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Abstract
In this paper, we study the existence of multiple positive solutions for fourth-order
impulsive differential equation with integral boundary conditions and deviating
argument. The main tool is based on the Avery and Peterson fixed point theorem.
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1 Introduction
As an important area of investigation, the theory and applications of the fourth-order ordi-
nary differential equations are emerging. The study concerns mainly the description of the
deformations of an elastic beam by means of a fourth-order differential equation boundary
value problem (BVP for short). Owing to its various applications in physics, engineering,
and material mechanics, a lot of attention has been received by fourth-order differential
equation BVPs. For more information, see [–].

In the meantime, many very interesting and significant cases of BVPs are constituted by
integral boundary conditions. They include two-, three-, multi-point, and nonlocal BVPs
as special cases. Therefore, in recent years, increasing attention has been given to integral
boundary conditions [–] of fourth-order BVPs. Especially, we intend to mention some
recent results.

In [], Ma studied the following fourth-order BVP:

⎧
⎪⎪⎨

⎪⎪⎩

u()(t) = h(t)f (t, u),  < t < ,
u() = u() =

∫ 
 p(s)u(s) ds,

u′′() = u′′() =
∫ 

 q(s)u(s) ds,

where p, q ∈ L[, ], h and f are continuous. From an application of the fixed point index
in cones, the existence of at least one symmetric positive solution could be obtained.
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In , the authors [] investigated the fourth-order differential equation with integral
boundary conditions,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y()(t) = ω(t)F(t, y(t), y′′(t)),  < t < ,
y() = y() =

∫ 
 h(s)y(s) ds,

ay′′() – by′′′x() =
∫ 

 g(s)y′′(s) ds,
ay′′() + by′′′x() =

∫ 
 g(s)y′′(s) ds.

By using a novel technique and fixed point theories, they showed the existence and mul-
tiplicity of positive solutions.

Unlike [] and [], a class of fourth-order differential equations with advanced or de-
layed argument were considered by the author of [],

x(t) = h(t)f
(
t, x(t), x

(
α(t)

))
, t ∈ (, ),

subject to the boundary conditions

{
x() = γ x′() –

∫ 
 g(s)x(s) ds,

x() = βx(η), x′′() = x′′() = ,

or

{
x() = βx(η), x′′() = x′′() = ,
x() = γ x′() –

∫ 
 g(s)x(s) ds.

The existence of multiple positive solutions is obtained by using a fixed point theorem due
to Avery and Peterson.

In addition, to deviating arguments, the authors of [] studied a fourth-order impulsive
BVP as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(φp(y′′(t)))′′ = λω(t)f (t, y(α(t))), t ∈ (, )/(t, t, . . . , tn),
�y′

tk
= –μIk(tk , y(tk)), k = , , . . . , n,

ay() – by′() =
∫ 

 g(s)y(s) ds,
ay() + by′() =

∫ 
 g(s)y(s) ds,

φp(y′′()) = φp(y′′()) =
∫ 

 h(t)φp(y′′(t)) dt.

The boundary conditions above are special Sturm-Liouville integral boundary conditions,
since ay() – by′() = ay() + by′() =

∫ 
 g(s)y(s) ds. Several existence and multiplicity re-

sults were derived by using inequality techniques and fixed point theories. For most re-
search papers on impulsive differential equation BVPs, see [–] and the references
therein.

Motivated by the mentioned results, we investigate a fourth-order impulsive differential
equation Sturm-Liouville integral BVP with deviating argument,

x()(t) = h(t)f
(
t, x(t), x

(
α(t)

))
, t ∈ J, (.)
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subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x() = x() =
∫ 

 g(s)x(s) ds,
�x′

tk
= –Ik(tk , x(tk)), k = , , . . . , m,

x′′() – ξx′′′() =
∫ 

 g(s)x′′(s) ds,
x′′() + ηx′′′() =

∫ 
 g(s)x′′(s) ds,

(.)

where ξ ,η > . Compared with [–], in this paper, (.) contains the general Sturm-
Liouville integral boundary conditions, where g(s), g(s) could be two different functions
in L[, ]. In this case, we have to establish a more complicated expression of operator
T and to find the proper lower and upper bounds of Green’s functions (Lemma . and
Lemma .). Further, by using the fixed point theorem due to Avery and Peterson, the
existence and multiplicity of positive solutions are obtained.

In (.), tk (k = , , . . . , m) are fixed points with  = t < t < t < · · · < tm < tm+ = , �x′
tk

=
x′(tk

+) – x′(tk
–), x′(tk

+) and x′(tk
–) represent the right-hand limit and the left-hand limit of

x′(tk) at t = tk , respectively.
Throughout the paper, we always assume that J = [, ], J = (, )\{t, t, . . . , tm}, R+ =

[, +∞), Jk = (tk , tk+], k = , , . . . , m – . α : J → J is continuous and:

(H) f ∈ C(J ×R
+ ×R

+,R+), with f (t, u, v) >  for t ∈ J , u > , and v > ;
(H) h is a nonnegative continuous function defined on (, ); h is not identically zero on

any subinterval on J;
(H) Ik : J ×R

+ → R
+ is continuous with Ik(t, u) >  (k = , , . . . , m) for all t ∈ J and u > ;

(H) g, g, g ∈ L[, ] are nonnegative and γ =
∫ 

 g(s) ds ∈ (, ).

2 Expression and properties of Green’s function
For v(t) ∈ C(J), we consider the equation

x(t) = v(t),  < t < , (.)

with boundary conditions (.).
We shall reduce BVP (.) and (.) to two second-order problems. To this goal, first, by

means of the transformation

x′′(t) = –y(t), (.)

we convert problem (.) and (.) into
⎧
⎪⎪⎨

⎪⎪⎩

y′′(t) = –v(t),
y() – ξy′() =

∫ 
 g(s)y(s) ds,

y() + ηy′() =
∫ 

 g(s)y(s) ds,

(.)

and
⎧
⎪⎪⎨

⎪⎪⎩

x′′(t) = –y(t),
x() = x() =

∫ 
 g(s)x(s) ds,

�x′
tk

= –Ik , k = , , . . . , m.

(.)
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Lemma . λ(t) is the solution of x′′(t) = , x() = ξ , x′() = . μ(t) is the solution of y′′(t) =
, y() = η, y′() = –. Then λ(t) is strictly increasing on J, λ(t) >  on (, ]; μ(t) is strictly
decreasing on J, and μ(t) >  on [, ). For any v(t) ∈ C(J), then the BVP (.) has a unique
solution as follows:

y(t) = (Fv)(t) + A(v)λ(t) + B(v)μ(t), (.)

where

(Fv)(t) =
∫ 


G(t, s)v(s) ds, (.)

G(t, s) =

⎧
⎨

⎩


ρ

(η +  – t)(s + ξ ),  ≤ s ≤ t ≤ ,

ρ

(η +  – s)(t + ξ ),  ≤ t ≤ s ≤ ,
(.)

ρ =  + ξ + η, λ(t) = t + ξ , μ(t) = η +  – t, (.)

and

A(v) =

�

∣
∣
∣
∣
∣

α[Fv] ρ – α[μ]
β[Fv] –β[μ]

∣
∣
∣
∣
∣
, B(v) =


�

∣
∣
∣
∣
∣

–α[λ] α[Fv]
ρ – β[λ] β[Fv]

∣
∣
∣
∣
∣
, (.)

where

� =

∣
∣
∣
∣
∣

–α[λ] ρ – α[μ]
ρ – β[λ] –β[μ]

∣
∣
∣
∣
∣
,

α[v] =
∫ 


g(s)v(s) ds, β[v] =

∫ 


g(s)v(s) ds.

(.)

Proof Since λ and μ are two linearly independent solutions of the equation y′′(t) = , we
know that any solution of y′′ = v(t) can be represented by (.).

It is easy to check that the function defined by (.) is a solution of (.) if A and B are
as in (.), respectively.

Now we show that the function defined by (.) is a solution of (.) only if A and B are
as in (.), respectively.

Let y(t) = (Fv)(t) + Aλ(t) + Bμ(t) be a solution of (.), then we have

y(t) =
∫ t




ρ

(η +  – t)(s + ξ )v(s) ds +
∫ 

t


ρ

(η +  – s)(t + ξ )v(s) ds + Aλ(t) + Bμ(t),

y′(t) = –
∫ t




ρ

(s + ξ )v(s) ds +
∫ 

t


ρ

(η +  – s)v(s) ds + Aλ′(t) + Bμ′(t),

and

y′′(t) = –

ρ

(t + ξ )v(t) –

ρ

(η +  – t)v(t) + Aλ′′(t) + Bμ′′(t).

Thus, by (.), we can obtain

y′′ = –v(t).
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Since

y() =
∫ 



ξ

ρ
(η +  – s)v(s) ds + Aλ() + Bμ(),

y′() =
∫ 




ρ

(η +  – s)v(s) ds + Aλ′() + Bμ′(),

we have

A
(

–
∫ 


g(s)λ(s) ds

)

+ B
(

ρ –
∫ 


g(s)μ(s) ds

)

=
∫ 


g(s)(Fv)(s) ds. (.)

Since

y() =
∫ 



η

ρ
(s + ξ )v(s) ds + Aλ() + Bμ(),

y′() = –
∫ 




ρ

(s + ξ )v(s) ds + Aλ′() + Bμ′(),

we have

A
(

ρ –
∫ 


g(s)λ(s) ds

)

+ B
(

–
∫ 


g(s)μ(s) ds

)

=
∫ 


g(s)(Fv)(s) ds. (.)

From (.) and (.), we get

(
–α[λ] ρ – α[μ]

ρ – β[λ] –β[μ]

)(
A
B

)

=

(
α[Fv]
β[Fv]

)

,

which implies that A and B satisfy (.), respectively. �

Assume that

(H) � < , α[μ] < ρ , β[λ] < ρ .

Lemma . Denote e(t) = G(t, t), ê(t) = 
ρ

( – t)(t + ξ ), for t ∈ J . Let κ[v] =
∫ 

 e(s)v(s) ds
and κ̂[v] =

∫ 
 ê(s)v(s) ds, for v ∈ C(J ,R+). If (H) is satisfied, then the following results are

true:
() ê(s)ê(t) ≤ G(t, s) ≤ e(s), for t, s ∈ J ;
()  ≤ Aκ̂[v] ≤ A(v) ≤ Aκ[v], for v ∈ C(J ,R+);
()  ≤ Bκ̂[v] ≤ B(v) ≤ Bκ[v], for v ∈ C(J ,R+),

where

A =

�

∣
∣
∣
∣
∣

α[] ρ – α[μ]
β[] –β[μ]

∣
∣
∣
∣
∣
, B =


�

∣
∣
∣
∣
∣

–α[λ] α[]
ρ – β[λ] β[]

∣
∣
∣
∣
∣
,

A =

�

∣
∣
∣
∣
∣

α[ê] ρ – α[μ]
β[ê] –β[μ]

∣
∣
∣
∣
∣
, B =


�

∣
∣
∣
∣
∣

–α[λ] α[ê]
ρ – β[λ] β[ê]

∣
∣
∣
∣
∣
.
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Proof Now we show that () is true. Obviously, G(t, s) ≤ e(s) for t, s ∈ J .
In fact, ê(s)ê(t) = 

ρ ( – s)(s + ξ )( – t)(t + ξ ), for s, t ∈ J .
For  ≤ s ≤ t ≤ , we notice that

ê(s)ê(t)
G(t, s)

=
( – s)( – t)(t + ξ )

ρ(η +  – t)
=

( – s)( – t)(t + ξ )
( + ξ + η)(η +  – t)

.

It is easy to see that  – s ≤ ,  – t ≤ η +  – t, t + ξ ≤  + ξ + η, for s, t ∈ J , ξ ,η > , which
implies

( – s)( – t)(t + ξ )
( + ξ + η)(η +  – t)

≤ .

Hence, we have

ê(s)ê(t) ≤ G(t, s), for  ≤ s ≤ t ≤ .

Similarly, we can obtain

ê(s)ê(t) ≤ G(t, s), for  ≤ t ≤ s ≤ .

In the following we show () and () hold. In view of (H), for v ∈ C(J ,R+), we have

A(v) = –

�

(
α[Fv]β[μ] + β[Fv]

(
ρ – α[μ]

))

≤ –

�

(
α[]β[μ] + β[]

(
ρ – α[μ]

))
κ[v] = Aκ[v],

A(v) = –

�

(
α[Fv]β[μ] + β[Fv]

(
ρ – α[μ]

))

≥ –

�

(
α[ê]β[μ] + β[ê]

(
ρ – α[μ]

))
κ̂[v] = Aκ̂[v].

In the same way, we have B(v) ≤ Bκ[v], B(v) ≥ Bκ̂[v], for v ∈ C(J ,R+). �

Analogously to Lemma . in [], we obtain the following result; we omit the proof.

Lemma . If (H) holds, for any y ∈ C(J), the problem (.) has a unique solution x ex-
pressed in the form

x(t) =
∫ 


H(t, s)y(s) ds +

m∑

k=

H(t, tk)Ik , (.)

where

H(t, s) = G(t, s) +


 – γ

∫ 


G(s, τ )g(τ ) dτ , (.)

G(t, s) =

⎧
⎨

⎩

t( – s),  ≤ t ≤ s ≤ ,

s( – t),  ≤ s ≤ t ≤ .
(.)



Dou et al. Boundary Value Problems  (2016) 2016:166 Page 7 of 15

From (.) and (.), we can prove that H(t, s) and G(t, s) have the following proper-
ties.

Lemma . Let H(t, s), G(t, s) be given as in Lemma .. Assume that (H) holds, then the
following results are true:

() e(s)e(t) ≤ G(t, s) ≤ e(s), for t, s ∈ J ;
() �

–γ
e(s) ≤ H(t, s) ≤ 

–γ
e(s), for t, s ∈ J ,

where

� =
∫ 


e(s)g(s) ds, e(t) = G(t, t), for t ∈ J .

Proof It is easy to see that () holds. In the following, we prove that () is satisfied:

H(t, s) = G(t, s) +


 – γ

∫ 


G(s, τ )g(τ ) dτ

≤ e(s) +


 – γ

∫ 


e(s)g(τ ) dτ

=


 – γ
e(s), for s ∈ J ,

and

H(t, s) ≥ e(s)e(t) +


 – γ

∫ 


e(s)e(τ )g(τ ) dτ

= e(s)
[

e(t) +


 – γ

∫ 


e(τ )g(τ ) dτ

]

=
�

 – γ
e(s), for t, s ∈ J . �

Lemma . Assume that (H)-(H) hold. Then problem (.) and (.) has a unique solu-
tion x given by

x(t) =
∫ 


H(t, s)

[
(Fv)(s) + A(v)λ(s) + B(v)μ(s)

]
ds +

m∑

k=

H(t, tk)Ik . (.)

Lemma . Assume that (H)-(H) hold, for v ∈ C(J ,R+), the unique solution x of problem
(.) and (.) satisfies x(t) ≥  on J .

Proof By Lemma ., we can obtain H(t, s) ≥  for t, s ∈ J . Hence, from Lemma ., com-
bining with Lemma . and (H), we can obtain

x(t) ≥ , for t ∈ J .

This completes the proof. �

3 Background materials and definitions
Now, we present the prerequisite definitions in Banach spaces from the theory of cones.



Dou et al. Boundary Value Problems  (2016) 2016:166 Page 8 of 15

Definition . Let E be a real Banach space. A nonempty convex closed set P ⊂ E is said
to be a cone if

(i) ku ∈ P for all u ∈ P and all k ≥ , and
(ii) u, –u ∈ P implies u = .

Definition . On a cone P of a real Banach space E, a map � is said to be a nonnegative
continuous concave functional if � : P →R

+ is continuous and

�
(
tx + ( – t)y

) ≥ t�(x) + ( – t)�(y),

for all x, y ∈ P and t ∈ J .
At the same time, on a cone P of a real Banach space E, a map ϕ is said to be a nonnegative

continuous convex functional if ϕ: P →R
+ is continuous and

ϕ
(
tx + ( – t)y

) ≤ tϕ(x) + ( – t)ϕ(y),

for all x, y ∈ P and t ∈ J .

Definition . If it is continuous and maps bounded sets into pre-compact sets, an op-
erator is called completely continuous.

Let ϕ and � be nonnegative continuous convex functionals on P, � be a nonnegative
continuous concave functional on P, and � be a nonnegative continuous functional on P.
Then for positive numbers a, b, c, and d, we define the following sets:

P(ϕ, d) =
{

x ∈ P : ϕ(x) < d
}

,

P(ϕ,�, b, d) =
{

x ∈ P : b ≤ �(x),ϕ(x) ≤ d
}

,

P(ϕ,�,�, b, c, d) =
{

x ∈ P : b ≤ �(x),�(x) ≤ c,ϕ(x) ≤ d
}

,

and

R(ϕ,� , a, d) =
{

x ∈ P : a ≤ �(x),ϕ(x) ≤ d
}

.

We will make use of the following fixed point theorem of Avery and Peterson to establish
multiple positive solutions to problem (.) and (.).

Theorem . (See []) Let P be a cone in a real Banach space E. Let ϕ and � be nonneg-
ative continuous convex functionals on P, � be nonnegative continuous concave functional
on P, and � be a nonnegative continuous functional on P satisfying �(kx) ≤ k�(x) for
 ≤ k ≤ , such that for some positive numbers M and d,

�(x) ≤ �(x) and ‖x‖≤ Mϕ(x),

for all x ∈ P(ϕ, d). Suppose

T : P(ϕ, d) → P(ϕ, d),

is completely continuous and there exist positive numbers a, b, and c with a < b such that
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(S) {x ∈ P(ϕ,�,�, b, c, d) : �(x) > b} �= ∅ and �(Tx) > b for x ∈ P(ϕ,�,�, b, c, d);
(S) �(Tx) > b for x ∈ P(ϕ,�, b, d) with �(Tx) > c;
(S)  /∈ R(ϕ,� , a, d) and �(Tx) < a for x ∈ R(ϕ,� , a, d) with �(x) = a.

Then T has at least three fixed points x, x, x ∈ P(ϕ, d), such that

ϕ(xi) ≤ d, for i = , , ,

b < �(x), a < �(x) with �(x) < b,

and

�(x) < a.

4 Existence result for the case of α(t) ≥ t on J
Function h(t) in (.) satisfies (H). We introduce the notations

l = κ[h] =
∫ 


e(s)h(s) ds, l̂ =

∫ 


ê(s)h(s) ds.

Let X = C(J ,R) be our Banach space with the maximum norm ‖x‖= maxt∈J |x|.
Set

P =
{

x ∈ X : x is nonnegative, concave and x(t) ≥ �‖x‖, t ∈ J
}

,

Pr =
{

x ∈ P : ‖x‖≤ r
}

,
(.)

where � is defined as in Lemma .. We define the nonnegative continuous concave func-
tional � = � on P by

�(x) = min
t∈[δ,]

∣
∣x(t)

∣
∣,

where δ ∈ (, ) is such that  < δ <  – δ < . Set Jδ = [δ, ].
Note that �(x) ≤ ‖x‖. Put �(x) = �(x) = ϕ(x) = ‖x‖.

Theorem . Let assumptions (H)-(H) hold and α(t) ≥ t on J . In addition, we assume
that there exist positive constants a, b, c, d, ω, L with a < b such that

ω >


 – γ

[
l


+

(



+

ξ



)

lA +
(




+
η



)

lB +
m∑

k=

tk( – tk)

]

,

 < L <
�

( – γ )

[(



+

ξ



)

l̂ +
(




+
ξ



)

l̂A +
(




+
η



)

l̂B +
m∑

k=

tk( – tk)

]

,

(.)

and

(A) f (t, u, v) ≤ d
ω

, for (t, u, v) ∈ J × [, d] × [, d], Ik(t, u) ≤ d
ω

, for (t, u) ∈ Jk × [, d];
(A) f (t, u, v) ≥ b

L , for (t, u, v) ∈ Jδ × [b, b
�

] × [b, b
�

], Ik(t, u) ≥ b
L , for (t, u) ∈ Jδ ∩ Jk × [b, b

�
];

(A) f (t, u, v) ≤ a
ω

, for (t, u, v) ∈ J × [, a] × [, a], Ik(t, u) ≤ a
ω

, for (t, u) ∈ Jk × [, a].
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Then problem (.) and (.) has at least three positive solutions x, x, x satisfying ‖xi‖ ≤
d, i = , , , and

b ≤ �(x), a < ‖x‖ with �(x) < b

and

‖x‖< a.

Proof For any x ∈ C(J ,R+), we define operator T by

(Tx)(t) =
∫ 


H(t, s)

[
F
(
hfx(s)

)
+ A

(
hfx(s)

)
λ(s) + B

(
hfx(s)

)
μ(s)

]
ds

+
m∑

k=

H(t, tk)Ik
(
tk , x(tk)

)
, (.)

where hfx(s) = h(s)f (s, x(s), x(α(s))). Indeed, T : X → X. Problem (.) and (.) has a solu-
tion x if and only if x solves the operator equation x = Tx.

We need to prove the existence of at least three fixed points of T by verifying that oper-
ator T satisfies the Avery-Peterson fixed point theorem.

From the definition of T , we can obtain

(Tx)′′(t) = –F
(
hfx(s)

)
– A

(
hfx(s)

)
λ(t) – B

(
hfx(s)

)
μ(t). (.)

In view of (H), (H), Lemma ., and Lemma ., we have

(Tx)′′(t) ≤ , for t ∈ J .

So Tx is concave on J . From (.) and (.), combining with Lemma . and (H), we
can obtain

(Tx)(t) ≥ , for t ∈ J .

Noting () in Lemma ., it follows that

‖Tx‖ = max
t∈J

{∫ 


H(t, s)

[
F
(
hfx(s)

)
+ A

(
hfx(s)

)
λ(s) + B

(
hfx(s)

)
μ(s)

]
ds

+
m∑

k=

H(t, tk)Ik
(
tk , x(tk)

)
}

≤ 
 – γ

{∫ 


e(s)

[
F
(
hfx(s)

)
+ A

(
hfx(s)

)
λ(s) + B

(
hfx(s)

)
μ(s)

]
ds

+
m∑

k=

e(tk)Ik
(
tk , x(tk)

)
}

. (.)
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On the other hand, from the properties of H(t, s), we have

(Tx)(t) =
∫ 


H(t, s)

[
F
(
hfx(s)

)
+ A

(
hfx(s)

)
λ(s) + B

(
hfx(s)

)
μ(s)

]
ds

+
m∑

k=

H(t, tk)Ik
(
tk , x(tk)

)

≥ �

 – γ

{∫ 


e(s)

[
F
(
hfx(s)

)
+ A

(
hfx(s)

)
λ(s) + B

(
hfx(s)

)
μ(s)

]
ds

+
m∑

k=

e(tk)Ik
(
tk , x(tk)

)
}

≥ �‖Tx‖. (.)

This proves that TP ⊂ P.
Now we prove that the operator T : P → P is completely continuous. Let x ∈ Pr , then

‖x‖≤ r. Note that h and f are continuous, so h is bounded on J and f is bounded on
J × [–r, r]. It means that there exists a constant K >  such that ‖Tx‖≤ K . This proves that
TP is uniformly bounded. On the other hand, for t, t ∈ J there exists a constant L > 
such that

∣
∣(Tx)(t) – (Tx)(t)

∣
∣ ≤ L|t – t|.

This shows that TP is equicontinuous on J , so T is completely continuous.
Let x ∈ P(ϕ, d), so  ≤ x(t) ≤ d, t ∈ J , and ‖x‖≤ d. Note that also  ≤ x(α(t)) ≤ d, t ∈ J

because  ≤ t ≤ α(t) ≤  on J . Hence

ϕ(Tx) = ‖Tx‖= max
t∈J

∣
∣(Tx)(t)

∣
∣ = max

t∈J
(Tx)(t).

By (.), Lemma ., Lemma ., and (A), we have

ϕ(Tx) = max
t∈J

{∫ 


H(t, s)

[
F
(
hfx(s)

)
+ A

(
hfx(s)

)
λ(s) + B

(
hfx(s)

)
μ(s)

]
ds

+
m∑

k=

H(t, tk)Ik
(
tk , x(tk)

)
}

≤ 
 – γ

[∫ 



∫ 


e(s)e(τ )h(τ )fx(τ ) dτ ds +

∫ 


e(s)A

(
hfx(s)

)
(s + ξ ) ds

+
∫ 


e(s)B

(
hfx(s)

)
(η +  – s) ds +

m∑

k=

e(tk)Ik
(
tk , x(tk)

)
]

≤ d
ω( – γ )

[∫ 



∫ 


e(s)e(τ )h(τ ) dτ ds + A

∫ 


κ[h]e(s)(s + ξ ) ds

+ B
∫ 


κ[h]e(s)(η +  – s) ds +

m∑

k=

tk( – tk)

]
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=
d

ω( – γ )

[
l


+

(



+

ξ



)

lA +
(




+
η



)

lB +
m∑

k=

tk( – tk)

]

< d.

This shows that T : P(ϕ, d) → P(ϕ, d).
To check condition (S) we choose

x(t) =



(

b +
b
�

)

, t ∈ J .

Then

‖x‖=
b(� + )

�
<

b
�

,

so

�(x) = min
t∈[δ,]

x(t) =
b(� + )

�
> b =

b
�

� ≥ �‖x‖.

It proves that

{

x ∈ P
(

ϕ,�,�, b,
b
�

, d
)

: b < �(x)
}

�= ∅.

Let b ≤ x(t) ≤ b
�

for t ∈ [δ, ], then δ ≤ t ≤ α(t) ≤  on [δ, ]. It yields b ≤ x(α(t)) ≤ b
�

on
[δ, ]. It gives

�(Tx) = min
t∈[δ,]

(Tx)(t).

By (.), Lemma ., Lemma ., and (A), we have

�(Tx) = min
t∈[δ,]

{∫ 


H(t, s)

[
F
(
hfx(s)

)
+ A

(
hfx(s)

)
λ(s) + B

(
hfx(s)

)
μ(s)

]
ds

+
m∑

k=

H(t, tk)Ik
(
tk , x(tk)

)
}

≥ �

 – γ

[∫ 



∫ 


e(s)ê(s)ê(τ )h(τ )fx(τ ) dτ ds

+
∫ 


e(s)A

(
hfx(s)

)
(s + ξ ) ds

+
∫ 


e(s)B

(
hfx(s)

)
(η +  – s) ds +

m∑

k=

e(tk)Ik
(
tk , x(tk)

)
]

≥ b�

L( – γ )

[∫ 



∫ 


e(s)ê(s)ê(τ )h(τ ) dτ ds + A

∫ 


κ̂[h]e(s)(s + ξ ) ds

+ B
∫ 


κ̂[h]e(s)(η +  – s) ds +

m∑

k=

tk( – tk)

]
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=
b�

L( – γ )

[(



+

ξ



)

l̂ +
(




+
ξ



)

l̂A

+
(




+
η



)

l̂B +
m∑

k=

tk( – tk)

]

> b.

It proves condition (S) holds.
Now we need to prove that condition (S) is satisfied. Take

x ∈ P(ϕ,�, b, d) with ‖Tx‖>
b
�

= c.

Then

�(Tx) = min
t∈[δ,]

(Tx)(t) ≥ �‖Tx‖> �
b
�

= b.

So condition (S) holds.
We finally show that condition (S) also holds. Clearly, as �() =  < a, so  /∈

R(ϕ,� , a, d). Suppose that x ∈ R(ϕ,� , a, d) with �(x) = ‖x‖= a.
Similarly, by (.), Lemma ., Lemma ., and (A), we have

�(Tx) = ‖Tx‖= max
t∈J

(Tx)(t)

= max
t∈J

{∫ 


H(t, s)

[
F
(
hfx(s)

)
+ A

(
hfx(s)

)
λ(s) + B

(
hfx(s)

)
μ(s)

]
ds

+
m∑

k=

H(t, tk)Ik
(
tk , x(tk)

)
}

≤ a
ω

{


 – γ

[
l


+

(



+

ξ



)

lA +
(




+
η



)

lB +
m∑

k=

tk( – tk)

]}

< a.

It proves that condition (S) is satisfied.
By Theorem ., there exist at least three positive solutions x, x, x of problem (.)

and (.) such that ‖xi‖≤ d for i = , , ,

b ≤ min
t∈[δ,]

x(t), a < ‖x‖ with min
t∈[δ,]

x(t) < b,

and ‖x‖< a. This ends the proof. �

Example We consider the following BVP:

⎧
⎪⎪⎨

⎪⎪⎩

x()(t) = h(t)f (x(α(t))), t ∈ J,
x() = x() =

∫ 


s
 x(s) ds, �x′

t = –I(t, x(t)),
x′′() – 

 x′′′() =
∫ 

 sx′′(s) ds, x′′() + 
 x′′′() =

∫ 
 sx′′(s) ds,

(.)
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with α ∈ C(J , J), h(t) = Dt, α(t) ≥ t, ξ = η = 
 , ρ = , and t = 

 . It follows that μ(t) = 
 – t,

λ(t) = t + 
 , for t ∈ J , and

f (v) = I(t, v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v

 ,  ≤ v ≤ ,


 (v – ),  ≤ v ≤ 
 ,


 v + 

 , 
 ≤ v ≤ ,

, v ≥ .

Note that f ∈ C(R+,R+). As a function α we can take, for example, α(t) =
√

t.
In this case we have γ = 

 , � = – 
 , A = 

 , B = 
 , A = 

, , B = 
, , l = 

 D,
l̂ = 

 D, � = 
 . Let a = , b = 

 , c = , d ≥ ,, D = ,. In this case we can take
ω = , L = . We see that all assumptions of Theorem . hold, so BVP (.) has at least
three positive solutions.

5 Existence result for the case of α(t) ≤ t on J
The cone P is defined as in (.). We define the nonnegative continuous concave functional
� = � on P by

�(x) = min
t∈[,–δ]

∣
∣x(t)

∣
∣,

where δ ∈ (, ) satisfying  < δ <  – δ < . Set Jδ = [,  – δ]. Similar to the proof of Theo-
rem ., we have the following result.

Theorem . Let assumptions (H)-(H) hold and α(t) ≤ t on J . In addition, we assume
that there exist positive constants a, b, c, d, ω, L with a < b such that (.) holds and

(A) f (t, u, v) ≤ d
ω

, for (t, u, v) ∈ J × [, d] × [, d], Ik(t, u) ≤ d
ω

, for (t, u) ∈ Jk × [, d];
(A) f (t, u, v) ≥ b

L , for (t, u, v) ∈ Jδ × [b, b
�

] × [b, b
�

], Ik(t, u) ≥ b
L , for (t, u) ∈ Jδ ∩ Jk × [b, b

�
];

(A) f (t, u, v) ≤ a
ω

, for (t, u, v) ∈ J × [, a] × [, a], Ik(t, u) ≤ a
ω

, for (t, u) ∈ Jk × [, a].

Then problem (.) and (.) has at least three positive solutions x, x, x satisfying ‖xi‖ ≤
d, i = , , , and

b ≤ �(x), a < ‖x‖ with �(x) < b,

and

‖x‖< a.
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