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Abstract

Applying the eigenvalue theory and theory of a-concave operator, we establish
some new sufficient conditions to guarantee the existence and continuity of positive
solutions on a parameter for a second-order impulsive differential equation.
Furthermore, two nonexistence results of positive solutions are also given. In
particular, we prove that the unique solution uy (t) of the problem is strongly
increasing and depends continuously on the parameter A.
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1 Introduction

We consider the second-order impulsive differential equation

W'(6) + Ao(O)f w(t)) =0, £€(0,1),t
u(ty) —ulty) = aqults), k=1,2,...,n, (1.1)
W(0)=0,  au()+bu'(1) = [, gOult)dt,

where A > 0,w € L?[0,1] for some 1 < p < +o0, f € C(R*,R*),R* = [0,+00], 4 (k =
1,2,...,n) are fixed points with 0 < 1 <t <+ <ty <--- <t, <La,b >0, {cx} is a real
sequence with ¢y > -1,k =1,2,...,1, x(tf) (k = 1,2,...,n) denotes the right-hand limit of
x(t) at t = t, and g € C[0, 1] is a nonnegative function. In addition, we assume that o, f, ¢,

and g satisfy

(Hy) w € L?[0,1] for some 1 < p < +00, and there exists & > 0 such that w(t) > & a.e. on J;

(H2) f € C([0, +00), [0, +00)) with f(0) = 0 and f(u) > O for u > 0, {cx} is a real sequence
with ¢x > -1, k=1,2,...,n,and c(£) := o (1 + ci);

(Hs) g < C[0,1] is nonnegative with

1
7 ::/ gt)c(t)dt € [O,ac(l)). (1.2)
0
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Remark 1.1 We always assume that the product c() := I, (1 + ¢) equals unity if the
number of factors is equal to zero, and let

¢y = max c(t), ¢y = minc¢(2), M) = Mocg (1 + )™
te] te]

Remark1.2 Combining (H;) and the definition of ¢(£), we know that ¢(¢) is a step function,

which is bounded on J, and

c(t)>0, Vte], c(t)=1, Vte0,t4].

Such problems were first studied by Zhang and Feng [1]. By using transformation tech-
nique to deal with impulse term of second-order impulsive differential equations, the au-
thors obtained existence results of positive solutions by using fixed point theorems in a
cone. However, they only considered the case w(f) =1 on ¢ € [0,1]. The other related re-
sults can be found in [2-14]. However, there are almost no papers on second-order bound-
ary value problems, especially second-order boundary value problems with impulsive ef-
fects, using the eigenvalue theory. In this paper, we solve this problem.

The first goal of this paper is to establish several criteria for the optimal intervals of
the parameter A so as to ensure the existence of positive solutions for problem (1.1). Our
method is based on transformation technique, Hoélder’s inequality, and the eigenvalue the-
ory and is completely different from those used in [1-14].

Another contribution of this paper is to study the expression and properties of Green’s
function associated with problem (1.1). It is interesting to point out that the Green’s func-
tion associated with problem (1.1) is positive, which is different from that of [15].

Moreover, we give two nonexistence results. The arguments that we present here are
based on geometric properties of the super-sublinearity of f at zero and infinity, which
was first used by Sénchez in [16] (see Properties 1.1-1.2).

For convenience, we introduce the following notations:

fo=lim '@, foo= lim '@

u—0*t Y u—>+00 Y

The following geometric Properties 1.1-1.2 will be very important in our arguments.
Property 1.1 If fj = +00 and fi, = +00, then there exists R > 0 such that

@ = min@.

R nin™— 1.3)
Let R be a point where f attains its maximum on the interval (0, R].
Property 1.2 If f; = 0 and f, = 0, then there exists R > 0 such that
R
JQ = maxM. (1.4)
R w0 U

Finally, we are able to obtain the uniqueness results of problem (1.1) by using theory
of a-concave operators. We also obtain the following analytical properties: the unique
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solution u, (¢) of the above problem is strongly increasing and depends continuously on
the parameter A.

The rest of this paper is organized as follows. In Section 2, we provide some necessary
background. In particular, we introduce some lemmas and definitions associated with the
eigenvalue theory and theory of «-concave (or —«a-convex) operators. Several technical
lemmas are given in Section 3. In Section 4, we establish the existence and nonexistence
of positive solutions for problem (1.1). In Section 5, we prove the uniqueness of a positive
solution for problem (1.1) and its continuity on a parameter . In Section 6, we offer some
remarks and comments on the associated problem (1.1). Finally, in Section 7, two examples
are also included to illustrate the main results.

2 Preliminaries
In this section, we collect some known results, which can be found in the book by Guo
and Lakshmikantham [17].

Definition 2.1 Let E be a real Banach space over R. A nonempty closed set P C E is said
to be a cone if

(i) au+bvePforallu,ve Pandalla > 0,b > 0, and

(i) ©,—u € Pimplies u = 0.

Definition 2.2 A cone P of a real Banach space E is a solid cone if P° is not empty, where
Pe is the interior of P.

Every cone P C E induces a semiorder in E given by “<” That is, x < y if and only if
y—x € P.Ifa cone P is solid and y — x € P°, then we write x < y.

Definition 2.3 A cone P is said to be normal if there exists a positive constant § such that
lx+yll =8, VayeP =11yl =L

Geometrically, normality means that the angle between two positive unit vectors is
bounded away from . In other words, a normal cone cannot be too large.

Lemma 2.1 Let P be a cone in E. Then the following assertions are equivalent:
(i) P is normal;
(ii) There exists a constant vy > 0 such that

e+ yll = y max{lixll, [y}, Vx,y € P;

(ili) There exists a constant n > 0 such that 0 < x <y implies that ||x|| < n|ly|, that is,

the norm || - || is semimonotone;
(iv) There exists an equivalent norm || - ||; on E such that 0 < x <y implies that
llxll1 < |lyll1, that is, the norm || - |1 is semimonotone;

W) %, <z, <y, m=1,2,3,...) and ||x, —x|| = 0, ||y, — x|| = O imply that
1z — x|l — 0;
(vi) The set (B + P) N (B — P) is bounded, where

B:{er:IIxH El};
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(vil) Every order interval [x,y] = {z € E :x <z <y} is bounded.

Remark 2.1 Some authors use assertion (iii) as the definition of normality of a cone P and
call the smallest number 7 the normal constant of P.

Definition 2.4 Let P be a solid cone of a real Banach space E. An operator A : P° — P° is
called an «-concave operator (—a-convex operator) if

A(tx) > t"‘Ax(A(tx) < t‘an), VxeP°,0<t<l,

where 0 <« < 1. The operator A is increasing (decreasing) if x;,x, € P° and x; < x, imply
Ax; < Axy (Ax; > Axy), and further, the operator A is strongly increasing (decreasing) if
x1,% € P° and x; < x, imply Axy — Ax; € P° (Ax; — Axy € P°). Let x; be a proper element of
an eigenvalue X of A, that is, Ax, = Ax;. Then x; is called strongly increasing (decreasing)
if A1 > X, implies that x,, — x;, € P° (x,, — x,, € P°), which is denoted by x;, > x,, (x5, >

x,\l).

Definition 2.5 An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Lemma 2.2 (Arzela-Ascoli) A set M C C(J,R) is said to be a precompact set if the following
two conditions are satisfied:
(i) All the functions in the set M are uniformly bounded, which means that there exists a
constant r > 0 such that \u(t)| <r,Vt€J,u € M;
(i) All the functions in the set M are equicontinuous, which means that for every € > 0,
there is 8 = 8(¢) > 0, which is independent of the function u € M, such that

lu(t) —u(tx)| <&
whenever |t — t5| < 8,t1,t €.

Lemma 2.3 Suppose D is an open subset of an infinite-dimensional real Banach space E,
0 € D, and P is a cone of E. If the operator I : PN D — P is completely continuous with
[0 = 0 and satisfies

inf Tx>0,
xePN3dD
then I has a proper element on P N dD associated with a positive eigenvalue. That is, there
exist xo € PN OD and juo such that Txy = [LoXo.

Lemma 2.4 Suppose that P is a normal cone of a real Banach space and A : P° — P° is
an o-concave increasing (or —a-convex decreasing) operator. Then A has exactly one fixed
point in P°.

3 Some lemmas
Let J = [0,1]. A function u(t) is said to be a solution of problem (1.1) on J if:
(i) u(2) is absolutely continuous on each interval (0, 4] and (&, t1], K =1,2,...,71;
(ii) forany k =1,2,...,n, u(t{) and u(t;) exist, and u(t;) = u(ty);
(iii) u(t) satisfies (1.1).
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We shall reduce problem (1.1) to a system without impulse. To this goal, firstly, by means
of the transformation

u(t) = c(t)y(t) (3.1)
we convert problem (1.3) into

=y (t) = () (O)f (c()y(2)), te],

3.2
¥'(0) =0, ac)y(1) + bc(1)y'(1) = fol g(s)c(s)y(s) ds. (3.2)

The following lemmas will be used in the proof of our main results.

Lemma 3.1 Assume that (H;)-(H3) hold. Then
(i) Ify(t) is a solution of problem (3.2) on ], then u(t) = c(t)y(t) is a solution of problem
11) onJ;
(ii) If u(t) is a solution of problem (1.1) on ], then y(t) = ¢ (t)u(t) is a solution of problem
(32)on].

Proof (i) Let y(t) be a solution of (3.2) on /. It is easy to see that u(£) = c(¢)y(t) is absolutely

continuous on each interval (, fx11], k = 1,2, ..., n. By the definition of ¢(¢) we have ¢(¢) = 0
for t # . Then, for ¢ # t, we have

W' () = < @)y(e) + c@)y (¢) = c(0)y (2),
u'(t) = ')y (t) + c(t)y" () = c()y" (¢).

It follows that
—u(t) = ~c(£)y"(£) = 2o (O)f (c(V)y(®)) = Aeo(E)f (u(2))-

For ¢ = t;, we have

u(ty) = tling c(B)y(t) = o<y <, (1 + c)y(te),
k

u(t;) = lim c(®)y() = Mo<g<e, (1 + ci)y(te).
k
By (ii) of Definition 2.2, u(£;) = u(t), so we have

u(tf) — u(te) = u(tl) —u(ty) = Moy =g, (1 + ci)exy(te) = cxe(ti)y(t) = cru(ty).

Thus, u(t)) — u(t;) = crul(ty).
It is obvious that u(¢) satisfies the boundary conditions.
Then u(¢) is a solution of problem (1.1) on J.
(ii) It is easy to see that, for t € /,

—c(0)y(8) = 2w (@)f (c()y(2)).
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For t = t,

(&) - y(6) = (6 )u(er) - < (&) u(t)
M (8) (ulte) + craulti)) — ¢ (8 ) u(ty)

- )ul) - ()

=0.

Then y(t) is continuous on J. It is easy to prove that y(¢) is absolutely continuous on J and
satisfies the boundary conditions.
Then y(¢) is a solution of problem (3.2) on J. O

Lemma 3.2 If (H;)-(Hs) hold, then problem (3.2) has a solution y, and y can be expressed

in the form
1
y(t) = A/O H(t, s)w(s)c_l(s)f(c(s)y(s)) ds, (3.3)
where
1
H(t,s) = G(t,s) + ﬁ/‘o G(t,8)g(t)c(r)dT + %, (3.4)
1-¢t, 0<s<t<],
G(t’s):{l—s, 0<t<s<l. (35)

Proof First, suppose that y is a solution of problem (3.2). Integrating problem (3.2) from
0 to ¢, by the boundary conditions we obtain that

()= - /0 2(s)ds, (3.6)

where z(s) = Aw(s)c™L(s)f (c(s)y(s)).
Integrating (3.6) from 0 to ¢, we have

2(6) = 3(0) - /0 (¢ - 9)2(s) ds. (3.7)

Letting ¢ =1 in (3.6) and (3.7), we find

1 1
»(1) =5(0) - /0 A-9zls)ds,  y(1)=- /0 «(s)ds.

Combining these equalities with (3.7) and the boundary conditions ac(1)y(1) + bc(1)y' (1) =
fol g(&)c(t)y(t) dt, we obtain

1
ac(l)

1 t b 1
/0 g(s)c(s)y(s)ds—/o (t —s)z(s)ds + —/0 z(s)ds

a

1
y(t) = /0 (1 -s)z(s)ds +

1 1 1 b [
:/0 G(t,s)z(s)ds + ?(1)/0 g(s)c(s)y(s)ds + ;‘/0 z(s) ds, (3.8)
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and further
1
/0 g(s)c(s)y(s)ds

1 1 1 1 b [l
=/0 g(s)c(s)|:/0 G(s,t)z(t)dt + ac(l)/o g(r)c(r)y(r)dt+;/0 z(r)dt] ds

1 1 1 1
- || €owas [ enenmars [ g(s)c(s)|: | G(s,f)z(f)df] ds

b 1 1
+2 [ eetds [ =nar. 39)

Therefore, we have

1 ~ ﬂC(l) 1 1
/0 g(s)c(s)y(s)ds = 2 {/0 g(s)c(s)|:/0 G(s, t)z(r)dt] ds

1 1
+ S/o g(s)c(s)ds/0 z(r)dr}. (3.10)

Substituting (3.10) into (3.8), we obtain

1 1 L
70 [ Goedss —— [ g(s)c(s)[ [ G(s,f)z(f)df]ds
b ! 1 b [l
o2 [ eewrds [ a2 [ ayds
1
=/ H(t,s)z(s) ds. (3.11)
0

Then
1
y(t) = A/O H(t, S)a)(s)c‘l(s)f(c(s)y(s)) ds, (3.12)

and the proof of sufficiency is complete.

Conversely, from (3.3) it is easy to obtain

—y'(t) = Aw(t)c‘l(t)_f(c(t)y(t)),

1
Y©)=0,  ac(i)yd) + be(l)y (1) = fo ety dr.

Lemma 3.2 is proved. O

Lemma 3.3 Let i € [0,ac(1)), G, and H be given as in Lemma 3.2. Then we have the fol-

lowing results:

H(t,s) >0, G(t,s)>0, Vtse], (3.13)

e(t)e(s) < G(t,s) <e(s), Vtse], (3.14)
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where 0 <e(t)=1-t <1, and

0<a* <H(ts)<Bh(s) <pB*, Vtsec], (3.15)
where
«_ bc(l) , ) ~ . (a+b)(1)
o = m, B = r(l) L h(s) = ae(s) + b, B = —ac(l) L (3.16)

Proof Relation (3.13) is simple to prove. For 0 <s <t <1, we have
e(t)e(s) <e(t)=G(t,s)=1—-t <1-s=e(s).

For 0 <t <s <1, wehave
e(t)e(s) <e(s) = G(t,s) =1—s.

Then,
e(t)e(s) < G(t,s) <e(s).

This gives the proof of (3.14).
For any ¢,5 € J, by (3.13), (3.14), and (3.16) we have

~ 1 ! be(1)
H(t,s) = G(t,s) + mfo G(z,8)g(t)c(r)dT + m
- bc(1)
Tac(l)-p
=a®.
On the other hand,
~ 1 1 be(1)
H(t,s) = G(t,s) + m/() G(t,8)g(t)c(r)dr + m
1 ! be(1)
<e(s)+ m /0 e(s)g(t)c(r)dr + m
~ 1 1 be(l)
= e(s)|:1 + mfo g(r)c(r)dr] + m
- o(s) ac(l) bc(1)
" Yac) —n " ac) -
= ,B/[ae(s) + b]
<B'h(s) < p".
Therefore, the proof of (3.15) is complete. O

To obtain some of the norm inequalities in our main results, we employ Hélder’s in-
equality.
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Lemma 3.4 (Holder) Lete € L?[a,bl withp >1,h € L[a,b] withq > 1, and I% + % =1. Then
eh e L'[a,b] and

lenlls < llell,lI Al
Lete € LYa,b], h € L®[a,b). Then eh € L[a, b], and
lenlly < llellxll7]l -
Let E = C[0,1]. Then E is a real Banach space with the norm || - || defined by

, x€E.

Hw=thm
Define two cones K and K] in E by

K={yeE:yt)=0,y@t) > 8|yl t €]} (3.17)
and

Ki={yeE:y(t)=0,te]},
where § = g—i = a%b. It is easy to see that K and Kj are two solid normal cones and

K= {yeE:y)>0,y0) = 8lyll,t €]},

KIO:{yGE:y(t)>O,t€]}.
For r > 0, define €2, by

Q ={yeK:lyl<r},

0, = {ye K:|yl= r}.
Define T: K — K by
1
(Ty)(t) = /0 H(t, )o(s)c (s)f (c(s)y(s)) ds, te]. (3.18)

Lemma 3.5 Assume that (H;)-(Hs) hold. Then T(K) C K, and T : K — K is completely
continuous.

Proof For y € K, it follows from (3.7) and (3.12) that

1
(Ty)(t) =/0 H(t,s)w(s)c_l(s)f(c(s)y(s)) ds

1
> a*/o w(s)c‘l(s)f(c(s)y(s)) ds
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> a_* max/lH(t, s)a)(s)c’l(s)f(c(s)y(s)) ds
T Bt Jo

=3Iy
Thus, T(K) C K.
Next, we prove that the operator T : K — K is completely continuous by standard meth-

ods and the Arzela-Ascoli theorem.
Let B, ={y € E | |y|| <r} be abounded set. Then, for all y € B,, we have

1
151 = max [ H(6 (00 G (09) ds = 6,18 o L,

where L = max|¢(s)y(s) <cyer.f (c(8)y(s)). Therefore, T(B,) is uniformly bounded.
On the other hand, noticing that H(¢, s) is uniformly continuous on J x J, we have that,
for any ¢ > 0, there exists §; > 0 such that if |t — £;] < §1, then

H(t,s) — H(ty,s)| < ————.
(t05) = H(e5)| < oy

Then, for any y € B,, taking |t; — ;| < 81, we get
1
(Ty)(8) - (Ty)(8)| = ‘ /0 H(t, s)o(s)c™ (s)f (c(s)y(s)) ds
1
_ /0 Hit, )o()e™ (s)f (c(s)y(s)) s

1
- /0 |H(t1,s) —H(tg,s)|a)(s)c_1(s)f(c(s)y(s)) ds

&

<——
lellic L

1
/0 w(s)cHs)f (c(s)y(s)) ds

-1
< lolhe Ly
m

=Eé.

Thus, the set {T": y € B,} is equicontinuous. The Arzela-Ascoli theorem implies that T
is completely continuous, and Lemma 3.5 is proved. O

4 Existence and nonexistence of positive solutions on a parameter

In this section, we establish some sufficient conditions for the existence and nonexis-
tence of positive solutions of problem (1.1). We consider the following three cases for
w € IP[0,1]:p>1,p=1,and p = co. The case p > 1 is treated in the following theorem.

Theorem 4.1 Assume that (Hy)-(H3) hold. If 0 < fs, < +00, then there exists Ry > 0 such
that for any r > Ry, problem (1.1) has a positive solution u,(t) satisfying ||u,(t)|| = cmr for
any

A=A € [)"17 )\'2]¢ (41)

where L1 and Ly are two positive finite numbers.
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Proof By (3.3) and (3.18) problem (1.1) has a positive solution u,(¢) associated with A >
0 if and only if the operator T has a proper element y, associated with the eigenvalue
1

X > 0.

Since 0 < fo, < +00, there exist /y > /; > 0 and 7 > 0 such that
Lhy<f() <by, Vy=n. (4.2)
Now, we prove that Ry = cmia is required. Thus, for all > Ry, if y € K N 9€2,, we have
y(@) = 8llyl =ér, te].
Noticing r > Ry, we have
c(0)y(t) = ¢yl = cdr > cdRo =1, te].

Together with Lemma 3.5, we have that T': K N Q, — K is completely continuous with
T9 = 0. In addition,

1
(Ty)() = /0 H(t,5)o(s)c™ (s)f (c(s)y(s)) ds

1
za*fc,_\,}/ Le(s)y(s) ds
0

> a*EcylicySlyll

= ot*éc;,llllcer > 0.
Therefore, for any r > Ry and y € K N 9€2,, we have

: > gF -1 .
ye]%rrlwga, 1Tyl > a*&cy licudr >0

By Lemma 2.3, for any r > Ry, the operator T has a proper element y, € K associated
with the eigenvalue y > 0; further, y, satisfies ||y,|| =r. Let A = % Then problem (3.2) has
a positive solution y,(£) associated with A.

Hence, it follows from Lemma 3.1 that problem (1.1) has a positive solution ,(f) asso-
ciated with A and satisfying ||u, || = cpr.

From the proof above, for any r > Ry, there exists a positive solution y, € K N 9€2, asso-
ciated with X > 0, that is,

1
y,(t) = A/(; H(t, s)w(s)c‘l(s)f(c(s)y(s)) ds

with [}y, = 7.
On the one hand,

¥ (&) < rc,y BBl gllollplacrs
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and, further,

-1
Iyl = r < 1y, B'llRl g lleoll placar,

which means that

1

A > =
begtemB I Allgllollp

Al
On the other hand,
yr(£) > ha*Ecihicmdr, (4.3)
and thus
lyrll = r > ra*Eciihcmdr,
which leads to

1
A<=
héa*Ecycm

It is easy to see by calculating that A; < A,.
In conclusion, A € [A1, A;]. The proof is complete. O

The following Corollary 4.1 deals with the case p = occ.

Corollary 4.1 Assume that (H;)-(Hs) hold. If 0 < foo < +00, then there exists Ry > 0 such
that for any r > Ry, problem (1.1) has a positive solution u,(t) satisfying |u,(t)|| = cmr for
any

re ML),

where

, 1

1= _ .
betemB IRl

Proof Replacing |A|l4ll@ll, by l#ll1llwlle and repeating the argument above, we get the
corollary. O

Finally, we consider the case of p = 1.
Corollary 4.2 Assume that (H;)-(Hs) hold. If 0 < f, < +00, then there exists Ry > 0 such
that for any r > Ry, problem (1.1) has a positive solution u,(t) satisfying ||u,(t)|| = cyr for

any

re A 2a],
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where

1

heytemB*lwl’

”
1

Proof Replacing g'||l4llwll, by B*[lwll; and repeating the argument above, we get the
corollary. 0

In the following theorems, we only consider the case 1 < p < +00.

Theorem 4.2 Assume that (Hy)-(Hs) hold. If foo = +00, then there exists R > 0 such that

for any r > Rz, problem (1.1) has a positive solution u,(t) satisfying ||u, | = cyr for any
A= )‘-V € (Or)\'?)]r

where L3 is a positive finite number.

Proof Similarly to the proof of Theorem 4.1, it is easy to see from (4.2) and (4.3) that

Theorem 4.2 is also true. g

Theorem 4.3 Assume that (H;)-(Hs) hold. If 0 < fy < +00, then there exists ry > 0 such that

forany 0 < r < ry, problem (1.1) has a positive solution u,(t) satisfying ||u,(t)|| = cpr for any
A€ [)Ahl,):z],
where 3y and h, are two positive finite numbers.

Proof By (3.3) and (3.18) problem (1.1) has a positive solution «,(t) associated with A > 0
if and only if the operator T has a proper element y, associated with the eigenvalue % > 0.
Since 0 < fy < +00, there exist n’ > 0 and constants ¢, > ¢; > 0 such that
au<f(u)<cu, Y0<u<n'.
Set
u.= {J’EEI ||J’|| <}”},
where 0 < r < rg.
Then U, is a bounded open subset of the Banach space E, and 6 € U,.

Now, we prove that ry = % is required.
Thus, for y € K N dU,, noticing 0 < r < ry, we have

y(@) = bllyll =ér, te],
and

0 <ct)y(t) <cmllyll =cmr <cmro=n's tej.
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Together with Lemma 3.5, we note that 7': K N U, — K is completely continuous with
T6 =6 and that

1
(T = fo H(t, )ols)c ™ (5)f (c(s)y(s)) ds

1

> ot*“;‘c,‘v} / cic(s)y(s) ds
0

> a*EcyicicmSyll

= oz*éc;,}clcm(sr >0.

So, for any 0 < r < rg and y € K N dU,, we have

inf || Ty|| > a*Eciteicdr > 0.
Jebbu, Iyl > a*&cyrerem

By Lemma 2.3, for any 0 < r < r¢, the operator T has a proper element y, € K associated
with the eigenvalue y > 0; further, y, satisfies ||y,|| = r. Letting A = % and following the
proof of Theorem 4.1, we complete the proof of Theorem 4.3. O

Theorem 4.4 Assume that (Hy)-(Hs) hold. If fo = +00, then there exists | > 0 such that for

any 0 < r < ry, problem (1.1) has a positive solution u,(t) satisfying |u,|| = cpr for any
J= 2y € (0,43,
where A3 is a positive finite number.

Proof The proof is similar to that of Theorem 4.3, so we omit it here. O

Theorem 4.5 Assume that (H)-(Hs) hold. If fy = fs, = +00, then there exists A > 0 such
that problem (1.1) has no positive solutions for all A € [}, +00).

Proof We argue by contradiction. Suppose that there exists a sequence {),} with A, >
n such that for each n, problem (3.2) has a positive solution y, € K. Let u, = i Since
(Ty,)(t) = npyu(t) for t € J and f(u) > Nu for all 4 > 0, where N = j%, we have

"yn” = I?éalx|)\nTyn(t)|
1
> / H(t, s)o()e ™ (5)f (c(5)y,(9)) ds
0

1
zkna*éc;\,}/ Nc,,y,(s) ds
0

= )‘na*gcj_\/}NCmSHyn”

> na* £y NS |yall,

which implies that 1 > na*&c;1Ncy,,8.
Since n may be arbitrarily large, we obtain a contradiction.
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Therefore, by Lemma 3.1 problem (1.1) has no positive solutions for all A > 1. This gives
the proof of Theorem 4.5. O

Theorem 4.6 Assume that (Hy)-(Hs) hold. If fy = foo = 0, then there exists A > 0 such that
problem (1.1) has no positive solutions for A € (0,1).

Proof 1t follows from f = foo = 0 and (1.4) that there exists vy > 0 such that

f(l_/O) = IIIEIX']m .

%) >0 v

Let

Then M > 0 and
fv)<Mv, Vv>0. (4.4)

Let y(¢) be a positive solution of problem (3.2). We will show that this leads to a con-
tradiction for A < A, where A = (8'|| A gllwllpc,  cprM) ™. Let yu = 1. Since (Iy)(2) = uy(¢) for
t € ], it follows from (3.18) that

1
y(t) = A/O Hi(t, s)w(s)c_l(sy(c(s)y(s)) ds
1
<18/l oy} | Mey(o)ds
0
<M lAlglolc, cpMIlyll,

which shows that

Iyl < A8'lIAllglloll ¢, Myl
< 1B hllglwlpc, cauMllyl

= lyll,
which is a contradiction. This finishes the proof. O

Remark 4.1 The method to study the existence and nonexistence results of positive so-
lutions is completely different from those of Zhang and Feng [18].

5 Uniqueness and continuity of positive solution on a parameter
In the previous section, we have established some existence and nonexistence criteria of
positive solutions for problem (1.1). Next, we consider the uniqueness and continuity of

positive solutions on a parameter for problem (1.1).
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Theorem 5.1 Suppose that f(u) : [0, +00) — [0,+00) is a nondecreasing function with
f(u) >0 for u >0 and satisfies f(pu) > p*f(u) for any 0 < p <1, where 0 < o < 1. Then,
for any A € (0,00), problem (1.1) has a unique positive solution u, (t). Furthermore, such a
solution u, (t) satisfies the following properties:

(1) u;(¢) is strongly increasing in X, that is, A > Ay > 0 implies uy, (£) > u;, (t) for t € ].

(i) limy—o+ o]l = 0, limy— oo [l || = +00.

(iii) u(2) is continuous with respect to A, that is, A — Lo > 0 implies ||u; — u,, || — 0.
Proof Set W = AT, where T is the same as in (3.18). Similarly to Lemma 3.5, the operator
W maps K; into Ki. In view of H(t, s) > 0,w(s) > 0,c71(s) > 0, and f () > O for u > 0, it is easy
to see that W : K¥ — K7. We assert that W : K — K7 is an a-concave increasing operator.
Indeed,

1
W(py) =2 fo H(t,s)o(s)e () (cls)oy(s) ds

1
> pA /0 H(t, s)o(s)c ™ (s)f (c(s)y(s)) ds

=p*WU(y), VY0<p<l,

where 0 <« < 1. Since f(u) is nondecreasing, we have

1
(W )(0) =2 fo H(t,)os) ™ 5)f (c(s)yns)) ds

1
< A/ H(t,s)w(s)c_l(s)f(c(s)y**(s)) ds
0
= (Uye)()  for ys < Yusr Vi Vs € X.
In view of Lemma 2.4, ¥ has a unique fixed point y; € K. This shows that problem (3.2)
has a unique positive solution ¥, (¢). It follows from Lemma 3.1 that problem (1.1) has a
unique positive solution u; (£).

Next, we give a proof for (i)-(iii). Let y = % and denote AT, = y; by Ty, = yy,. Assume
that 0 < y; < 5. Then y,, > y,,. Indeed, set

1 =Sup{n : Yy, = NYp,}- (5.1)
We assert 77 > 1. If this is not true, then 0 < 77 < 1, and further

Yn = Dy = T(0yy,) Z 0" Ty, = 1% Y2y,
which implies

Iz 0" %ym >0 Yy, > MYy

This is a contradiction to (5.1).
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In view of the discussion above, we have
1 1 V2
= =Ty > =Ty = =Yy > Vs (5.2)
In ” In ” Yy ylyyz Iy
Hence, y, () is strongly decreasing in y. Namely, y,(t) is strongly increasing in A. By
Lemma 3.1, (i) is proved.

Setting y, = y and fixing y; in (5.2), we have y,, > %yy for y > y1. Further,

nN

lyy Il = 151115 (5.3)

where N; > 0 is a normal constant. Noting that y = %, we have lim;_, ¢+ ||y ()| = 0. Then
it follows from Lemma 3.1 that limy_, o+ ||, (£)|| = O.

Similarly, letting 31 = ¥ and fixing y,, again by (5.2) and the normality of K; we have
lim; 100 |2 (£)]] = +00. Then, it follows from Lemma 3.1 that lim_, , o ||z (£) || = +00.

This gives the proof of (ii).

Next, we show the continuity of u, (£). For given y, > 0, by (i),

Yy Ly, foranyy >yp. (5.4)
Let/, =sup{v >0y, > vy,,¥ > o}. Obviously, 0 <[, <1and y, > [, y,,. So, we have
vy =Ty 2 Ty yy) = l‘; Tyy, = liyoyyo»

and further

o

Yo
Iy = 7lyy1/0‘

By the definition of /,,,
IL
Yo Yo\ “
=<l or [,> (—) .
y =7 = \y

Again by the definition of /,, we have

1
Yo\
Yy = v ¥y, foranyy >yq. (5.5)

Noticing that Kj is a normal cone, in view of (5.4) and (5.5), we obtain

1
Yo\ ¥
lyyo =¥y | N2 | 1| — lyyll = 0, ¥y — yo+0.
14

In the same way,

¥y =¥yl = 0, Yy —> % -0,

where N, > 0 is a normal constant.
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Therefore, by Lemma 3.1 we have

1
Yo\
”uyo_uy” SCM”yyo _yy” SCMNZI:I_(7) j|||yyo||_>0’ Yy — Y +0.

oty — ol < emllyy =9yl = 0, ¥ = y0 = 0.
Consequently, (iii) holds. The proof is complete. d

6 Remarks and comments

In this section, we offer some remarks and comments on the associated problem (1.1).

Remark 6.1 Some ideas of the proof of Theorem 5.1 come from Theorem 2.2.7 in [17] and
Theorem 6 in [19], but there are almost no papers considering the uniqueness of positive
solution for second impulsive differential equations, especially in the case where w(¢) is
L?-integrable.

Remark 6.2 Generally, it is difficult to study the uniqueness of a positive solution for
nonlinear second-order differential equations with or without impulsive effects (see, e.g.,

[4, 5, 20] and references therein).

For example, we consider the following problem:

W' () + Ao@)f (5, u(t) =0, te,t#t,
M(tk) - M(tk) = C](M(t]( , k=1,2,...,n, (61)
u(0) = u(l) = [ h(s)u(t) dt,

where XA > 0 is a positive parameter, J = [0,1], w € L?[0,1] for some 1 < p < +o0,f € C(J x
R*,R*),R* =[0,+00), tx (k=1,2,...,n) are fixed points with 0 < ; <Ly <+ <t < -+ <t <
1, {cx} is a real sequence with ¢ > -1,k =1,2,...,n, x(t;) (k = 1,2,...,n) is the right-hand

limit of x(¢) at #, and & € C[0,1] is nonnegative.

By means of transformation (3.1) we can convert problem (6.1) into

:—y”m = A BOf ¢ tyE), te), 62

¥(0) = c(1)y(1) = fol h(s)c(s)y(s) ds.
Using a proof similar to that of Lemma 3.2, we can obtain the following results.

Lemma 6.1 If (H;)-(Hs) hold, then problem (6.2) has a solution y, and y can be expressed

in the form

1
y(t) = A/O H*(t, s)w(s)c_l(s)f(c(s)y(s)) ds, (6.3)

where

1 1
H*(t,s) = G*(L,s) + —/ G*(s,7)h(7)dT, (6.4)
1-v 0
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tl-s), 0<t<s<l,

G*(t,s) =
s1-¢8), 0<s<t<l.

(6.5)

Itis not difficult to prove that H*(t, s) and G*(t, s) have similar properties to those of H(t, s)
and G(t, s). However, we cannot guarantee that H*(t,s) > 0 for any t,s € J. This implies that
we cannot apply Lemma 2.4 to study the uniqueness of a positive solution for problem (6.1).

Remark 6.3 In Theorem 5.1, even though we do not assume that T is completely contin-
uous or even continuous, we can assert that u; depends continuously on A.

Remark 6.4 If we replace Ki, K? by K, K°, respectively, then Theorem 5.1 also holds.

7 Examples
To illustrate how our main results can be used in practice, we present two examples.

Example7.1 Letn=1,¢ = %, p = 3.Itfollows from p = 3 thatg = % Consider the following
boundary value problem:

u”(t)+k(|t 1& )(6u +arctanu) =0, te€],tFt,
-3

u(z") - ul3) = Ju(3), (7.1)
u'(0) =0, u(l) + /(1) = fol u(t) dt,

Conclusion Problem (7.1) has at least one positive solution for any A € [0.0056,0.09].

Proof Problem (7.1) can be regarded as a problem of the form (1.1), where

o(t) = e 1%[0,1], f(u(t)) = 6u + arctan i,

1,1
lt—35|%

and
a=b=1, glt)y=1.
We convert problem (7.1) into

—y"(t) = M(—21)c 1) (6c(2)y(¢) + arctan c(t)y(t)), te],
|t_%ﬂ (72)

y(0)=0,  3y1)+ 3y (1) = [ cls)y(s)ds,

where
1, 0<t<4i,
cdt)=15 -1
2 3 <t<l.
From w(t) = i r,t €], choosingp=3,q = %, it follows that
[t-31%

1 3 1 1,1
1 3 (4+4x24)3
ol = llwlls = - ) dt) =—F—~1879,
0 \|t—z]|2 312
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! D) 2\
WAl = 1Al = /(2—t>%dt (%2822 ~1sis,
37\, 5 5

Thus, it is easy to see by calculating that w(¢t) > & = \A/E for a.e. t € J and that

1 5 3
= / Oedt=>, =2 -1
0

2
and
w b)) , o)
* _aC(l)—M_6’ ﬁ_aC(l)—u_6’
. la+b)() o 1
=2 19, §=— =_,
ac(l) — 1 b

Therefore, it follows from the definitions w(¢),f, and g that (H;)-(Hs) hold and

t t
foo= lim JM = lim <6+ are anu) =6+ lim arctans _ s
u—>+00 Y Uu—+00 u U—>+00 u
80 0 < foo = 6 < +00.
Thus, we have
5<f <.
Setl; =5and/, =7. Then
A ! ~ (0.0056
l = ~ . bl
he,iemB Al llolls
Ay = ! ~ 0.09
27 Léa*Ecytcm o
Hence, by Theorem 4.1 the conclusion follows, and the proof is complete. O

Example7.2 Letn=1,¢ = %,p = 1. It follows from p = 1 that g = co. Consider the follow-
ing boundary value problem:

u’(t) + M(2t + 3)(6u + arctanu) =0, te/,t#t,
u(3") —u(d) = Ju(d), (7.3)
wW(0)=0,  u@)+u/(1)= [, ult)dt.
Conclusion Problem (7.3) has at least one positive solution for any A € [ﬁ, %].
Proof Problem (7.3) can be regarded as a problem of the form (1.1), where
w(t) =2t + 3 € L']0,1], f(u) = 6u + arctanu,

and

a=b=1, glt)=1.
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We convert problem (7.3) into

—y"(£) = M2t + 3)cH(t)(6c(t)y(¢) + arctan c(t)y(t)), teE],
¥ (0) =0, %y(l) + %y’(l) = fol c(s)y(s) ds,

where
1, 0<t=<4,
=15 <12
3 §<t_

Thus, it is easy to see by calculating that w(¢) > &£ = 3 for a.e. ¢ € J and that

1 5 3
= te(t)dt = —, =, m =1,
" /0 SOOdt=2 =3,
and
b *
. c(1) _6, . _ (a+b)c(1) 1o, 3:05_:1,
ac(l) - u ac(l) — u p* 2

Therefore, it follows from the definitions w(t),f, and g that (H;)-(Hs) hold.

On the other hand, it follows from w(¢) = 2¢ + 3 that

1
lwll :/ (2t +3)dt = 4.
0
Thus, we have
5<f <.

Set/; =5and /, =7. Then

0 1 B 1
Y helemprlloll - 5047
1 1

)\.2 = T e ar . T an
héa*Ecyc, 30

Hence, by Corollary 4.2 the conclusion follows, and the proof is complete.
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