
Nie and Xie Boundary Value Problems  (2016) 2016:164 
DOI 10.1186/s13661-016-0673-9

R E S E A R C H Open Access

Singularly perturbed semilinear elliptic
boundary value problems with discontinuous
source term
Dongdong Nie and Feng Xie*

*Correspondence: fxie@dhu.edu.cn
Department of Applied
Mathematics, Donghua University,
Shanghai, 201620, P.R. China

Abstract
A class of singularly perturbed semilinear elliptic boundary value problems with
discontinuous source term on two different domains is considered in this article. The
formal asymptotic solution is constructed by using the method of boundary layer
functions. Furthermore, the uniform validity of the solutions is proved by using the
maximum principle. Finally, as an illustration, an example is presented.
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1 Introduction
We consider the following singularly perturbed elliptic boundary value problem:

{
Lu(x, y) ≡ ε�u(x, y) = f (u, x, y), (x, y) ∈ �,
u(x, y)|∂� = g(x, y),

(.)

where the bounded domain � is partitioned into two subdomains �– and �+ by a smooth
curve �, that is, � = �– ∪ � ∪ �+, and

f (u, x, y) =

{
f(u, x, y), (x, y) ∈ �–,
f(u, x, y), (x, y) ∈ �+,

with f(u, x, y) ∈ C(R×�–), f(u, x, y) ∈ C(R×�+) and f(u, x, y) �= f(u, x, y) for (x, y) ∈ �.
Partial differential equations are often used to describe plenty of phenomena in physics

and engineering, thereby attracting much attention (see [–], for instance). As a branch
of partial differential equations, singular perturbation problems for differential equations
of elliptic type with smooth coefficients and smooth data, arising in many areas, such as
fluid mechanics, heat and mass transfer in chemical engineering, theory of plates and
shells, have been extensively studied since the s; see [] for instance and the refer-
ences therein. Recently, due to the significance of interface problems appearing in many
physical contexts with heterogeneous media, boundary value problems for elliptic and
parabolic equations with discontinuous coefficients have attracted much attention (see
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Figure 1 Two kinds of different regions. Left panel: a rectangular region. Right panel: a bounded region
with smooth boundary.

[–], for example). In [, ], Babuška studied a kind of elliptic interface problems de-
fined on a smooth domain with a smooth interface using the finite element method. In [],
Brayanov considered a mixed singularly perturbed parabolic-elliptic problem with discon-
tinuous coefficients, which describes an electromagnetic field arising in the motion of a
train on an air-pillow. O’Riordan has examined lately a particular class of singularly per-
turbed convection-diffusion problems with a discontinuous coefficient of the convective
term [].

In the present paper, we investigate the problem (.) with discontinuous source term
f (u, x, y) using the method of boundary layer functions, on two different regions: a rect-
angular region and a bounded region with smooth boundary. Usually, owing to the dis-
continuity of the coefficients at a curve, an interior layer around the interface may occur,
besides a possible boundary layer at ∂�. When the problem (.) has the property of ax-
ial symmetry, it can be reduced to an ordinary differential equation of second order with
discontinuous source term and singular perturbation, which recently has been studied in
[] by using the method of lower and upper solutions. Therefore, the present work can
be viewed as an extension of the corresponding smooth version or one dimensional case.

This paper is organized as follows. In Section , the formal asymptotic solutions of the
problem (.) are constructed for two different bounded domains (see Figure ). The uni-
form validity of the solutions is proved by using the maximum principle in Section . An
example is presented to illustrate the main results in Section .

2 Formal asymptotic solutions
In this section, we construct the formal asymptotic solutions to the problem (.) on two
kinds of regions: a rectangular region and a bounded region with smooth boundary (see
Figure ). The region � is divided by a smooth curve � into two subregions �– and �+,
and ∂� = ∂�– ∪ ∂�+. In the first case, for the sake of clarity of presentation, the rectan-
gular region � is given in the (x, y)-plane as � = (, ) × (, ), the curve � = {(x, y) | x = c,
 < y < ,  < c < }, �– = (, c) × (, ), and �+ = (c, ) × (, ).

We first make a basic assumption on the reduced problem.
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(H) The reduced equation f (u, x, y) =  has a solution

u(x, y) =

{
ϕ(x, y), (x, y) ∈ �–,
ψ(x, y), (x, y) ∈ �+,

with u(x, y) ∈ C(�– ∪ �+), and there exist constants σ and σ such that

∂f

∂u
(u, x, y) ≥ σ > , (u, x, y) ∈ R× �–,

∂f

∂u
(u, x, y) ≥ σ > , (u, x, y) ∈R× �+.

Considering that the function f (u, x, y) is discontinuous at the curve �, the original prob-
lem (.) can be regarded as the coupling of the left problem

⎧⎪⎨
⎪⎩

ε�U– = f(U–, x, y),
U–|∂�– = g(x, y),
U–|� = γ (ε, x, y),

(.)

and the right problem

⎧⎪⎨
⎪⎩

ε�U+ = f(U+, x, y),
U+|∂�+ = g(x, y),
U+|� = γ (ε, x, y),

(.)

where γ (ε, x, y) = γ(x, y) + εγ(x, y) + εγ(x, y) + · · · is a smooth function which will be
determined later on.

In the following, we will distinguish two cases in order to construct the formal asymp-
totic solutions.

Case  � is a rectangular region.
Let us look for the formal asymptotic solutions U∓(x, y, ε) of the problems (.) and (.)

in the form

U–(x, y, ε) = Ū–(x, y, ε) + L–(
ξ–

 , y, ε
)

+ Q–(
ξ–

 , y, ε
)

+ W –(
x, ξ–

 , ε
)

+ �–(
x, ξ–

 , ε
)
, (x, y) ∈ �–,

U+(x, y, ε) = Ū+(x, y, ε) + L+(
ξ+

 , y, ε
)

+ Q+(
ξ+

 , y, ε
)

+ W +(
x, ξ+

 , ε
)

+ �+(
x, ξ+

 , ε
)
, (x, y) ∈ �+,

(.)

where

Ū±(x, y, ε) = Ū±
 (x, y) + εŪ±

 (x, y) + εŪ±
 (x, y) + · · · ,

L±(
ξ±

 , y, ε
)

= L±

(
ξ±

 , y
)

+ εL±

(
ξ±

 , y
)

+ εL±

(
ξ±

 , y
)

+ · · · ,

Q±(
ξ±

 , y, ε
)

= Q±

(
ξ±

 , y
)

+ εQ±

(
ξ±

 , y
)

+ εQ±

(
ξ±

 , y
)

+ · · · ,

W ±(
x, ξ±

 , ε
)

= W ±


(
x, ξ±


)

+ εW ±


(
x, ξ±


)

+ εW ±


(
x, ξ±


)

+ · · · ,

�±(
x, ξ±

 , ε
)

= �±

(
x, ξ±


)

+ ε�±

(
x, ξ±


)

+ ε�±

(
x, ξ±


)

+ · · · ,
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and

ξ–
 =

x
ε

, ξ–
 =

c – x
ε

, ξ+
 =

 – x
ε

,

ξ+
 =

x – c
ε

, ξ±
 =

y
ε

, ξ±
 =

 – y
ε

.

Here Ū± are regular terms, L±, W ±, �± being boundary layer terms, and Q± are interior
layer terms.

To determine the terms in the expansions (.) we represent the function f(U–, x, y) in
a form which is similar to (.). According to the boundary layer function method [, ],
f(U–(x, y, ε), x, y) will be represented in �– in the form

f
(
U–(x, y, ε), x, y

)
= f

(
Ū– + L– + Q– + W – + �–, x, y

)
= f

(
Ū–, x, y

)
+

(
f
(
Ū– + L–, x, y

)
– f

(
Ū–, x, y

))|x=εξ–


+
(
f
(
Ū– + L– + Q–, x, y

)
– f

(
Ū– + L–, x, y

))|x=c–εξ–


+
(
f
(
Ū– + L– + Q– + W –, x, y

)
– f

(
Ū– + L– + Q–, x, y

))|y=εξ–


+
(
f
(
Ū– + L– + Q– + W – + �–, x, y

)
– f

(
Ū– + L– + Q– + W –, x, y

))|y=–εξ–


.

Put the formal asymptotic solution (.) into the first equation of (.). For the sake of
simplicity, we only consider the approximation of zeroth order. For (x, y) ∈ �–, concerning
the regular part Ū–, we get

ε
(

∂Ū–

∂x +
∂Ū–

∂y

)
= f

(
Ū–(x, y, ε), x, y

)
. (.)

For ε = , we get from (.) the degenerate equation

f
(
Ū–

 (x, y), x, y
)

= .

According to (H), we know

Ū–
 (x, y) = ϕ(x, y), (x, y) ∈ �–.

Considering the boundary layer function L–, we have

∂L–


∂ξ
–,


+ ε
∂L–



∂ξ
–,


+ · · · + ε ∂L–


∂y + · · · = f
(
L– + Ū–, εξ–

 , y
)

– f
(
Ū–, εξ–

 , y
)
. (.)

For the zeroth-order boundary layer function L–
 we obtain from (.) the boundary

value problem

⎧⎨
⎩

∂L–


∂ξ
–,


= f(Ū–
 (, y) + L–

(ξ–
 , y), , y),

L–
(, y) = g(, y) – ϕ(, y), L–

(+∞, y) = .
(.)
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Concerning the continuity of f(u, x, y), we denote

σ = max

{
∂f

∂u
(
ϕ(x, y) + ζ, x, y

)∣∣∣|ζ| ≤ N+


}
, (.)

where ζ = kL– + kQ– + kW – + k�
– for  ≤ ki ≤ , i = , , and N+

 is large enough.
In order to study the asymptotic behavior of L–

 with respect to the small parameter ε,
we will show the following lemma.

Lemma . Under the assumption (H), for sufficiently small ε > , problem (.) has a
solution L–

(ξ–
 , y) and satisfies the estimate

(
g(, y) – ϕ(, y)

)
exp

(
–
√

σ̃lξ
–

) ≤ L–


(
ξ–

 , y
) ≤ (

g(, y) – ϕ(, y)
)

exp
(
–
√

σ̄lξ
–

)
,

where

σ̃l =

{
σ, g(, y) – ϕ(, y) > ,
σ, g(, y) – ϕ(, y) < ,

σ̄l =

{
σ, g(, y) – ϕ(, y) > ,
σ, g(, y) – ϕ(, y) < .

Proof We have

f
(
Ū–

 (, y) + L–

(
ξ–

 , y
)
, , y

)
= f

(
ϕ(, y) + L–


(
ξ–

 , y
)
, , y

)
– f

(
ϕ(, y), , y

)
=

∂f

∂u
(
ϕ(, y) + θL–


(
ξ–

 , y
)
, , y

)
L–


(
ξ–

 , y
)
, θ ∈ [, ].

Rewriting the first equation of (.) into the equivalent equation, we have

∂L–


∂ξ
–,


=
∂f

∂u
(
ϕ(, y) + θL–


(
ξ–

 , y
)
, , y

)
L–


(
ξ–

 , y
)
.

Choose the barrier functions

α
(
ξ–

 , y
)

=
(
g(, y) – ϕ(, y)

)
exp

(
–
√

σ̃lξ
–

)
,

β
(
ξ–

 , y
)

=
(
g(, y) – ϕ(, y)

)
exp

(
–
√

σ̄lξ
–

)
,

where

σ̃l =

{
σ, g(, y) – ϕ(, y) > ,
σ, g(, y) – ϕ(, y) < ,

σ̄l =

{
σ, g(, y) – ϕ(, y) > ,
σ, g(, y) – ϕ(, y) < .

Treating y as a parameter, we have

α
(
ξ–

 , y
) ≤ β

(
ξ–

 , y
)
, ξ–

 ∈
[

,
c
ε

)
, α(, y) = g(, y) = β(, y),

and α( c
ε
, y) ≤ β( c

ε
, y).
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By (.) and the assumption (H), we get

∂α

∂ξ
–,


–
∂f

∂u
(
ϕ(, y) + θα

(
ξ–

 , y
)
, , y

)
α
(
ξ–

 , y
)

= σ̃l
(
g(, y) – ϕ(, y)

)
exp

(
–
√

σ̃lξ
–

)

–
∂f

∂u
(
ϕ(, y) + θα

(
ξ–

 , y
)
, , y

)(
g(, y) – ϕ(, y)

)
exp

(
–
√

σ̃lξ
–

)

≥ 

and

∂β

∂ξ
–,


–
∂f

∂u
(
ϕ(, y) + θβ

(
ξ–

 , y
)
, , y

)
β
(
ξ–

 , y
)

= σ̄l
(
g(, y) – ϕ(, y)

)
exp

(
–
√

σ̄lξ
–

)

–
∂f

∂u
(
ϕ(, y) + θβ

(
ξ–

 , y
)
, , y

)(
g(, y) – ϕ(, y)

)
exp

(
–
√

σ̄lξ
–

)

≤ .

It follows that the function α(ξ–
 , y) and β(ξ–

 , y) are lower and upper solutions of the
problem (.), respectively. By the theory of differential inequality, we see that problem
(.) has a solution L–

(ξ–
 , y) which satisfies

α
(
ξ–

 , y
) ≤ L–


(
ξ–

 , y
) ≤ β

(
ξ–

 , y
)
. �

Next, we consider the inner layer term of Q–. We have in a similar manner

∂Q–

∂ξ
–,


+ ε ∂Q–

∂y = f
(
Ū– + L– + Q–, c – εξ–

 , y
)

– f
(
Ū– + L–, c – εξ–

 , y
)
. (.)

Note that

f
(
Ū– + L– + Q–, x, y

)
– f

(
Ū– + L–, x, y

)
= f

(
Ū– + Q–, x, y

)
– f

(
Ū–, x, y

)
+ �F + �F,

where

�F = f
(
Ū– + L– + Q–, x, y

)
– f

(
Ū– + Q–, x, y

)
=

∂f

∂u
(
Ū– + θL– + Q–, x, y

)
L–,

�F = f
(
Ū– + L–, x, y

)
– f

(
Ū–, x, y

)
=

∂f

∂u
(
Ū– + θL–, x, y

)
L–,

with θi ∈ [, ], i = , . Here �F(ξ–
 , y, ε) and �F(ξ–

 , y, ε) decay exponentially by Lem-
ma .. The term of zeroth order Q–

 satisfies

⎧⎨
⎩

∂Q–


∂ξ
–,


= f(Ū–
 (c, y) + Q–

(ξ–
 , y), c, y),

Q–
(, y) = γ(c, y) – ϕ(c, y), Q–

(+∞, y) = .
(.)
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In a similar way, we see that the boundary layer term W –
 of the left problem solves

⎧⎨
⎩

∂W –


∂ξ
–,


= f(Ū–
 (x, ) + W –

 (x, ξ–
 ), x, ),

W –
 (x, ) = g(x, ) – ϕ(x, ), W –

 (x, +∞) = ,
(.)

and the boundary layer term �–
 of the left problem solves

⎧⎨
⎩

∂�–


∂ξ
–,


= f(Ū–
 (x, ) + �–

(x, ξ–
 ), x, ),

�–
(x, ) = g(x, ) – ϕ(x, ), �–

(x, +∞) = .
(.)

The following lemmas are related to the asymptotic behavior of the boundary layer terms
for the left problem, whose proofs are similar to that of Lemma ., and therefore they are
omitted here.

Lemma . Under the assumption (H), for sufficiently small ε > , problem (.) has a
solution Q–

(ξ–
 , y) and satisfies the estimate

(
γ(c, y) – ϕ(c, y)

)
exp

(
–
√

σ̃lξ
–

) ≤ Q–


(
ξ–

 , y
)

≤ (
γ(c, y) – ϕ(c, y)

)
exp

(
–
√

σ̄lξ
–

)
,

where

σ̃l =

{
σ, γ(c, y) – ϕ(c, y) > ,
σ, γ(c, y) – ϕ(c, y) < ,

σ̄l =

{
σ, γ(c, y) – ϕ(c, y) > ,
σ, γ(c, y) – ϕ(c, y) < .

Lemma . Under the assumption (H), for sufficiently small ε > , problem (.) has a
solution W –

 (x, ξ–
 ) and satisfies the estimate

(
g(x, ) – ϕ(x, )

)
exp

(
–
√

σ̃lξ
–

) ≤ W –


(
x, ξ–


)

≤ (
g(x, ) – ϕ(x, )

)
exp

(
–
√

σ̄lξ
–

)
,

where

σ̃l =

{
σ, g(x, ) – ϕ(x, ) > ,
σ, g(x, ) – ϕ(x, ) < ,

σ̄l =

{
σ, g(x, ) – ϕ(x, ) > ,
σ, g(x, ) – ϕ(x, ) < .

Lemma . Under the assumption (H), for sufficiently small ε > , problem (.) has a
solution �–

(x, ξ–
 ) and satisfies the estimate

(
g(x, ) – ϕ(x, )

)
exp

(
–
√

σ̃lξ
–

) ≤ �–


(
x, ξ–


) ≤ (

g(x, ) – ϕ(x, )
)

exp
(
–
√

σ̄lξ
–

)
,

where

σ̃l =

{
σ, g(x, ) – ϕ(x, ) > ,
σ, g(x, ) – ϕ(x, ) < ,

σ̄l =

{
σ, g(x, ) – ϕ(x, ) > ,
σ, g(x, ) – ϕ(x, ) < .
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Regarding to the problem (.), we find that the analyses of Ū+, L+, W +, and �+ are
similar to the left problem (.). Consequently, we will not calculate them in detail. In
order to determine the parameters γn(y) (n > ), we would concentrate our attention on
Q+. For the zeroth-order approximation Q+

(ξ+
 , y), we get the following boundary value

problem:

⎧⎨
⎩

∂Q+


∂ξ
+,


= f(Ū+
 (c, y) + Q+

(ξ+
 , y), c, y),

Q+
(, y) = γ(c, y) – ψ(c, y), Q+

(+∞, y) = .
(.)

Due to the continuity of f(u, x, y), we define

σ = max

{
∂f

∂u
(
ψ(x, y) + ζ, x, y

)∣∣∣|ζ| ≤ N+


}
,

where ζ = κL+ + κQ+ + κW + + κ�
+ for  ≤ κi ≤ , i = , , and N+

 is large enough. In a
completely similar way for the left problem, we obtain the following result.

Lemma . Under the assumption (H), for sufficiently small ε > , problem (.) has a
solution Q+

(ξ+
 , y) and satisfies the estimate

(
γ(c, y) – ψ(c, y)

)
exp

(
–
√

σ̃lξ
+

) ≤ Q+


(
ξ+

 , y
)

≤ (
γ(c, y) – ψ(c, y)

)
exp

(
–
√

σ̄lξ
+

)
,

where

σ̃l =

{
σ, γ(c, y) – ψ(c, y) > ,
σ, γ(c, y) – ψ(c, y) < ,

σ̄l =

{
σ, γ(c, y) – ψ(c, y) > ,
σ, γ(c, y) – ψ(c, y) < .

In order that the solutions of the two problems are smoothly connected at x = c. The
smoothness is guaranteed under an extra condition,

∂U–

∂x
(c, y, ε) =

∂U+

∂x
(c, y, ε). (.)

Substituting the formal solutions into (.) and comparing the same power of ε, we
have

∂Q–


∂ξ–


∣∣∣∣
ξ–

 =
=

∂Q+


∂ξ+


∣∣∣∣
ξ+

 =
, (.)

∂ϕ

∂x

∣∣∣∣
x=c

+
∂Q–


∂ξ–



∣∣∣∣
ξ–

 =
=

∂ψ

∂x

∣∣∣∣
x=c

+
∂Q+


∂ξ+



∣∣∣∣
ξ+

 =
,

· · ·

Let

w =
∂Q–


∂ξ–


,
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then the boundary value problem (.) becomes

∂w
∂ξ–


= f

(
ϕ(c, y) + Q–


(
ξ–

 , y
)
, c, y

)
. (.)

Multiplying (.) by  ∂Q–


∂ξ–


and integrating on [,∞), we obtain

(
∂Q–


∂ξ–



∣∣∣∣
ξ–

 =

)

= f
(
ϕ(c, y) + Q–

(, y), c, y
)
Q–

(, y)

+ 
∫ ∞



∂f

∂u
(
ϕ(c, y) + Q–


(
ξ–

 , y
)
, c, y

)
Q–


∂Q–


∂ξ–


dξ–

 . (.)

Analogously, we have

(
∂Q+


∂ξ+



∣∣∣∣
ξ+

 =

)

= f
(
ψ(c, y) + Q+

(, y), c, y
)
Q+

(, y)

+ 
∫ ∞



∂f

∂u
(
ψ(c, y) + Q+


(
ξ+

 , y
)
, c, y

)
Q+


∂Q+


∂ξ+


dξ+

 . (.)

By substituting (.) and (.) into (.), we get

f
(
ψ(c, y) + Q+

(, y), c, y
)
Q+

(, y) – f
(
ϕ(c, y) + Q–

(, y), c, y
)
Q–

(, y)

=
∫ ∞



∂f

∂u
(
ϕ(c, y) + Q–


(
ξ–

 , y
)
, c, y

)
Q–


∂Q–


∂ξ–


dξ–



–
∫ ∞



∂f

∂u
(
ψ(c, y) + Q+


(
ξ+

 , y
)
, c, y

)
Q+


∂Q+


∂ξ+


dξ+



� F(γ, y).

(H) Assume

f
(
ψ(c, y) + Q+

(, y), c, y
)
Q+

(, y) – f
(
ϕ(c, y) + Q–

(, y), c, y
)
Q–

(, y) = F(γ, y)

has a unique solution γ(c, y).
Likewise, γi(c, y), i = , , . . . , can be determined recursively.
Therefore, we have thus constructed the zeroth-order asymptotic solution

Ũ(x, y) =

{
U–, (x, y) ∈ �–,
U+, (x, y) ∈ �+,

(.)

where

U– = ϕ(x, y) + L–

(
ξ–

 , y
)

+ Q–

(
ξ–

 , y
)

+ W –

(
x, ξ–


)

+ �–

(
x, ξ–


)
, (x, y) ∈ �–,

U+ = ψ(x, y) + L+

(
ξ+

 , y
)

+ Q+

(
ξ+

 , y
)

+ W +

(
x, ξ+


)

+ �+

(
x, ξ+


)
, (x, y) ∈ �+.

Case  � is a bounded domain with ∂� of class C∞.
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Figure 2 The domain �.

We study the problem (.) on the bounded domain � with ∂� of class C∞. In order to
construct the formal asymptotic solution we need to propose suitable parameter transfor-
mation. We first introduce local coordinates (ρ±

 ,σ±
 ) in an interior neighborhood V ±

 of
∂�±and (ρ±

 ,σ±
 ) in a neighborhood V ±

 of �±, where ρ±
 denotes the distance PS from a

point P ∈ V ±
 to the boundary ∂�±, and σ±

 is the arc length from a given point S ∈ ∂�±

to the point S ∈ ∂�±. ρ±
 denotes the distance PS from a point P ∈ V ±

 to the boundary
�±, and σ±

 is the arc length from a given point S ∈ �± to the point S ∈ �± (see Figure ).

Since ∂�± and �± are sufficiently smooth, the neighborhood V ±
i can be expressed as

 ≤ ρ±
i ≤ α±

i ,  ≤ σ±
i ≤ β±

i , i = , .

Thus there is a - correspondence between the coordinates (x, y) and (ρ±
i ,σ±

i ) in V ±
i .

Let the parameter representation of ∂�± be given by

x = x
(
σ±


)
, y = y

(
σ±


)
,

and the parameter representation of �± be given by

x = x
(
σ±


)
, y = y

(
σ±


)
.

By the arc length formula, we have

σ =
∫ σ



√
ẋ(τ ) + ẏ(τ ) dτ .

Taking a derivative with respect to σ in both sides of the above equation, we get

ẋ(σ ) + ẏ(σ ) = .

On the other hand, the unit tangent vector is 
v = (ẋ(σ±
i ), ẏ(σ±

i )) at the point S. Using the
method of differential triangles, we have

x – x
(
σ±

i
)

= ρ±
i sin θ = ρ±

i ẏ
(
σ±

i
)
,
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y
(
σ±

i
)

– y = ρ±
i cos θ = ρ±

i ẋ
(
σ±

i
)
.

Consequently, we have in V ±
i

x = x
(
σ±

i
)

+ ρ±
i ẏ

(
σ±

i
)
, y = y

(
σ±

i
)

– ρ±
i ẋ

(
σ±

i
)
.

We look for the formal asymptotic solutions U∓(x, y, ε) of the problem (.) and (.) in
the following form:

U–(x, y, ε) = Ū–(x, y, ε) + V –(
τ–

 ,σ –
 , ε

)
+ W –(

τ–
 ,σ –

 , ε
)
,

U+(x, y, ε) = Ū+(x, y, ε) + V +(
τ+

 ,σ +
 , ε

)
+ W +(

τ+
 ,σ +

 , ε
)
,

(.)

with

Ū (∓)(x, y, ε) = Ū (∓)
 (x, y) + εŪ (∓)

 (x, y) + · · · ,

V (∓)(τ∓
 ,σ∓

 , ε
)

= V (∓)


(
τ∓

 ,σ∓


)
+ εV (∓)


(
τ∓

 ,σ∓


)
+ · · · ,

W (∓)(τ∓
 ,σ∓

 , ε
)

= W (∓)


(
τ∓

 ,σ∓


)
+ εW (∓)


(
τ∓

 ,σ∓


)
+ · · · ,

where τ∓
i = ρ∓

i
ε

, and ρ–
 and ρ+

 are symmetrical with respect to �.

Remark Note that the formal solution U– (or U+) in (.) consists of a regular part and
two boundary layer parts (near the curve � and the boundary ∂�+ (or ∂�–)), which is dif-
ferent from that in the first case that � is a rectangular region. In the first case, the piece-
wise smooth boundary � comprises four line segments. Therefore, we have four boundary
layer parts in (.), besides a regular part.

Expressing our dependent variables in (ρ∓
i ,σ∓

i ), we retain the notation of our function
symbols. For example, f (u, x, y) with (x, y) ∈ V ±

i is written as f (u,ρ∓
i ,σ∓

i ). The problem
(.) and (.) become in (ρ∓

i ,σ∓
i ) coordinates, respectively,

ε
{

∂U∓

∂ρ
∓,
i

+


J∓,
i

∂U∓

∂σ
∓,
i

+
(

∂ρ∓
i

∂x +
∂ρ∓

i
∂y

)
∂U∓

∂ρ∓
i

+
(

∂σ∓
i

∂x +
∂σ∓

i
∂y

)
∂U∓

∂σ∓
i

}

= f
(
U∓,ρ∓

i ,σ∓
i

)
, (.)

subject to the boundary conditions

U∓|∂�∓ = g̃
(
σ∓


)
, U∓|�∓ = γ

(
ε,σ∓


)
,

where

J∓
i =

∣∣∣∣∣∣
∂x

∂σ∓
i

∂x
∂ρ∓

i
∂y

∂σ∓
i

∂y
∂ρ∓

i

∣∣∣∣∣∣ ,

g̃
(
σ∓


)

= g
(
x
(
σ∓


)
, y

(
σ∓


))

,

γ
(
ε,σ∓


)

= γ
(
ε, x

(
σ∓


)
, y

(
σ∓


))

.
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By the method of the boundary layer function [, ],

f
(
U∓,ρ∓

i ,σ∓
i

)
= f

(
Ū∓ + V ∓ + W ∓,ρ∓

i ,σ∓
i

)
= f

(
Ū∓,ρ∓

i ,σ∓
i

)
+ f

(
Ū∓ + V ∓,ρ∓

i ,σ∓
i

)
– f

(
Ū∓,ρ∓

i ,σ∓
i

)
+ f

(
Ū∓ + V ∓ + W ∓,ρ∓

i ,σ∓
i

)
– f

(
Ū∓ + V ∓,ρ∓

i ,σ∓
i

)
.

For simplicity, we only consider the approximation of zeroth order. For the left problem,
considering the boundary layer term of ∂�–, we can get the boundary value problem

⎧⎨
⎩

∂V –


∂τ
–,


= f(Ū–
 (x(σ –

 ), y(σ –
 )) + V –

 , ,σ –
 ),

V –
 (,σ –

 ) = g̃(σ –
 ) – Ū–

 (x(σ –
 ), y(σ –

 )), V –
 (∞, ) = .

(.)

For θ ∈ (, ), we have

f
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ V –
 , ,σ –


)

=
∂f

∂u
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ θV –
 , ,σ –


)
V –

 .

Rewrite the first equation of (.) as the equivalent equation

∂V –


∂τ
–,


=
∂f

∂u
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ θV –
 , ,σ –


)
V –

 .

By the assumption (H), we know ∂f
∂u (u, x, y) ≥ σ > . It follows that V –

 (τ–
 ,σ –

 ) as
the function of τ–

 is concave for V –
 (,σ –

 ) >  and convex for V –
 (,σ –

 ) < . Because
of V –

 (∞, ) = , as long as V –
 (,σ –

 ) �= , it is impossible that the function V –
 (τ–

 ,σ –
 )

can change its sign for τ–
 > . Hence we have the result that V –

 (τ–
 ,σ –

 ) decreases
monotonously for V –

 (,σ –
 ) > , and increases monotonously for V –

 (,σ –
 ) < .

If V –
 (,σ –

 ) > , we have

∂V –


∂τ
–,


∂V –


∂τ–


< σV –


∂V –


∂τ–


.

It follows that

(
∂V –


∂τ–



)∣∣∣∣
∞

τ–


< σ
(
V –


)∣∣∞

τ–


,

from which we obtain

–
∂V –


∂τ–


> σV –

 .

Integrating once again, we get

V –

(
τ–

 ,σ –

)

= O
(
e–στ–


)
. (.)

Of course, the same reason holds for the case V –
 (,σ –

 ) < .
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Consider the boundary layer term of �. By equation (.), it follows that

f
(
Ū (∓) + V (∓) + W (∓),ρ∓

i ,σ∓
i

)
– f

(
Ū (∓) + V (∓),ρ∓

i ,σ∓
i

)
= f

(
Ū (∓) + W (∓),ρ∓

i ,σ∓
i

)
– f

(
Ū (∓),ρ∓

i ,σ∓
i

)
+ �F,

where �F can be negligible. For the zeroth-order approximation of W –
 (,σ –

 ), we get the
boundary value problem

⎧⎨
⎩

∂W –


∂τ
–,


= f(Ū–
 (x(σ –

 ), y(σ –
 )) + W –

 , ,σ –
 ),

W –
 (,σ –

 ) = γ(σ –
 ) – Ū–

 (x(σ –
 ), y(σ –

 )), W –
 (∞, ) = .

(.)

For θ ∈ (, ), we have

f
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ W –
 , ,σ –


)

=
∂f

∂u
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ θW –
 , ,σ –


)
W –

 .

Rewrite the first equation of (.) into the equivalent equation

∂W –


∂τ
–,


=
∂f

∂u
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ θW –
 , ,σ –


)
W –

 . (.)

Similar to the analysis to the boundary value problem (.), for the boundary value prob-
lem (.), we obtain the same result,

W –

(
τ–

 ,σ –

)

= O
(
e–στ–


)
.

Consider the function of the left problem (.)

U–
 (x, y) = Ū–

 (x, y) + V –


(
ρ–


ε

,σ –


)
χ

(
ρ–


)

+ W –


(
ρ–


ε

,σ –


)
χ

(
ρ–


)
, (.)

where

χi
(
ρ–

i
)

=

{
,  ≤ ρ–

i ≤ 
α–

i ,
, 

α–
i ≤ ρ–

i ≤ α–
i ,

i = , .

Analogously, the right problem (.) have the same form

U+
 (x, y) = Ū+

 (x, y) + V +


(
ρ+


ε

,σ +


)
ν

(
ρ+


)

+ W +


(
ρ+


ε

,σ +


)
ν

(
ρ+


)
, (.)

where

νi
(
ρ+

i
)

=

{
,  ≤ ρ+

i ≤ 
α+

i ,
, 

α+
i ≤ ρ+

i ≤ α+
i ,

i = , .

In order that the solutions of the two problems are smoothly connected at �, considering
the approximation of zeroth order for the boundary layer terms, we have

∂W –


∂τ–


∣∣∣∣
τ–

 =
=

∂W +


∂τ+


∣∣∣∣
τ+

 =
. (.)
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Let

z =
∂W –


∂τ–


,

then the boundary value problem (.) becomes

∂z
∂τ–


= f

(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ W –
 , ,σ –


)
. (.)

Multiplying (.) by  ∂W –


∂τ–


and integrating on [,∞), we obtain

(
∂W –


∂τ–



∣∣∣∣
τ–

 =

)

= f
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ W –
 (), ,σ –


)

+ 
∫ ∞



∂f

∂u
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ W –
 , ,σ –


)∂W –


∂τ–


W –

 dτ–
 . (.)

In the same way,

(
∂W +


∂τ+



∣∣∣∣
τ+

 =

)

= f
(
Ū+


(
x
(
σ +


)
, y

(
σ +


))

+ W +
 (), ,σ +


)

+ 
∫ ∞



∂f

∂u
(
Ū+


(
x
(
σ +


)
, y

(
σ +


))

+ W +
 , ,σ +


)∂W +


∂τ+


W +

 dτ+
 . (.)

By substituting (.) and (.) into (.), we obtain

f
(
Ū+


(
x
(
σ +


)
, y

(
σ +


))

+ W +
 (), ,σ +


)

– f
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ W –
 (), ,σ –


)

=
∫ ∞



∂f

∂u
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ W –
 , ,σ –


)∂W –


∂τ–


W –

 dτ–


–
∫ ∞



∂f

∂u
(
Ū+


(
x
(
σ +


)
, y

(
σ +


))

+ W +
 , ,σ +


)∂W +


∂τ+


W +

 dτ+


� F̃
(
γ,σ –

 ,σ +

)
.

(H) Assume that

f
(
Ū+


(
x
(
σ +


)
, y

(
σ +


))

+ W +
 (), ,σ +


)

– f
(
Ū–


(
x
(
σ –


)
, y

(
σ –


))

+ W –
 (), ,σ –


)

� F̃
(
γ,σ –

 ,σ +

)

has a unique solution γ(σ –
 ,σ +

 ).
Likewise, γi(σ –

 ,σ +
 ), i = , , . . . can be determined recursively.

As mentioned above, we have constructed the zeroth-order asymptotic solution of the
problems (.) in the form

Ũ(x, y) =

⎧⎪⎨
⎪⎩

U–
 (x, y), (x, y) ∈ �–,

γ(x, y), (x, y) ∈ �,
U+

 (x, y), (x, y) ∈ �+.
(.)
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3 Main result
In this section, we will consider the uniform validity of the solution for the problem (.).
Before doing this, we need to present a technical lemma whose proof can be found in [].

Lemma . Let the twice continuously differentiable functions �(x, y), �(x, y), and
�(x, y) satisfy the inequalities

L[�] < L[�] < L[�], (x, y) ∈ D,

where L is the differential operator defined in (.), elliptic in bounded domain D ∈R with
respect to the functions � + θ(� – �) and � + θ(� – �), and ∂f

∂u ≥  for all (x, y) ∈ D
and for all functions u(x, y) ∈ C(D);  < θi = θi(x, y) < , i = , . If

�(x, y) ≤ �(x, y) ≤ �(x, y), (x, y) ∈ ∂D,

then this relation holds also for all points (x, y) ∈ D̄.

Now we state the existence and asymptotical results for the problem (.).

Theorem . Suppose that � is a bounded rectangular domain as in Figure . If the con-
ditions (H)-(H) hold, then for sufficiently small ε > , the problem (.) has a solution
U(x, y) with

U(x, y) = Ũ(x, y) + O(ε),

where Ũ(x, y) is defined in (.).

Proof Note that Ũ(x, y) satisfies the boundary value problem

{
ε�Ũ(x, y) – fi(Ũ , x, y) = O(ε), (x, y) ∈ �, i = , ,
Ũ(x, y)|∂�∪� = .

(.)

Set

U(x, y) = Ũ(x, y) + R(x, y),

with

R(x, y) =

{
R(x, y), (x, y) ∈ �–,
R(x, y), (x, y) ∈ �+.

Thus we have the problem for the remainder term R(x, y)

{
ε�Ũ(x, y) + ε�R(x, y) – fi(Ũ + R, x, y) = O(ε), (x, y) ∈ �, i = , ,
R(x, y)|∂�∪� = .

(.)
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It follows from equations (.) and (.) that

{
L(R) ≡ ε�R(x, y) – fi(Ũ + R, x, y) + fi(Ũ , x, y) = O(ε), (x, y) ∈ �, i = , ,
R(x, y)|∂�∪� = .

Barrier functions are provided by taking β , where

β =
∑

i=

∑
k=

βi,k ,

and βi,k = (–)k–λε, i = , . λ is sufficiently large.
For k = , and βi, = λε, i = , , we have

L[βi,] ≡ ε�βi, – fi(Ũ + βi,, x, y) + fi(Ũ , x, y)

= –
∂f
∂u

(Ũ + θλε, x, y)λε

≤ –σiλε.

Analogously, for k = , and βi, = –λε, i = , ,

L[βi,] ≡ ε�βi, – fi(Ũ + βi,, x, y) + fi(Ũ , x, y)

=
∂f
∂u

(Ũ + θλε, x, y)λε

≥ σiλε.

Accordingly, R = O(ε) is uniform in �̄ by Lemma .. �

Theorem . Suppose that � is a bounded domain with ∂� of class C∞. If the conditions
(H) and (H) hold, then for sufficiently small ε > , the problem (.) has a solution U(x, y)
with

U(x, y) = Ũ(x, y) + O(ε),

where Ũ(x, y) is defined as in (.).

The proof of this result is quite similar to that given earlier for the Theorem . and
thereby is omitted.

4 Example
In this section, we present an example on a rectangular domain � = { < x < ,  < y < }
to illustrate our results. Consider the following boundary value problem

⎧⎪⎨
⎪⎩

ε( ∂u
∂x (x, y) + ∂u

∂y (x, y)) = f (u, x, y),
u(, y) = y, u(, y) = y,
u(x, ) = , u(x, ) = x,

(.)
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where

f (u, x, y) =

{
u(x, y), (x, y) ∈ �–,
u(x, y) – , (x, y) ∈ �+,

with �– = { < x < 
 ,  < y < }, �+ = { 

 < x < ,  < y < }. Obviously, fi(u, x, y) ∈ C(R ×
�∓), i = , , and f(u, 

 , y) �= f(u, 
 , y).

The reduced equation f(u, x, y) =  has a solution ϕ(x, y) = , and f(u, x, y) =  has a
solution ψ(x, y) = , satisfying the condition

∂fi

∂u
(u, x, y) =  > , (u, x, y) ∈R× �∓, i = , .

It follows that the assumption (H) is verified.
Moreover, we can find that γ(y) = 

 satisfies the assumption (H). Therefore the zeroth-
order asymptotic solution of the problem (.) is obtained as follows:

U(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ye– x
ε + 

 e–

 –x
ε + e– y

ε + xe– –y
ε , (x, y) ∈ �–,


 , (x, y) ∈ �,

 + (y – )e– –x
ε – 

 e–
x– 


ε + e– y

ε + (x – )e– –y
ε , (x, y) ∈ �+.
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