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Abstract
In this article, we use linear algebra to improve the computational time for obtaining
Green’s functions of linear differential equations with reflection (DER). This is achieved
by decomposing both the ‘reduced’ equation (the ODE associated with a given DER)
and the corresponding two-point boundary conditions.
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1 Introduction
Differential operators with reflection have recently been of great interest, partly due to
their applications to supersymmetric quantum mechanics [–] or topological methods
applied to nonlinear analysis [].

In the last years, the works in this field have been related to either obtaining eigenvalues
and explicit solutions of different problems [–], their qualitative properties [, ], or ob-
taining the associated Green’s function [–]. In [], the authors described a method to
derive the Green’s function of a differential equation with constant coefficients, reflection
and two-point boundary conditions. This algorithm was implemented in Mathematica
(see []) in order to put it to a practical use. Unfortunately, it was soon observed that,
although theoretically correct, there were severe limitations when computing the Green’s
functions of problems of high order. In this respect, we have to point out that an nth-order
linear DER is reduced to a (n)th-order ordinary differential equation; see Theorem .
and compare equations (.) and (.). This particularity posses a great challenge since
the computational time increases greatly with n.

To sort this out, the best option is to go back from a (n)th-order problem to two prob-
lems of order n. This procedure, compared to solving directly the order n, is much faster.
Furthermore, it also happens that, in some cases, the decomposition provides two equiva-
lent problems or a problem and its adjoint. In those cases, the improvement is even more
notorious.

In the next section, we contextualize the problem with a brief introduction to differential
equations with reflection and state some basic results concerning the Green’s function
associated with them. In Section , we develop some theoretical results, which provide
a way of decomposing the DER we are dealing with. Finally, in Section , we establish a
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suitable decomposition for the boundary conditions, state criteria for self-adjointness of
the decomposed problem, and provide examples to illustrate the theory.

2 Differential equations with reflection
In order to establish a useful framework to work with these equations, we consider the
differential operator D, the pullback operator of the reflection ϕ(t) = –t, denoted by
ϕ∗(u)(t) = u(–t), and the identity operator Id.

Let T ∈ R
+ and I := [–T , T]. We now consider the algebra R[D,ϕ∗] consisting of the

linear operators of the form

L =
n∑

k=

(
akϕ

∗ + bk
)
Dk , (.)

where n ∈N, ak , bk ∈R, k = , . . . , n, which act as

Lu(t) =
n∑

k=

aku(k)(–t) +
n∑

k=

bku(k)(t), t ∈ I,

on any function u ∈ W n,(I). The operation in the algebra is the usual composition of
operators; we will omit the composition sign. We observe that Dkϕ∗ = (–)kϕ∗Dk for
k = , , . . . , which makes it a noncommutative algebra. We will consider, for convenience,
the sums

∑n
k= ≡∑k such that k ∈ {, , . . .}, but taking into account that the coefficients

ak , bk are zero for big enough indices.
Notice that R[D,ϕ∗] is not a unique factorization domain. For instance,

D –  = (D + )(D – ) = –
(
ϕ∗D + ϕ∗).

Let R[D] be the ring of polynomials with real coefficients on the variable D. The follow-
ing property is crucial for the obtaining of a Green’s function.

Theorem . ([], Theorem .) Take L be as defined in (.) and define

R :=
∑

k

akϕ
∗Dk +

∑

l

(–)l+blDl ∈R
[
D,ϕ∗]. (.)

Then RL = LR ∈R[D].

Remark . If S := RL =
∑n

k= ckDk , then

ck =

⎧
⎨

⎩
, k odd,


∑ k

 –
l= (–)l(alak–l – blbk–l) + (–) k

 (a
k


– b
k


), k even.

This implies that the reduced operator RL has only coefficients for the even powers of
the derivative, so the equation is self-adjoint. If the boundary conditions are appropriate
(we will clarify this statement in Theorem .), then the Green’s function is symmetric
[]. Observe that c = a

 – b
. Also, if L =

∑n
i=(aiϕ

∗ + bi)Di with an �=  or bn �= , then we
have that cn = (–)n(a

n – b
n). Hence, if an = ±bn, then cn = . This shows that composing
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two elements of R[D,ϕ∗], we can get another element that has simpler terms in the sense
of derivatives of lower order. This is quite difficult when computing the Green’s functions
since, in this case, we could have one, many, or no solutions of our original problem [].
The following example is quite illustrative.

Example . Consider the equation

x)(t) + x)(–t) = sin t, t ∈ I.

This equation cannot have a solution since the left-hand side is an even function whereas
the right-hand side is an odd function.

As we said before, S = RL is a usual differential operator with constant coefficients. Con-
sider now the following problem:

Su(t) :=
n∑

k=

akuk)(t) = h(t), t ∈ I,

Bku :=
n–∑

j=

[
αkjuj)(–T) + βkjuj)(T)

]
= , k = , . . . , n.

(.)

The existence of Green’s functions for problems such as (.) is a classical result (see, e.g.,
[]). Here we present it adapted to our framework.

Theorem . Assume that the following homogeneous problem has a unique solution:

Su(t) = , t ∈ I, Bku = , k = , . . . , n.

Then there exists a unique function, called Green’s function, such that:
(G) G is defined on the square I.
(G) The partial derivatives ∂k G

∂tk exist and are continuous on I for k = , . . . , n – .
(G) ∂n–G

∂tn– and ∂nG
∂tn exist and are continuous on I\{(t, t) : t ∈ I}.

(G) The lateral limits ∂n–G
∂tn– (t, t+) and ∂n–G

∂tn– (t, t–) exist for every t ∈ (a, b), and

∂n–G
∂tn–

(
t, t–) –

∂n–G
∂tn–

(
t, t+) =


an

.

(G) For each s ∈ (a, b), the function G(·, s) is a solution of the differential equation
Su =  on I\{s}.

(G) For each s ∈ (a, b),the function G(·, s) satisfies the boundary conditions Bku = ,
k = , . . . , n.

Furthermore, the function u(t) :=
∫ b

a G(t, s)h(s) ds is the unique solution of problem (.).

Now we can state the result that relates the Green’s function of a problem with reflection
to the Green’s function of its associated reduced problem.

In order to do that, given an operator L defined on some set of functions of one variable,
we will define the operator L� as L�G(t, s) := L (G(·, s))|t for every s and any suitable
function G of two variables.
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Theorem . ([]) Let I = [–T , T]. Consider the problem

Lu(t) = h(t), t ∈ I, Biu = , k = , . . . , n, (.)

where L is defined as in (.), h ∈ L(I), and

Bku :=
n–∑

j=

[
αkjuj)(–T) + βkjuj)(T)

]
, k = , . . . , n.

Then, there exists R ∈R[D,ϕ∗] (as in (.)) such that S := RL ∈R[D], and the unique solu-
tion of problem (.) is given by

∫ b
a R�G(t, s)h(s) ds, where G is the Green’s function associ-

ated with the problem

Su = , (.)

Bku = , k = , . . . , n, (.)

BkRu = , k = , . . . , n, (.)

assuming that it has a unique solution.

As stated in Section , Theorem . was implemented in Mathematica in []. We now
proceed to describe some steps that could be added to the algorithm in order to improve it.

3 Decomposing the reduced equation
The computation of Green’s functions is prohibitive in computation time terms [],
mostly for high-order equations, so it is necessary to find ways to palliate this problem.
Our approach consists of decomposing our problem in order to deal with equations of
lower order.

First, observe that from Remark . we know that the reduced equation has no deriva-
tives of odd indices. For convenience, if p is a real (complex) polynomial, then we denote
by p– the polynomial with the same principal coefficient and opposite roots.

Lemma . Let n ∈ N, and let p(x) =
∑n

k= αkxk be a real polynomial of order n. Then
there is a complex polynomial q of order n such that p = αnqq–. Furthermore, if p̃(x) =∑n

k= αkxk has no negative roots, then q is a real polynomial.

Proof First, observe that p is a polynomial on x, and therefore, if λ is a root of p, so is
–λ. Hence, using the fundamental theorem of algebra, the first part of the result can be
derived by separating the monomials that compose p in two different polynomials with
opposite roots.

Let us explicitly show that in the case p̃ has no negative roots, q is a real polynomial.
Take the change of variables y = x. Then, p(x) = p̃(y), and, by the fundamental theorem

of algebra,

p̃(y) =
n∑

k=

αkyk

= αnyσ
(
y – λ


) · · · (y – λ

m
)(

y + λ
m+
)

· · · (y + λ
m
)(

y + μy + ν

) · · · (y + μly + ν

l
)
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for some integers σ , m, m, l and real numbers λ, . . . ,λm, ν, . . . ,νl , μ, . . . ,μl such that
λk >  and νk > |μk|/ for every k in the appropriate set of indices. The terms of the form
y + μky + ν

k correspond to the pairs of complex roots of the polynomial. This means that
the discriminant 	 = μ

k – νk < , that is, νk > |μk|/.
Hence,

p(x) = αnxσ
(
x – λ


) · · · (x – λ

m
)(

x + λ
m+
)

· · · (x + λ
m
)(

x + μx + ν

) · · · (x + μlx + ν

l
)
.

Now we have

(
x – λ

k
)

= (x + λk)(x – λk),
(
x + λ

k
)

= (x + λki)(x – λki), and
(
x + μkx + ν

k
)

=
(
x – x

√
νk – μk + νk

)(
x + x

√
νk – μk + νk

)

for any k in the appropriate set of indices. Define

q(x) = xσ (x – λ) · · · (x – λm)(x – λm+i) · · · (x – λmi)
(
x – x

√
ν – μ + ν

)

· · · (x – x
√

νl – μl + νl
)

and

q–(x) = xσ (x + λ) · · · (x + λm)(x + λm+i) · · · (x + λmi)
(
x + x

√
ν – μ + ν

)

· · · (x + x
√

νl – μl + νl
)
.

We have that p = αnqq–.
Observe that if λ is a root of p, then λ is a root of p̃. Hence, if p̃ has no negative roots,

then p has no roots of the form λ = ai with a �= . Thus,

p(x) = αnxσ
(
x – λ


) · · · (x – λ

m
)(

x + μx + ν

) · · · (x + μlx + ν

l
)
,

q(x) = xσ (x – λ) · · · (x – λm)
(
x – x

√
ν – μ + ν

) · · · (x – x
√

νl – μl + νl
)
,

q–(x) = xσ (x + λ) · · · (x + λm)
(
x + x

√
ν – μ + ν

) · · · (x + x
√

νl – μl + νl
)
,

that is, q is a real polynomial. �

Remark . Descartes’ rule of signs establishes that the number of positive roots (with
multiple roots counted separately) of a real polynomial on one variable either is equal to
the number of sign differences between consecutive nonzero coefficients or is less than it
by an even number, provided that the terms of the polynomial are ordered by descending
variable exponent. This implies that for a polynomial p(x) to have no negative roots, it
suffices that all coefficients of p(–x) are positive, that is, p(x) has positive even coefficients
and negative odd coefficients.

There exist algorithmic ways of determining the exact number of positive (or real) roots
of a polynomial. For more information on this issue, see, for instance, [–].
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The following lemma establishes a relation between the coefficients of q and q–.

Lemma . Let n ∈N, and let q(x) =
∑n

k= αkxk be a complex polynomial. Then

q–(x) =
n∑

k=

(–)k+nαkxk .

Proof We proceed by induction. For n = , q(x) = α(x – λ). Clearly, q has the root λ, and
q–(x) = α(x + λ) = (–)+αx + (–)αλ has the root –λ.

Assume that the result is true for some n ≥ . Then, for n + , q is of the form q(x) =
(x – λn+)r(x), where r(x) =

∑n
k= αkxk is a polynomial of order n, that is,

q(x) = (x – λn+)
n∑

k=

αkxk = xn+ +
n∑

k=

[αk– – λn+αk]xk – λn+α.

Now, q–(x) = (x + λn+)r–(x). Since the formula is valid for n,

q–(x) = (x + λn+)r–(x) = (x + λn+)
n∑

k=

(–)k+nαkxk

= xn+ +
n∑

k=

(–)k+n+[αk– – λn+αk]xk – (–)n+λn+α.

So the formula is valid for n +  as well. �

Remark . The result can be directly proven by considering the last statement in Re-
mark .. If we take a polynomial p(x) = a(x –λ) · · · (x –λn), then the polynomial p(–x) has
exactly opposite roots. In fact, p(–x) = a(–x – λ) · · · (–x – λn) = (–)na(x + λ) · · · (x + λn).
It is easy to check that the coefficients of p(–x) are precisely as described in Lemma .
save for the factor (–)n.

This last lemma allows the computation of the polynomials q and q– related to the poly-
nomial RL on the variable D using the formula given in Remark .. We will assume that
RL is of order n, that is, a

n – b
n �= . Otherwise, the problem of computing q and q– would

be the same, but these polynomials would be of lower order. Also, assume that RL, con-
sidered as a polynomial on D, has no negative roots in order for q to be a real polynomial.
If L =

∑n
k=(akϕ

∗ + bk)Dk and q(D) = Dn +
∑n–

k= αkDk , then

RL =
n∑

k=

ckDk = (–)n(a
n – b

n
)
q(D)q–(D).

This relation establishes the following system of quadratic equations:

ck = 
k–∑

l=

(–)l(alak–l – blbk–l) + (–)k(a
k – b

k
)

=
(
a

n – b
n
)
[


k–∑

l=

(–)l(αlαk–l) + (–)kα
k

]
, k = , . . . , n,
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where ak , bk ,αk =  if k /∈ {, . . . , n} and αn = . These are n equations with n unknowns
α, . . . ,αn. We present here the case of n =  to illustrate the solution of these equations.

Example . For n = , we have that

RL =
(
a

 – b

)
D +

(
–a

 + aa + b
 – bb

)
D + a

 – b
,

(
a

 – b

)
q(D)q–(D) =

(
a

 – b

)
D +

(
α – α


)(

a
 – b


)
D + α


(
a

 – b

)
,

and the system of equations is

a
 – b

 =
(
a

 – b

)
α

,

–a
 + aa + b

 – bb =
(
a

 – b

)(

α – α

)
.

(.)

Before computing the solutions, let us state explicitly the limitations that RL, considered
as an order  polynomial on D, that is, RL(x) = ax + bx + c, has no negative roots implies.
There are two options:

(I) There are two complex roots, that is, 	 = b – ac < . This is equivalent to
ac >  ∧ |b| < 

√
ac or, expressed in terms of the coefficients of RL,

(
b

 –a

)(

b
 –a


)

>  and
∣∣–a

 +aa +b
 –bb

∣∣ < 
√(

b
 – a


)(

b
 – a


)
.

(II) There are two nonnegative roots, that is, 	 = b – ac ≥ , and

(
–b +

√
b – ac

)
/(a) ≤ .

This is equivalent to (a, c ≥  ∧ –b ≥ 
√

ac) ∨ (a, c ≤  ∧ b ≥ 
√

ac) or, expressed in
terms of the coefficients of RL,

[(
b

 – a

)
,
(
b

 – a

)≥ ∧–

(
–a

 + aa + b
 – bb

)≥ 
√(

b
 – a


)(

b
 – a


)]

or

[(
b

 –a

)
,
(
b

 –a

)≤ ∧–

(
–a

 +aa +b
 –bb

)≥ 
√(

b
 – a


)(

b
 – a


)]

.

Now, with these conditions, the solutions of the system of equations (.) are as follows.
Case (I). We have two solutions:

α =

√
b

 – a


b
 – a


,

α = ±

√√√√ sign(a
 – b

)
√

(b
 – a

)(b
 – a

) – (–a
 + aa + b

 – bb)

a
 – b


.

Case (II). We have four solutions depending on whether we choose ξ =  or ξ = –:

α = ξ

√
b

 – a


b
 – a


,
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α = ±

√√√√ξ sign(a
 – b

)
√

(b
 – a

)(b
 – a

) – (–a
 + aa + b

 – bb)

a
 – b


.

These solutions provide well-defined real numbers by conditions (I) and (II).

4 Decomposing the boundary conditions
Now we consider the cases where the problem can be decomposed into two equations. We
will try to identify those circumstances when problem (.)-(.)-(.) can be expressed
as an equivalent factored problem of the form

Lu = y, Vju = , j = , . . . , n, (.)

Ly = Rh, Ṽjy = , j = , . . . , n, (.)

where S = LL. If that where the case, then conditions (.)-(.) would be equivalent to

Vju = , ṼjLu = , j = , . . . , n. (.)

In this case, the Green’s function of problem (.)-(.)-(.) can be expressed as

G(t, s) =
∫ T

–T
G(t, r)G(r, s) dr,

where G is the Green’s function associated with problem (.), and G is the one associ-
ated with problem (.), assuming that both Green’s functions exist.

In order to guarantee that (.)-(.) and (.) are equivalent, let us establish the follow-
ing definitions. Let

� := (αkj)
j=,...,n–
k=,...,n , Xn :=

(
u(T), u′(T), . . . , u(n–)(T)

)
,

� := (βkj)
j=,...,n–
k=,...,n , Xn :=

(
u(–T), u′(–T), . . . , u(n–)(–T)

)
.

Then the boundary conditions (.) can be expressed as �Xn + �Xn = . In the same
way, (.) can be written as (� �)Xn +(� �)Xn =  for some matrices �,�,�,� ∈
Mn(R). So, globally, the conditions on equation (.) can be expressed as

(
� 
� �

)
Xn +

(
� 
� �

)
Xn = . (.)

Now, assume that L and Ṽj are of the form

L =
n∑

l=

clDl,

Ṽju =
n–∑

k=

[
γjkuk)(–T) + δjkuk)(T)

]
=

n–∑

k=

[
γjk(–T)∗ + δjkT∗]Dku, j = , . . . , n
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for some cl,γjk , δjk ∈ R, l, j, k = , . . . , n, where a∗ denotes the pullback by the constant a.
Define now � := (γjk)j,k ,� := (δjk)j,k ∈ Mn(R), and

� = (djk)k=,...,n–
j=,...,n– :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c c c · · · cn– cn   · · · 
 c c · · · cn– cn– cn  · · · 
  c · · · cn– cn– cn– cn · · · 
...

...
...

. . .
...

...
...

...
. . .

...
   · · · c c c c · · · cn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=
(
� �

) ∈ Mn×n(R),

where �,� ∈ Mn(R), � is invertible (because cn �= ), and � is invertible if and only if
c �= .

Now we are ready to start the calculations. We have that

(ṼjLu)j =

( n–∑

k=

[
γjk(–T)∗ + δjkT∗]Dk

n∑

l=

clDlu

)

j

=

( n–∑

k=

n∑

l=

[
γjkcl(–T)∗ + δjkclT∗]Dk+lu

)

j

=

( n–∑

k=

k+n∑

m=k

[
γjkcm–k(–T)∗ + δjkcm–kT∗]Dmu

)

j

=

( n–∑

k=

n–∑

m=

[
γjkdkmu(m)(–T) + δjkdkmu(m)(T)

]
)

j

=

( n–∑

k=

γjkdkm

)

j,m

Xn +

( m∑

k=

δjkdkm

)

j,m

Xn = ��Xn + ��Xn.

Hence, we can write (.) in the form
(

�̃ 
�� ��

)
Xn +

(
�̃ 

�� ��

)
Xn = . (.)

Clearly, it is convenient to take �̃ = � and �̃ = �, that is, Vj = Bj, j = , . . . , n.

Lemma . If � and � are invertible and � = ��
–
 � + ��

–
 � – ��

–
 ��

–
 �,

then, taking

�̃ = �, �̃ = �, � = Id, and � = ��
–
 ��

–
 ,

condition (.) is equivalent to condition (.), and, therefore, problems (.)-(.)-(.)
and (.)-(.) are equivalent.

Proof Let

A =

(
Id 

(� – ��
–
 �)�–

 ��
–


)
.
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The matrix A is invertible, and
(

�̃ 
�� ��

)
= A

(
� 
� �

)
,

(
�̃ 

�� ��

)
= A

(
� 
� �

)
.

Hence, conditions (.) and (.) are equivalent. �

Analogously, we have a result when � and � are invertible.

Lemma . If � and � are invertible and � = ��
–
 � + ��

–
 � – ��

–
 ��

–
 �,

then, taking

�̃ = �, �̃ = �, � = Id, and � = ��
–
 ��

–
 ,

condition (.) is equivalent to condition (.), and, therefore, problems (.)-(.)-(.)
and (.)-(.) are equivalent.

The following example illustrates this discussion explicitly.

Example . Consider the following problem:

u′′′(t) + u(–t) + u(t) = h(t), t ∈ I,

u(–) – u′′() = , u′(–) = u′(), u′′(–) – u() = ,
(.)

where h(t) = sin t. Then, the operator we are studying is L = D + ϕ∗ + . If we take R :=
D + ϕ∗ – , then we have that RL = D, which admits a simple decomposition in R[D] as
RL = (D)(D) = LL.

The boundary conditions are

[
(–)∗ – ∗D]u = ,

[
(–)∗D – ∗D

]
u = ,

[
(–)∗D – ∗]u = .

Taking this into account, we add the conditions

 =
[
(–)∗ – ∗D]Ru = u′′′(–) – u()(),

 =
[
(–)∗D – ∗D

]
Ru = u()(–) – u()(),

 =
[
(–)∗D – ∗]Ru = u()(–) – u′′′().

Then our new reduced problem, writing the boundary conditions in matrix form, is

u()(t) = f (t),
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

     
     
     
     
     
     

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(–)
u′(–)
u′′(–)
u′′′(–)
u()(–)
u()(–)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(.)
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+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

  –   
 –    

–     
     –
    – 
   –  

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u()
u′()
u′′()
u′′′()
u()()
u()()

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ,

where f (t) = Rh(t) = h′′′(t) + h(–t) – h(t) = – sin t.
Now, we can check that we are working under the conditions of Lemma .. We have

that � = � = Id, � = � = , and

� = � =

⎛

⎜⎝
  –
 – 

–  

⎞

⎟⎠ .

On the other hand,

� = (��) =

⎛

⎜⎝
     
     
     

⎞

⎟⎠ .

Thus, it is straightforward to check that

��
–
 � + ��

–
 � – ��

–
 ��

–
 � = � = ,

and therefore the hypotheses of Lemma . are satisfied. The conditions Ṽj are given by
the matrices � = Id and � = ��

–
 ��

–
 = �. Hence, we know that this problem is

equivalent to the factored system

u′′′(t) = v(t), u(–) – u′′() = ,

u′(–) = u′(), u′′(–) – u() = ,
(.)

v′′′(t) = – sin t, v(–) – v′′() = ,

v′(–) = v′(), v′′(–) – v() = .
(.)

Thus, it is clear that

u(t) =
∫ 

–
G(t, s)v(s) ds, v(t) =

∫ 

–
G(t, s)f (s) ds,

where G = G are, respectively, the Green’s functions of (.) and (.). The Green’s func-
tions of problems involving linear ordinary differential equations with constant coeffi-
cients and two-point boundary conditions can be computed with the Mathematica note-
books [] or []. Explicitly,

G(t, s) =

⎧
⎨

⎩
– 

 (s – t)(s(t – ) + t – ), – ≤ s ≤ t ≤ ,

– 
 (s – t)((s – )t + s – ), – < t < s ≤ .
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Hence, the Green’s function G for problem (.) is given by

G(t, s) =
∫ 

–
G(t, r)G(r, s) dr

=




⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(t + ) – s(t(t + ) + )

+ st(t + ) – s(t(t + ) – )

+ st(t(t(t + ) + ) – ) – t

– t + t – , – < t < s ≤ ,

–s – s – (s(s + ) – )t

+ (s(s(s + ) + ) – )st

+ s + (s + )t – (s(s + ) + )t

+ (s + )st – , – ≤ s ≤ t ≤ .

Therefore, using Theorem ., the Green’s function for problem (.) is

G(t, s) = R�G(t, s) =
∂G
∂t (t, s) + G(–t, s) + G(t, s)

=




⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–(s – )t + (s – )st + (s – )t – (s – )s

– (s – s + s + s – s + )t, – ≤ |t| ≤ s ≤ ,

s(–(t – )) + s(t – )t – s(t – ) + (t – )t

+ s(–t + t – t + t + t + ), – ≤ |s| < t ≤ ,

s(–(t + )) – st(t + ) – s(t + ) – t(t + )

– s(t + t + t – t – t – ), – ≤ |s| < –t ≤ ,

–(s + )t – s(s + )t + (s + )t + s(s + )

– (s + s + s + s – s + )t, – ≤ |t| ≤ –s ≤ .

Hence, the solution of problem (.) is given by

u(t) =
∫ 

–
G(t, s) sin(s) ds

= –



(
– – t – t + t + t) sin()

+


(
t – t – 

)
cos() +  sin(t) + cos(t).

Computationally, this procedure poses a big advantage: it is always easier to obtain the
Green’s function for two nth-order problems than for one (n)th-order problem. Further-
more, if the hypotheses of Lemma . are satisfied and we are able to obtain a factorization
of the aforementioned kind using q and q– in the place of L and L, then we have an extra
advantage: the differential equation given by q– is the adjoint equation of that given by
q multiplied by the factor (–)n. This fact, together with the following result (which can
be found, although not stated as in this work, in []), illustrates that in this case it may
be possible to solve problem (.) just computing the Green’s function of one nth-order
problem.
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Theorem . Consider an interval J = [a, b] ⊂ R, functions σ , ai ∈ L1(J), i = , . . . , n, real
numbers αij, βij, hi, i = , . . . , n, j = , . . . , n – , a vector subspace D(Ln) ⊂ W n,(J), the oper-
ator

Lnu(t) = au(n)(t) + a(t)u(n–)(t) + · · · + an–(t)u′(t) + an(t)u(t), t ∈ J , u ∈ D(Ln),

with a = , and the problem

Lnu(t) = σ (t), t ∈ J , Ui(u) = hi, i = , . . . , n, (.)

where

Ui(u) :=
n–∑

j=

(
αiju(j)(a) + βiju(j)(b)

)
, i = , . . . , n.

Then, the associated adjoint problem is

L†
nv(t) =

n∑

j=

(–)jan–j(t)u(j)(t), t ∈ J , v ∈ D
(
L†

n
)
, (.)

where

D
(
L†

n
)

=

{
v ∈ W n,(J) :

(
b∗ – a∗)

( n∑

j=

j–∑

i=

(–)(j–i–)(an–jv)j–i–u(i)

)
= , u ∈ D(Ln)

}
.

Furthermore, if G(t, s) is the Green’s function of problem (.), then that associated with
problem (.) is G(s, t).

Hence, if we can decompose problem (.)-(.)-(.) in two adjoint problems of the
form (.)-(.), then its Green’s function is

G(t, s) =
∫ T

–T
G(t, r)G(r, s) dr =

∫ T

–T
G(t, r)G(s, r) dr,

where G is the Green’s function of (.), and G(t, s) = G(s, t) is that of (.). We note,
though, that unless the operator q– is the adjoint equation times (–)n, the boundary con-
ditions may not be the adjoint ones.

Example . Consider the problem

u′(–t) + u(t) +
√

u(–t) = f (t) := et , t ∈ [–, ], u(–) = u(). (.)

Taking R = ϕ∗D +
√

ϕ∗ – Id and composing problem (.) with this operator, we obtain
the reduced problem

u′′(t) – u(t) = Rf (t), t ∈ [–, ], u(–) = u(), u′(–) = u′(). (.)
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Problem (.) is equivalent to the factored system

u′(t) + u(t) = v(t), u(–) = u(), (.)

–v′(t) + v(t) = –Rf (t), v(–) = v() (.)

for t ∈ [–, ]. Observe that problem (.) is the adjoint problem of (.). Since the
Green’s function of problem (.) is given by

G(t, s) :=

⎧
⎨

⎩

es–t+

e– , – ≤ s ≤ t ≤ ,
es–t

e– , – < t < s ≤ ,

and, therefore, G(s, t) is the Green’s function of problem (.), the Green’s function of
problem (.) is

G(t, s) = –
∫ 

–
G(t, r)G(s, r) dr =

⎧
⎨

⎩
– es–t++et–s

e– , – ≤ s ≤ t ≤ ,

– es–t+e–s+t+

e– , – < t < s ≤ .

Finally, the Green’s function of problem (.) is

G(t, s) = R�G(t, s) =
∂G
∂t

(–t, s) +
√

G(–t, s) – G(t, s)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e–s–t [(
√

–)(–e(s+t+))+es++et–
√

–]
(e–) , |t| ≤ –s,

e–s–t [(
√

–)(–e(s+t))+es++et–(+
√

)e]
(e–) , |s| < t,

e–s–t [(
√

–)(–e(s+t+))+es+et+–
√

–]
(e–) , |s| < –t,

e–s–t [(
√

–)(–e(s+t))+es+et+–(+
√

)e]
(e–) , |t| ≤ s.

Hence, the solution of problem (.) is

u(t)

:= –
e–t(–( +

√
)t + e(( +

√
)t + 

√
) + et(–t + e(t +

√
 – ) –

√
) +

√
 + )

(e – )
.
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