(
∫

�
uγ

λ (x) dx) ×
uλ(x), x ∈ �. Then v(x) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–�v(x) + cμ
 K(x)u–μ = 

cq

λuq, x ∈ �,

v(x) > , x ∈ �,
v|∂� = .

Now Theorem . implies that there exist c and c >  independent of x such that

cd(x) ≤ vλ(x) ≤ cd(x) for any x ∈ �,

and so


a(

∫

�
uγ

λ (x) dx)
cd(x) ≤ uλ(x) ≤ 

a(
∫

�
uγ

λ (x) dx)
cd(x) for any x ∈ �.

Moreover, v ∈ C,–μ(�) implies that u ∈ C,–μ(�). The proof is complete. �
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Theorem . Let minx∈� K(x) > . Suppose that there exists ρ > 
–q such that

lim
t→+∞ a(t) = +∞ and lim

t→+∞
t/(ργ )

a(t)
= +∞. (.)

Then
(i) there exists λ∗ > ,such that (.) has at least one positive solution uλ ∈ E for any

λ > λ∗;
(ii) cd(x) ≤ uλ(x) ≤ cd(x) for any x ∈ � and some c and c >  independent of x, and

uλ ∈ C,–μ(�).

Proof For ϕ, by the Hopf maximum principle, there exist δ >  and � ⊂ � such that

|∇ϕ| ≥ δ, x ∈ �, |ϕ| ≥ δ, x ∈ � – �.

Then there exists M >  such that

M( – μ)|∇ϕ|
( + μ)ϕ

μ/(+μ)


≥ K∗

Mμ
 ϕ

μ/(+μ)


, x ∈ �, (.)

and there exists M >  such that

K∗

Mμ
 ϕ

μ/(+μ)


≤ λM

 + μ
ϕ


+μ

 , x ∈ � – �, (.)

where K∗ = maxx∈� K(x). By (.), choose M > max{M, M} large enough such that

a
(

Mγ

∫

�

ϕ(x)
γ

+μ dx
)

> . (.)

Combining (.) and (.), we have

–�Mϕ


+μ

 + K(x)
(
Mϕ


+μ


)–μ =

[
M

 + μ
λϕ


+μ

 –
( – μ)M|∇ϕ|
( + μ)ϕ

μ/(+μ)


]

+ K(x)


Mμϕ
μ

+μ



≤ M
 + μ

λϕ


+μ

 , x ∈ � – �,

and so

–�Mϕ


+μ

 ≤ M
 + μ

λϕ


+μ

 – K(x)
(
Mϕ


+μ


)–μ, x ∈ � – �.

Therefore, for n > ,

–�
(
Mϕ


+μ


) ≤ M

 + μ
λϕ


+μ

 – K(x)
(
Mϕ


+μ


)–μ

≤ M
 + μ

λ
(
ϕ


+μ


)

– K(x)
(

M
(

ϕ


+μ

 +

n

))–μ

, x ∈ � – �. (.)
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Let u∗
 (x) satisfy

{
–�u = uq, x ∈ �,
u|∂� = .

(.)

Now by (.) it follows that

lim
t→+∞

t
a(tγρ

∫

�
u∗

 (x)γ dx)
= +∞,

which implies that there exists T >  such that, for all t > T,

t
a(tγρ

∫

�
u∗

 (x)γ dx)
>

M–q

 + μ
λϕ

–q
+μ

 .

Let

T > max

{

T,
(

sup
x∈�

M(ϕ/(+μ)
 (x) + )

u∗
 (x)

)/ρ

, a(–)/(ρ(–q)–)


}

. (.)

For λ > T, let

uλ(x) = Mϕ


+μ

 (x) and uλ,(x) = λρu∗
 (x), x ∈ �.

It is easy to see that

uλ(x) ≤ uλ,(x) = λρu∗
 (x), x ∈ �. (.)

For u ∈ C(�), let

χ
(
x, u(x)

)
= uλ(x) +

(
u(x) – uλ(x)

)+ –
(
u(x) – uλ,(x)

)+.

Then

a ≤ a
(∫

�

∣
∣χ

(
x, u(x)

)∣
∣γ dx

)

≤ a
(

λγρ

∫

�

(
u∗

 (x)
)γ dx

)

.

Let

b = a
(

λγρ

∫

�

(
u∗

 (x)
)γ dx

)

.

From (.) we know that b > . By (.), (.), and (.), for u ∈ C(�)∩C(�), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�(uλ,(x)) = –�(λρu∗
 (x))

= λρ–ρq(λρu∗
 (x))q

= λ(–q)ρ–λ(uλ,(x))q

≥ 
a

λ(uλ,(x))q – 
a(

∫

�(χ (x,u(x)))γ dx) K(x)(uλ,(x) + 
n )–μ

≥ 
a(

∫

�(χ (x,u(x)))γ dx) [λ(uλ,(x))q – K(x)(uλ,(x) + 
n )–μ], x ∈ �,

uλ,(x) = λρ > , x ∈ ∂�,
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and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–�(uλ(x)) = –�(Mϕ


+μ

 (x))

≤ [ M
+μ

λϕ


+μ

 (x) – K(x)(Mϕ


+μ

 (x))–μ]

= 
b

[b
M–q

+μ
λϕ(x)

–q
+μ (uλ(x))q

– K(x)b(Mϕ


+μ

 (x))–μ]
≤ 

a(
∫

�(χ (x,u(x)))γ dx) [λ(uλ(x))q – K(x)(uλ(x) + 
n )–μ], x ∈ �,

uλ(x)|∂� = .

Hence, uλ(x) and uλ(x) are the subsolution and supersolution of (.)n. Now Theorem .
implies that for n ∈ {, , . . .}, (.)n has at least one solution uλ with

uλ(x) ≤ uλ,n(x) ≤ uλ,(x), x ∈ �.

Now we consider set {uλ,n}. From (.) we have

∣
∣∇uλ,n(x)

∣
∣ ≤ 

a

∫

�

∣
∣Gx(x, y)

∣
∣
(

max
x∈�

∣
∣K(x)

∣
∣
(
Mϕ(y)

)–μ/(+μ) + λ
(
λρ

∥
∥u∗


∥
∥
)q

)
dy

and

∣
∣∇uλ,n(x) – ∇uλ,n(x)

∣
∣

≤ 
a

∫

�

∣
∣Gx(x, y) – Gx(x, y)

∣
∣
(

max
x∈�

∣
∣K(x)

∣
∣
(
Mϕ(y)

)–μ/(+μ) + λ
(
λρ

∥
∥u∗


∥
∥
)q

)
dy.

The same technique as in [], Theorem ., yields

∣
∣∇uλ,n(x) – ∇uλ,n(x)

∣
∣ ≤ C|x – x|–μ/(+μ).

Therefore, un ∈ C,–μ/(+μ)(�). The sequence {un} has a subsequence {uni} such that

lim
ni→+∞ uni = uλ uniformly on �.

Now a straightforward calculation yields

{
–�(uλ(x)) = 

a(
∫

� uγ
λ (x) dx) (λuλ(x)q – K(x)uλ(x)–μ), x ∈ �,

uλ|∂� = .

() Suppose that uλ satisfies (.)λ. Let c = a(
∫

�
uγ

λ (x) dx) >  and v(x) = a(
∫

�
uγ

λ (x) dx) ×
uλ(x), x ∈ �. Then v(x) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–�v(x) + cμ
 K(x)u–μ = 

cq

λuq, x ∈ �,

v(x) > , x ∈ �,
v|∂� = .
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Now Theorem . implies that there exist c and c >  independent of x such that

cd(x) ≤ vλ(x) ≤ cd(x) for any x ∈ �,

and so


a(

∫

�
uγ

λ (x) dx)
cd(x) ≤ uλ(x) ≤ 

a(
∫

�
uγ

λ (x) dx)
cd(x) for any x ∈ �.

Moreover, v ∈ C,–μ(�) implies that u ∈ C,–μ(�). The proof is complete. �

6 Positive solutions for (1.1) when N = 1
In this section, we consider the case N = :

{
–u′′ = 

a(
∫

� |u|pdx) f (x, u), x ∈ (, ),
u() = u() = ,

(.)

and by using Theorem . we present sufficient and necessary conditions for the existence
of positive solutions for (.).

Now we list some conditions for convenience:

(H) f : (, ) × (, +∞) → (, +∞) is continuous, and there exist λ, μ, δ (–∞ < λ <  < μ <
,  < δ ≤ ) such that for all x ∈ (, ) and v ∈ (, +∞), we have

cμ
 f (x, v) ≤ f (x, cv) ≤ cλ

f (x, v),  ≤ c ≤ δ, (.)

cλ
f (x, v) ≤ f (x, cv) ≤ cμ

 f (x, v), c ≥ /δ. (.)

Now we state a result on the existence of positive solutions for the following problem
from []

{
–u′′ = f (x, u), x ∈ (, ),
u() = u() = .

(.)

Theorem . (see []) Suppose (H) holds. Then necessary and sufficient conditions for
the existence of positive solutions from C[, ] for the boundary value problem (.) are

 <
∫ 


x( – x)f (x, ) dx < ∞,

lim
x→

x
∫ 

x
( – s)f (s, ) dt =  if lim

x→

∫ 

x
( – s)f (s, ) ds = +∞, and

lim
x→

( – x)
∫ x


sf (s, ) ds =  if lim

x→

∫ x


sf (s, ) ds = +∞.

Theorem . (see []) Suppose (H) holds. Then a necessary and sufficient condition for
the existence of positive solutions from C[, ] for the boundary value problem (.) is

 <
∫ 


f
(
x, x( – x)

)
dx < ∞.
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Lemma . (see []) Suppose u ≥  is concave on [, ]. Then

u(t) ≥ |u|∞x( – x), t ∈ [, ].

By using the idea of the proof in [] sufficient and necessary conditions for the existence
of positive solutions to (.) are obtained.

Theorem . Suppose (H) holds. Then necessary and sufficient conditions for the exis-
tence of positive solutions from C[, ] for the boundary value problem (.) are

 <
∫ 


x( – x)f (x, ) dx < ∞,

lim
x→

x
∫ 

x
( – s)f (s, ) dt =  if lim

x→

∫ 

x
( – s)f (s, ) ds = +∞, and (.)

lim
x→

( – x)
∫ x


sf (s, ) ds =  if lim

x→

∫ x


sf (s, ) ds = +∞.

Proof Necessity. Suppose that u is a C[, ] positive solution to (.). Let v(x) =
a(

∫ 
 u(t)γ dt)u(x), and so v satisfies

{
–v′′ = f (x, v/a(

∫ 
 uγ

 (t) dt)) def= g(x, v), x ∈ (, ),
v() = v() = .

It is easy to see that g(x, v) satisfies (H), and Theorem . implies that

 <
∫ 


x( – x)g(x, ) dx < ∞,

lim
x→

x
∫ 

x
( – s)g(s, ) ds =  if lim

x→

∫ 

x
( – s)g(s, ) dt = +∞, and

lim
x→

( – x)
∫ x


sg(s, ) ds =  if lim

x→

∫ x


sg(s, ) ds = +∞,

which is equivalent to (.).
Sufficiency. Now we consider

{
–u′′ = 

a(
∫

� |u|pdx) f (x, u + 
n ), x ∈ (, ),

u() = u() = .
(.)n

Choose m ≥  such that m(μ – λ) >  and

 < m = m
μ – λ

μ – λ
< .

Let

h(x) = ( – x)
∫ x


sf (s, ) ds + ( – x)

∫ 

x
( – s)f (s, ) ds, ∀x ∈ [, ],
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and

H(x) = h(x)/[m(μ–λ)], x ∈ [, ],

and, by the proof of [], define

h(x) =
∫ 


G(x, s)

(
s( – s)

)μf (s, ) ds ≥ x( – x)|h|∞, ∀x ∈ [, ],

and

H(x) =
∫ 


G(x, s)

(
H(s)

)–μf
(
s, H(s)

)
ds + H(x), ∀t ∈ [, ],

where

G(x, s) =

{
s( – x),  ≤ s ≤ x ≤ ,
x( – s),  ≤ x ≤ s ≤ .

Let H∗ = maxx∈[,] H(x) and choose K >  large enough such that

Ka ≥ (
KH∗ + 

)μ, KH∗ >

δ

.

Let β(x) = KH(x), x ∈ [, ]. Inequalities (.) and (.) guarantee that

f
(

x,β(x) +

n

)

= f
(

x,
β(x) + 

n
H(x)

H(x)
)

≤
(

β(x) + 
n

H(x)

)μ

f
(
x, H(x)

)

≤ (
KH∗ + 

)μH(x)–μf
(
x, H(x)

)

≤ aKH(x)–μf
(
x, H(x)

)
, x ∈ (, ),

and so

⎧
⎪⎨

⎪⎩

–β ′′(x) ≥ KH(x)–μf (x, H(x))
≥ 

a
f (x,β(x) + 

n ), x ∈ (, ),
β() = β() = .

(.)

Let b = supt∈[,
∫ 

 βγ (t) dt] a(t). Let K be small enough such that

Kh(x) ≤ β(x), Kh(x) ≤  – δ, x ∈ [, ],

and

bK < δμ–λ
(
K|h|∞

)μ.
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Let α(x) = Kh(x), x ∈ [, ]. Inequalities (.) and (.) guarantee that

f
(

x,α(x) +

n

)

≥ δ–λf
(

x, δ
(

α(x) +

n

))

≥ δμ–λ

(

α(x) +

n

)μ

f (x, )

≥ δμ–λ
(
K|h|∞x( – x)

)μf (x, )

≥ bK
(
x( – x)

)μf (x, ), x ∈ (, ),

and so
⎧
⎪⎨

⎪⎩

–α′′(x) ≥ K(x( – x))μf (x, )
≤ 

b
f (x,α(x) + 

n ), x ∈ (, ),
α() = α() = .

(.)

For u ∈ C[, ], from (.) and (.) we have
⎧
⎪⎪⎨

⎪⎪⎩

–β ′′(x) ≥ 
a

f (x,β(x) + 
n )

≥ 
a(

∫ 
 χγ (t,u(t)) dt)

f (x,β(x) + 
n ), x ∈ (, ),∀u ∈ C[, ] ∩ C(, ),

β() = β() = ,

and
⎧
⎪⎪⎨

⎪⎪⎩

–α′′(x) ≤ 
b

f (x,α(x) + 
n )

≤ 
a(

∫ 
 χγ (t,u(t)) dt)

f (x,α(x) + 
n ), x ∈ (, ),∀u ∈ C[, ] ∩ C(, ),

α() = α() = .

Consequently, α and β are the subsolution and supersolution to (.)n. By Theorem .,
(.)n has at least one positive solution un with α(x) ≤ un(x) ≤ β(x), x ∈ [, ]. Moreover,
combining (.), (.), and (.), we have

∣
∣u′′

n(x)
∣
∣ =


a(

∫ 
 uγ

n (x) dx)
f
(

x, un(x) +

n

)

≤ 
a

δλ–μ

(
β(x) + 
α(x) + 

)–λ

aKH(x)–μf
(
x, H(x)

)

≤ δλ–μ

(
β(x) + 
α(x) + 

)–λ

KH(x)–μf
(
x, H(x)

)
, x ∈ (, ),

which guarantees that {u′
n(x)} are uniformly bounded on [ 

k ,  – 
k ] ⊆ (, ), k ≥ . There-

fore, {un(x)} has a uniformly convergent subsequence on any [ 
k ,  – 

k ] ⊆ (, ), k ≥ . By
the diagonal method there exists a subsequence of {un} that converges uniformly u on
any [ 

k ,  – 
k ] ⊆ (, ), k ≥ . Without loss of generality, assume that

lim
n→+∞ un(x) = u(x), x ∈ (, ), and

lim
n→+∞ un(x)=u(x) uniformly x ∈

[


k
,  –


k

]

, k ≥ .
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Obviously, u(x) is continuous on (, ), and

α(x) ≤ u(x) ≤ β(x), x ∈ [, ].

Since α() = β() = α() = β() = , we have

lim
x→

α(x) ≤ lim
x→

u(x) ≤ lim
x→

β(x) and

lim
x→

α(x) ≤ lim
x→

u(x) ≤ lim
x→

β(x),

which means that u is continuous on [, ] with u() = u() = . The dominated con-
vergence theorem guarantees that

lim
n→+∞

∫ 


uγ

n (x) dx =
∫ 


uγ

 (x) dx,

which, together with the continuity of a(t), means that

lim
n→+∞ a

(∫ 


uγ

n (x) dx
)

= a
(∫ 


uγ

 (x) dx
)

.

Since

un(x) = un

(


k

)

+ un

(

 –


k

)

+


a(
∫ 

 uγ
n (x) dx)

∫ – 
k


k

Gk(x, s)f
(

s, un(s) +

n

)

dx, x ∈
[


k

,  –


k

]

,

where

Gk(x, s) =

{
(s – 

k )( – 
k – x), 

k ≤ s ≤ x ≤  – 
k ,

(x – 
k )( – 

k – s), 
k ≤ x ≤ s ≤  – 

k ,

letting n → +∞, we have

u(x) = u

(


k

)

+ u

(

 –


k

)

+


a(
∫ 

 uγ
 (x) dx)

∫ – 
k


k

Gk(x, s)f
(
s, u(s)

)
dx, x ∈

[


k
,  –


k

]

, k ≥ .

Differentiating the above equations yields that

–u′′
(x) =


a(

∫ 
 uγ

 (x) dx)
f
(
x, u(x)

)
, x ∈

[


k
,  –


k

]

, k ≥ ,

which, together with u() = u() = , means that u ∈ C[, ] ∩ C(, ) and u is a solu-
tion to (.). �
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Theorem . Suppose (H) holds. Then a necessary and sufficient condition for the exis-
tence of a positive solution from C[, ] of (.) is

 <
∫ 


f
(
x, x( – x)

)
dx < ∞. (.)

Proof Necessity. Suppose that u is a positive solution. Let v = a(
∫ 

 uγ
 (t) dt)u(t), t ∈ [, ],

and so v satisfies
{

–v′′ = f (x, v/a(
∫ 

 uγ
 (t) dt)) def= g(x, v), t ∈ (, ),

v() = v() = .

It is easy to see g(x, v) satisfies (H), and Theorem . implies that

 <
∫ 


g
(
x, x( – x)

)
dx < ∞,

which is equivalent to (.).
Sufficiency. Let

h(x) = ( – x)
∫ x


sf

(
s, s( – s)

)
ds + ( – x)

∫ 

x
( – s)f

(
s, s( – s)

)
ds, ∀x ∈ [, ].

By Lemma . we can see that h(x) ≥ x( – x)|h|∞. From (.) we know that there exists
N >  such that

∫ 
 s( – s)f (s,  – s) ds ≤ N . Then

ax( – x) ≤ h(x) ≤ ax( – x), x ∈ [, ],

where a = min{,‖h‖}, a = max{, N}.
Let k >  large enough such that


a

aμ
 kμ–

 δλ–μ ≤ , ak > .

Inequalities (.) and (.) imply that


a

f
(
x,β(x)

)
=


a

f
(
x, kh(x)

)

=


a
f
(

x,
kh(x)

δx( – x)
δx( – x)

)

≤ 
a

(
kh(x)

δx( – x)

)μ

δλf
(
x, x( – x)

)

≤ 
a

aμ
 kμ–

 δλ–μkf
(
x, x( – x)

)

≤ kf
(
x, x( – x)

)
, x ∈ (, ). (.)

Let k < k be small enough such that

kμ–
 δλ–μaμ




a(
∫ 

 (kh(x))γ dx)
≥ , kh(t) ≤ .
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Inequalities (.) and (.) imply that


a(

∫ 
 (kh(x))γ dx)

f
(
x,α(x)

)
=


a(

∫ 
 (kh(x))γ dx)

f
(
x, kh(x)

)

=


a(
∫ 

 (kh(x))γ dx)
f
(

x,
kh(x)

δx( – x)
δx( – x)

)

≥ 
a(

∫ 
 (kh(x))γ dx)

(
kh(x)

δx( – x)

)μ

δλf
(
x, x( – x)

)

≥ 
a(

∫ 
 (kh(x))γ dx)

aμ
 kμ–

 δλ–μkf
(
x, x( – x)

)

≥ kf
(
x, x( – x)

)
, x ∈ (, ). (.)

Consequently, for u ∈ C[, ], (.) and (.) guarantee that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–β ′′(x) = –(kh(x))′′

= kf (x, x( – x))
≥ 

a
f (x,β(x))

≥ 
a(

∫ 
 χ (x,u(x))γ dx)

f (x,β(x)), x ∈ (, ),∀u ∈ C[, ] ∩ C(, ),

β() = β() = ,

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

–α′′(x) = –(kh(x))′′

= kf (x, x( – x))
≤ 

a(
∫ 

 β(x)γ dx)
f (x,α(x))

≤ 
a(

∫ 
 χ (x,u(x))γ dx)

f (x,α(x)), x ∈ (, ),∀u ∈ C[, ] ∩ C(, ),

α() = α() = .

Moreover, for α(x) ≤ u ≤ v(x), choose c >  large enough such that

cu
kx( – x)

≥ 
δ

and
k

c
≤ δ, x ∈ (, ).

So, from (.) and (.) we have

 ≤ f (x, u)

= f
(

x,
k

c
cu

kx( – x)
x( – x)

)

≤
(

k

c

)λ( cu
kx( – x)

)μ

f
(
x, x( – x)

)

≤
(

k

c

)λ

(ca)μf
(
x, x( – x)

)
,

which, together with (.), guarantees that

∫ 



∣
∣f (x, u)

∣
∣dx ≤

(
k

c

)λ

(ca)μ
∫ 


f
(
x, x( – x)

)
dx < +∞, ∀α(x) ≤ u ≤ v(x).
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By Theorem ., (.) has at least one positive solution u ∈ C[, ] with α(x) ≤ u(x) ≤ β(x),
x ∈ [, ]. �
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