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Abstract
In this paper the existence of solutions of a non-autonomous abstract
integro-differential equation of second order is considered. Assuming the existence of
an evolution operator corresponding to the associate abstract non-autonomous
Cauchy problem of second order, we establish the existence of a resolvent operator
for the homogeneous integro-differential equation and the existence of mild
solutions to the inhomogeneous integro-differential equation. Furthermore, we study
the existence of classical solutions of the integro-differential equation. Finally, we
apply our results to the study of the existence of solutions of a non-autonomous
wave equation.
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1 Introduction
Abstract integro-differential equations have been used to model various physical phenom-
ena. For this reason, this type of equations has attracted the attention of authors in recent
years. We refer the reader to the recent papers of Diagana [], Vijayakumar et al. [] and
the references therein.

This paper is devoted to the study of the existence of mild and classical solutions for
initial value problems described as an abstract non-autonomous second order integro-
differential equation in Banach spaces.

Throughout this paper, X denotes a Banach space endowed with a norm ‖·‖. Specifically,
in this work we will be concerned with the existence of solutions to initial value problems
that can be modeled as

x′′(t) = A(t)x(t) +
∫ t


P(t, s)x(s) ds + f (t),  ≤ t ≤ a, (.)

x() = y, x′() = z (.)
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for fixed y, z ∈ X, and where A(t) : D(A(t)) ⊆ X → X for t ∈ I = [, a] denotes a closed linear
operator, P(t, s) : D(P) ⊆ X → X is a linear operator, and f : [, a] → X is an integrable
function. We always assume that D(P) is independent of (t, s).

On the other hand, in recent times there has been an increasing interest in studying the
abstract non-autonomous second order initial value problem

x′′(t) = A(t)x(t) + f (t),  ≤ s, t ≤ a, (.)

x(s) = y, x′(s) = z. (.)

The reader is referred to [–] and the references mentioned in these works. In most
of these, the existence of solutions to problem (.)-(.) is related to the existence of an
evolution operator S for the homogeneous equation

x′′(t) = A(t)x(t),  ≤ t ≤ a. (.)

Throughout this work we assume that the domain of A(t) is a subspace D dense in X and
independent of t, and that for each x ∈ D the function t �→ A(t)x is continuous. Hence-
forth in this text, we will assume that A generates an evolution operator S, in the sense
introduced in Kozak [], Definition . (see also Henríquez [], Definition .).

To abbreviate the text, we will denote

C(t, s) = –
∂S(t, s)

∂s
.

In addition, we denote by N a positive constant such that both ‖S(t, s)‖ ≤ N and ‖C(t, s)‖ ≤
N for all  ≤ s, t ≤ a.

The existence of solutions of problem (.)-(.) has been studied by several authors [,
, ]. At this point, we will just say that the function x : [, a] → X given by

x(t) = C(t, s)y + S(t, s)z +
∫ t

s
S(t, ξ )f (ξ ) dξ (.)

is a mild solution of problem (.)-(.).
This paper has five sections. In the next section we study the existence of solutions of

(.)-(.) when P(t, s) is a bounded linear map from X into X. In Section , we discuss
the existence of a resolvent operator for the homogeneous integro-differential equation.
In Section , we are concerned with the existence of mild and classical solutions of the
inhomogeneous non-autonomous integro-differential equation (.)-(.). Finally, in Sec-
tion  we apply our results to the study of the existence of solutions to non-autonomous
wave equations.

The general terminology and notations used in this text are the following. When
(Y ,‖ · ‖Y ) and (Z,‖ · ‖Z) are Banach spaces, we denote by L(Y , Z) the Banach space of
the bounded linear operators from Y into Z endowed with the norm of operators and
we abbreviate this notation to L(Y ) whenever Z = Y . For a compact set K , we denote by
C(K , X) the space of continuous functions from K into X provided with the norm of uni-
form convergence. For a closed linear operator A : D(A) ⊆ X → X, we denote by σ (A)
(resp. ρ(A)) its spectrum (resp. its resolvent set). Moreover, we represent by [D(A)] the



Henríquez and Pozo Boundary Value Problems  (2016) 2016:168 Page 3 of 24

domain of A endowed with the graph norm ‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A). Finally, Im(T)
denotes the range space of a linear operator T .

2 Existence of mild solutions
In this section we study the existence of mild solutions of problem (.)-(.). Throughout
this section we assume that P : � = {(t, s) :  ≤ s ≤ t ≤ a} →L(X) is a strongly continuous
map.

Initially we study the problem

x′′(t) = A(t)x(t) +
∫ t

σ

P(t, s)x(s) ds + f (t), σ ≤ t ≤ a, (.)

x(σ ) = y, x′(σ ) = z ∈ X (.)

for  ≤ σ ≤ a.
Motivated by (.), we consider the following concept of solution.

Definition . A continuous function x(·,σ ) : [, a] → X is said to be a mild solution of
problem (.)-(.) if

x(t,σ ) = C(t,σ )y + S(t,σ )z +
∫ t

σ

S(t, s)
∫ s

σ

P(s, ξ )x(ξ ) dξ ds

+
∫ t

σ

S(t, s)f (s) ds (.)

for all σ ≤ t ≤ a.

The following result is an immediate consequence of this definition. We next abbreviate
the notation by writing ‖P‖ = sup≤s≤t≤a ‖P(t, s)‖.

Theorem . Assume the function f : [σ , a] → X is integrable. Then for each y, z ∈ X, prob-
lem (.)-(.) has a unique mild solution.

Proof We define the map � : C([σ , a], X) → C([σ , a], X) by the expression

�x(t) = C(t,σ )y + S(t,σ )z +
∫ t

σ

∫ s

σ

S(t, s)P(s, ξ )x(ξ ) dξ ds +
∫ t

σ

S(t, s)f (s) ds

for σ ≤ t ≤ a. For u, v ∈ C([, a], X), we have

∥∥�u(t) – �v(t)
∥∥ ≤

∥∥∥∥
∫ t

σ

∫ s

σ

S(t, s)P(s, ξ )
[
u(ξ ) – v(ξ )

]
dξ ds

∥∥∥∥

≤ N
∫ t

σ

∫ s

σ

∥∥P(s, ξ )
∥∥∥∥u(ξ ) – v(ξ )

∥∥dξ ds

≤ N‖P‖
∫ t

σ

(t – ξ )
∥∥u(ξ ) – v(ξ )

∥∥dξ

≤ N‖P‖ (t – σ )


sup

≤s≤t

∥∥u(s) – v(s)
∥∥.
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Repeating this argument, we can show that �n is a contraction for n large enough. If x(·)
is the fixed point of �, then the integral equation (.) is verified for σ ≤ t ≤ a. �

Now, we proceed to define the resolvent operator corresponding to problem (.)-(.).
Let x(t,σ , y, z) be the mild solution of problem (.)-(.) for f = . We define R(t,σ )z =
x(t,σ , , z).

Theorem . The map R : � → L(X) is strongly continuous, R(t, ·)z is continuously dif-
ferentiable for all z ∈ X, and

x(t,σ , y, ) = –
∂R(t,σ )y

∂σ
.

Moreover, if f : [, a] → X is integrable, then problem (.)-(.) has a unique mild solution
which is given by

x(t) = –
∂R(t, )y

∂s
+ R(t, )z +

∫ t


R(t, s)f (s) ds (.)

for all y, z ∈ X.

Proof The first assertion is an immediate consequence of the definition of mild solution.
Moreover, since R(t,σ )z satisfies the equation

R(t,σ )z = S(t,σ )z +
∫ t

σ

S(t, s)
∫ s

σ

P(s, ξ )R(ξ ,σ )z dξ ds, (.)

we are led to consider the integral equation

u(t,σ ) =
∂S(t,σ )z

∂σ
+

∫ t

σ

S(t, s)
∫ s

σ

P(s, ξ )u(ξ ,σ ) dξ ds (.)

for  ≤ σ ≤ t ≤ a. Proceeding as in the proof of Theorem ., we can show that equation
(.) has a unique continuous solution u : � → X. Integrating in (.), we obtain

∫ t

s
u(t,σ ) dσ =

∫ t

s

∂S(t,σ )z
∂σ

dσ +
∫ t

s

[∫ t

σ

S(t, τ )
∫ τ

σ

P(τ , ξ )u(ξ , τ ) dξ dτ

]
dσ

= –S(t, s)z +
∫ t

s
S(t, τ )

[∫ τ

s

∫ τ

σ

P(τ , ξ )u(ξ ,σ ) dξ dσ

]
dτ

= –S(t, s)z +
∫ t

s
S(t, τ )

[∫ τ

s

∫ ξ

s
P(τ , ξ )u(ξ ,σ ) dσ dξ

]
dτ

= –S(t, s)z +
∫ t

s
S(t, τ )

∫ τ

s
P(τ , ξ )

[∫ ξ

s
u(ξ ,σ ) dσ

]
dξ dτ .

By comparing this expression with equation (.), and using the uniqueness of solutions,
we infer that R(t, s)z = –

∫ t
s u(t,σ ) dσ . This implies that R(t, ·)z is a function continuously

differentiable and ∂R(t,s)z
∂s = u(t, s). Collecting now (.) with (.), we infer that –u(t, s) =

x(t, s, z, ).
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Finally, since equation (.) is linear, in order to establish (.) we can assume that y =
z = . We define u(t) =

∫ t
 R(t, s)f (s) ds. Using (.), we obtain

∫ t


S(t, s)

∫ s


P(s, ξ )u(ξ ) dξ ds +

∫ t


S(t, s)f (s) ds

=
∫ t


S(t, s)

∫ s


P(s, ξ )

[∫ ξ


R(ξ , τ )f (τ ) dτ

]
dξ ds +

∫ t


S(t, s)f (s) ds

=
∫ t


S(t, s)

∫ s



∫ s

τ

P(s, ξ )R(ξ , τ )f (τ ) dξ dτ ds +
∫ t


S(t, s)f (s) ds

=
∫ t



[∫ t

τ

S(t, s)
∫ s

τ

P(s, ξ )R(ξ , τ )f (τ ) dξ ds
]

dτ +
∫ t


S(t, s)f (s) ds

=
∫ t



[
R(t, τ )f (τ ) – S(t, τ )f (τ )

]
dτ +

∫ t


S(t, s)f (s) ds

=
∫ t


R(t, τ )f (τ ) dτ

= u(t),

which implies that u(·) satisfies (.), and completes the proof. �

In most of cases, even when f = , the mild solution constructed in Theorem . does
not satisfy equation (.). In the next sections, through the introduction of the concept of
resolvent operator for the homogeneous equation, we analyze the existence of solution of
problem (.)-(.). We will establish our results for a general situation when the operator
P(t, s) is unbounded.

3 Existence of resolvent
The purpose of this section is to define a resolvent operator when the linear operators
P(t, s) are not bounded. To reach our aim, in this section we study the existence of solutions
for the initial value problem

x′′(t) = A(t)x(t) +
∫ t

σ

P(t, s)x(s) ds, σ ≤ t ≤ a, (.)

x(σ ) = , x′(σ ) = z ∈ X (.)

for  ≤ σ ≤ a.
To establish our results we introduce the following terminology. Let [D] be the space D

endowed with the graph norm corresponding to the operator A(). Since A(t) is a closed
linear operator on D, by the closed graph theorem we see that [D] is a Banach space,
and A(t) ∈ L([D], X) for all t ∈ I . Let now [D]t be the Banach space D endowed with
the graph norm corresponding to the operator A(t). It is an immediate consequence of
the previous assertion that [D] and [D]t are equivalent Banach spaces. Moreover, since
A : I →L([D], X) is strongly continuous, it follows from the uniform boundedness princi-
ple that there is a constant Ñ such that ‖A(t)‖L([D],X) ≤ Ñ for all t ∈ I .

We define the twice differentiation space Z of S consisting of vectors z ∈ X such that the
function A(t)S(t, s)z is continuous at (t, s). We consider Z endowed with the norm

‖z‖Z = ‖z‖ + sup
≤s≤t≤a

∥∥A(t)S(t, s)z
∥∥, z ∈ Z.



Henríquez and Pozo Boundary Value Problems  (2016) 2016:168 Page 6 of 24

It is easy to see that (Z,‖ · ‖Z) is a Banach space continuously included in X, and S(t, s) ∈
L(Z, [D]). Moreover, from the properties of S(·, ·) it follows that D ⊆ Z. Hence, there exist
constants Ñ, Ñ >  such that

∥∥S(t, s)z
∥∥

[D] ≤ Ñ‖z‖Z , z ∈ Z,

‖z‖Z ≤ Ñ‖z‖[D], z ∈ D.

We consider the following conditions.
(H) For every  ≤ s ≤ t ≤ a, P(t, s) : [D] → Z is a bounded linear operator, and for each

x ∈ D, the function P(·, ·)x is continuous with values in Z, and

∥∥P(t, s)x
∥∥

Z ≤ b‖x‖[D]

for some constant b >  independent of s, t ∈ �.
(H) There exists a constant N ≥ , such that

∥∥∥∥
∫ t

ξ

S(t, s)P(s, ξ )x ds
∥∥∥∥ ≤ N‖x‖

for all ξ ≤ t ∈ [, a] and all x ∈ D.
Motivated by the results in [], we consider the following concept of solution (or clas-

sical solution).

Definition . A function x : [σ , a] → [D] is said to be a solution of problem (.)-(.) if
x(·) ∈ C([σ , a], [D]) ∩ C([σ , a], X) and (.) and (.) are satisfied.

We are in a position to establish our first result of the existence of solutions.

Theorem . Assume that (H) holds. For each z ∈ D, problem (.)-(.) has a unique
solution x(·,σ , z). Moreover, there exist constants M, M >  such that

∥∥x(t,σ , z)
∥∥

[D] ≤ MeM(t–σ )‖z‖[D], t ∈ [σ , a]. (.)

If further (H) holds, then there exist constants M′
, M′

 >  such that

∥∥x(t,σ , z)
∥∥ ≤ M′

eM′
(t–σ )‖z‖, t ∈ [σ , a]. (.)

Proof We define the map � on C([σ , a], [D]) by

�x(t) = S(t,σ )z +
∫ t

σ

∫ s

σ

S(t, s)P(s, ξ )x(ξ ) dξ ds, σ ≤ t ≤ a. (.)

It follows from assumption (H) that for each x ∈ C([σ , a], [D]), the function s �→∫ s
σ

P(s, ξ )x(ξ ) dξ is a continuous function with values in Z. Proceeding now as in [],
Theorem ., we infer that �x is a continuous function with values in [D]. Hence,
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� : C([σ , a], [D]) → C([σ , a], [D]) is well defined. In addition, for u, v ∈ C([σ , a], [D]), we
have

∥∥�u(t) – �v(t)
∥∥

[D] ≤
∥∥∥∥
∫ t

σ

∫ s

σ

S(t, s)P(s, ξ )
[
u(ξ ) – v(ξ )

]
dξ ds

∥∥∥∥
[D]

≤ Ñ

∫ t

σ

∫ s

σ

∥∥P(s, ξ )
[
u(ξ ) – v(ξ )

]∥∥
Z dξ ds

≤ Ñb
∫ t

σ

(t – ξ )
∥∥u(ξ ) – v(ξ )

∥∥
[D] dξ

≤ Ñb
(t – σ )


sup

σ≤s≤t

∥∥u(s) – v(s)
∥∥

[D].

Repeating this argument, we can show that �n is a contraction for n large enough. If
x(·) = x(·,σ , z) is the fixed point of �, then the integral equation

x(t) = S(t,σ )z +
∫ t

σ

∫ s

σ

S(t, s)P(s, ξ )x(ξ ) dξ ds, (.)

is verified for σ ≤ t ≤ a. Using again [], Theorem ., we conclude that x(·) is a solution
of problem (.)-(.).

On the other hand, applying (.) and proceeding as earlier, we can estimate

∥∥x(t)
∥∥

[D] ≤ ÑÑ‖z‖[D] + Ñb(a – σ )
∫ t

σ

∥∥x(s)
∥∥

[D] ds,

and using the Gronwall-Bellman lemma we obtain (.). Assume now that (H) holds,
proceeding as above, we have

∥∥x(t)
∥∥ ≤ N‖z‖ +

∥∥∥∥
∫ t

σ

∫ s

σ

S(t, s)P(s, ξ )x(ξ ) dξ ds
∥∥∥∥

= N‖z‖ +
∥∥∥∥
∫ t

σ

∫ t

ξ

S(t, s)P(s, ξ )x(ξ ) ds dξ

∥∥∥∥

≤ N‖z‖ + N

∫ t

σ

∥∥x(ξ )
∥∥dξ ,

and turning to an application of the Gronwall-Bellman lemma we get (.). �

We can also avoid the condition P be Z-valued. We consider the following conditions
on P.

(H) For every  ≤ s ≤ t ≤ a, P(t, s) : [D] → X is a bounded linear operator, and for each
x ∈ D, P(·, ·)x is continuous and

∥∥P(t, s)x
∥∥

X ≤ b‖x‖[D]

for some b >  independent of s, t ∈ �.
(H) There exists a constant LP >  such that

∥∥P(t, s)x – P(t, s)x
∥∥ ≤ LP|t – t|‖x‖[D]

for all x ∈ D,  ≤ s ≤ t ≤ t.
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Using Kozak [], Theorem ., and Henríquez [], Corollary ., we can establish the
following result. We abbreviate by RNP the Radon-Nikodym property, and we refer the
reader to [] for the properties of spaces with the RNP.

Theorem . Assume that conditions (H)-(H) hold. Assume further that the following
conditions are fulfilled:

(i) The space X verifies the RNP.
(ii) For each x ∈ D the function A(·)x is continuously differentiable.

(iii) There exists λ ∈C such that λ ∈ ρ(A(t)) for all t ∈ [, a].
Then for each z ∈ D, problem (.)-(.) has a unique solution x(·,σ , z) and there exists a
constant M >  such that

sup
σ≤t≤a

∥∥x(t,σ , z)
∥∥

[D] ≤ M‖z‖[D]. (.)

Moreover, if there exists a constant k >  such that

∥∥S(t, s)P(s, θ )x
∥∥ ≤ k‖x‖, x ∈ D, (.)

then inequality (.) holds for certain constants M′
, M′

 > .

Proof We define the map � by (.). We can rewrite

�x(t) = S(t,σ )z +
∫ t

σ

S(t, s)
∫ s

σ

P(s, ξ )x(ξ ) dξ ds.

Let w(s) =
∫ s
σ

P(s, ξ )x(ξ ) dξ . It follows from (H)-(H) that w is a Lipschitz continuous func-
tion with values in X. Consequently, from [], Corollary ., we infer that y = �x is a
solution of problem

y′′(t) = A(t)y(t) + w(t), σ ≤ t ≤ a,

y(σ ) = , y′(σ ) = z.

Hence, � : C([σ , a], [D]) → C([σ , a], [D]) is well defined. In addition, it follows from the
construction in [], Corollary ., that

∥∥�u(t) – �v(t)
∥∥

[D] ≤ M(t – σ ) sup
σ≤s≤t

∥∥u(s) – v(s)
∥∥

[D]

for all u, v ∈ C([σ , a], [D]) and some constant M > , which is independent of t, u, v.
Repeating this argument, we can show that �n is a contraction for n large enough. If

x(·) = x(·,σ , z) is the fixed point of �, then x(·) is a solution of problem (.)-(.).
Let �̃ : [D] → C([σ , a], [D]) be the map

�̃(z)(t) = x(t,σ , z), z ∈ D.

It follows from (H) that �̃ is a closed linear map, and applying the closed graph theorem,
we obtain that �̃ is a bounded linear map, which implies (.).
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On the other hand, combining (.) with (.) and proceeding as earlier, we can estimate

∥∥x(t)
∥∥ ≤ N‖z‖ +

∥∥∥∥
∫ t

σ

∫ s

σ

S(t, s)P(s, ξ )x(ξ ) dξ ds
∥∥∥∥

= N‖z‖ + k
∫ t

σ

∫ s

σ

∥∥x(ξ )
∥∥dξ ds

≤ N‖z‖ + k(a – σ )
∫ t

σ

max
σ≤ξ≤s

∥∥x(ξ )
∥∥ds,

and turning to apply the Gronwall-Bellman lemma we obtain (.). �

It is worth to point out that condition (.) implies condition (H). We also can obtain
a similar result modifying this condition.

Corollary . Assume that D ⊆ D(P(t, s)) for  ≤ s ≤ t ≤ a and conditions (H)-(H) hold.
Assume further that the following conditions are fulfilled:

(i) The space X verifies the RNP.
(ii) For each x ∈ D the function A(·)x is continuously differentiable.

(iii) There exists λ ∈C such that λ ∈ ρ(A(t)) for all t ∈ [, a].
Then for each z ∈ D, problem (.)-(.) has a unique solution x(·,σ , z) and inequality (.)
holds. Moreover, if Im(S(τ , s)) ⊆ D(P(t, τ )) and there exists a constant k >  such that

∥∥P(t, θ )S(t, s)x
∥∥ ≤ k‖x‖, x ∈ X, (.)

then inequality (.) holds for certain constants M′
, M′

 > .

Proof The existence of the solution x(·) = x(·,σ , z) as well as the inequality (.) follows
from Theorem .. Hence, it only remains to establish (.). Let

q(t) =
∫ t

σ

P(t, θ )x(θ ) dθ . (.)

Using (.) we can write

q(t) =
∫ t

σ

P(t, τ )S(τ ,σ )z dτ +
∫ t

σ

P(t, τ )
∫ τ

σ

S(τ , s)q(s) ds dτ

=
∫ t

σ

P(t, τ )S(τ ,σ )z dτ +
∫ t

σ

∫ τ

σ

P(t, τ )S(τ , s)q(s) ds dτ ,

which implies that

∥∥q(t)
∥∥ = k(t – σ )‖z‖ + k

∫ t

σ

∫ τ

σ

∥∥q(s)
∥∥ds dτ

= k(t – σ )‖z‖ + k(a – σ )
∫ t

σ

max
σ≤s≤τ

∥∥q(s)
∥∥dτ ,

and applying the Gronwall-Bellman lemma, we obtain

max
σ≤s≤t

∥∥q(s)
∥∥ ≤ k(a – σ )‖z‖ek(a–σ )(t–σ ).
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Using again (.), we infer that

∥∥x(t)
∥∥ ≤ N‖z‖ + N

∫ t

σ

∥∥q(s)
∥∥ds ≤ N‖z‖ek(a–σ )(t–σ ),

which establishes (.). �

The above theorems characterize broad classes of operators P for which there is a solu-
tion of problem (.)-(.). There are also some particular situations in which it is possible
to establish the existence of solution of problem (.)-(.). Below we will mention one of
them.

In the rest of this section we specialize our development to consider the operator A(t)
as an additive perturbation of an infinitesimal generator of a cosine function of operators.
Specifically, we consider the following condition.

(A) The operator A(t) = A + B(t), where A is the infinitesimal generator of a cosine
function (C(t))t∈R with associated sine function (S(t))t∈R, and B : [, a] →L(X) is
a strongly differentiable map.

We refer to [–] for the theory of cosine functions of operators. We only include here
the following property because it is essential to our development. We consider the second
order abstract Cauchy problem

y′′(t) = Ay(t) + f (t), σ ≤ t, (.)

y(σ ) = , y′(σ ) = . (.)

Lemma . Assume that f : [σ , a] → X is continuously differentiable. Let

y(t) =
∫ t

σ

S(t – s)f (s) ds.

Then y(·) is a classical solution of (.)-(.). Moreover,

∥∥y(t)
∥∥

A
≤ ∥∥f (t)

∥∥ +
∥∥C(t – σ )f (σ )

∥∥

+ K(t)
∫ t

σ

∥∥f (s)
∥∥ds

+ K(t)
∫ t

σ

∥∥f ′(s)
∥∥ds, t ≥ σ (.)

for some constants K(t), K(t) ≥ .

Proof The first assertion is consequence of [], Proposition .. To prove the estimate
(.), we note that

y′(t) =
∫ t

σ

C(t – s)f (s) ds,

y′′(t) = C(t – σ )f (σ ) +
∫ t

σ

C(t – s)f ′(s) ds.
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This implies that

∥∥y(t)
∥∥

A
=

∥∥y(t)
∥∥ +

∥∥Ay(t)
∥∥

=
∥∥y(t)

∥∥ +
∥∥y′′(t) – f (t)

∥∥

≤ sup
≤τ≤t

∥∥S(τ )
∥∥∫ t

σ

∥∥f (s)
∥∥ds +

∥∥f (t)
∥∥

+
∥∥C(t – σ )f (σ )

∥∥ + sup
≤τ≤t

∥∥C(τ )
∥∥∫ t

σ

∥∥f ′(s)
∥∥ds,

which shows (.). �

Let E be the space consisting of vectors x ∈ X for which the function C(·)x is of class C.
It was proved by Kisińsky [] that E endowed with the norm

‖x‖ = ‖x‖ + sup
≤t≤

∥∥AS(t)x
∥∥, x ∈ E,

is a Banach space, and S : R → L(E, [D(A)]) is a strongly continuous operator valued
map. Furthermore, if x : [,∞) → E is a continuous function, then y(t) =

∫ t
 S(t – s)x(s) ds

defines a [D(A)]-valued continuous function.
On the other hand, assuming that condition (A) holds, A(·) generates an evolution op-

erator S(t, s) which satisfies

S(t, s)z = S(t – s)z +
∫ t

s
S(t – τ )B(τ )S(τ , s)z dτ . (.)

We refer the reader to [] for details. Returning to problem (.)-(.), it is clear that in
this case D = D(A).

Theorem . Assume that condition (A) holds. Let P : � → L([D(A)], X) be a strongly
continuous map such that ∂P(t,s)

∂t : � →L([D(A)], X) is also strongly continuous. Then for
each z ∈ D(A), problem (.)-(.) has a unique solution x(·,σ , z) that satisfies inequality
(.). Moreover, if there exists a constant k >  such that

∥∥S(τ )P(s, θ )x
∥∥ ≤ k‖x‖, x ∈ D(A) (.)

for all  ≤ τ ≤ a and  ≤ θ ≤ s ≤ a, then inequality (.) holds for certain constants
M′

, M′
 > .

Proof Let � be the map defined by (.). For x(·) ∈ C([σ , a], [D]), we denote by q(s) the
function defined by (.). It follows from our hypotheses that q is continuously differen-
tiable. Substituting S(t, s) from (.) in (.), we have

�x(t) = S(t,σ )z +
∫ t

σ

S(t – s)q(s) ds +
∫ t

σ

∫ t

s
S(t – τ )B(τ )S(τ , s)q(s) dτ ds

= S(t,σ )z +
∫ t

σ

S(t – s)q(s) ds +
∫ t

σ

S(t – τ )B(τ )
∫ τ

σ

S(τ , s)q(s) ds dτ

= S(t,σ )z + f(t) + f(t).
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Since the function q is continuously differentiable, it follows from Lemma . that f(t)
is a classical solution of problem (.)-(.) with f (t) = q(t). In a similar way, since the
function

f (τ ) = B(τ )
∫ τ

σ

S(τ , s)q(s) ds

is continuously differentiable, and using again Lemma . we infer that f(t) is a clas-
sical solution of problem (.)-(.). Combining these assertions, we conclude that
�x ∈ C([σ , a], [D]). It follows from (.) that

∥∥q(s)
∥∥ ≤ sup

(s,t)∈�

∥∥P(s, t)
∥∥
L([D],X)

∫ s

σ

∥∥x(θ )
∥∥

[D] dθ

≤ sup
(s,t)∈�

∥∥P(s, t)
∥∥
L([D],X)(s – σ ) max

σ≤θ≤s

∥∥x(θ )
∥∥

[D].

Furthermore,

q′(s) = P(s, s)x(s) +
∫ s

σ

∂P(s, θ )
∂s

x(θ ) dθ

and

∥∥q′(s)
∥∥ ≤ sup

(s,t)∈�

∥∥P(s, t)
∥∥
L([D],X)

∥∥x(s)
∥∥

[D] + sup
(s,t)∈�

∥∥∥∥∂P(s, θ )
∂s

∥∥∥∥
L([D],X)

∫ s

σ

∥∥x(θ )
∥∥

[D] dθ

≤ sup
(s,t)∈�

∥∥P(s, t)
∥∥
L([D],X)

∥∥x(s)
∥∥

[D]

+ sup
(s,t)∈�

∥∥∥∥∂P(s, θ )
∂s

∥∥∥∥
L([D],X)

(s – σ ) max
σ≤θ≤s

∥∥x(θ )
∥∥

[D].

Using that q(σ ) = ,  ≤ t ≤ a, and substituting the previous estimates in (.), we can
assert that

∥∥f(t)
∥∥ =

∥∥∥∥
∫ t

σ

S(t – s)q(s) ds
∥∥∥∥ ≤ K

∫ t

σ

max
σ≤θ≤s

∥∥x(θ )
∥∥

[D] ds ≤ K(t – σ ) max
σ≤θ≤t

∥∥x(θ )
∥∥

[D].

A similar argument allows us to estimate

∥∥f(t)
∥∥ =

∥∥∥∥
∫ t

σ

S(t – τ )B(τ )
∫ τ

σ

S(τ , s)q(s) ds dτ

∥∥∥∥ ≤ K
∫ t

σ

max
σ≤θ≤s

∥∥x(θ )
∥∥

[D] ds

≤ K(t – σ ) max
σ≤θ≤t

∥∥x(θ )
∥∥

[D].

In these estimates K denotes a generic constant. Consequently, combining the earlier es-
timates we obtain

∥∥�x(t) – �y(t)
∥∥

[D] ≤ K
∫ t

σ

max
σ≤θ≤s

∥∥x(θ )
∥∥

[D] ds ≤ K(t – σ ) sup
σ≤s≤t

∥∥x(s) – y(s)
∥∥

[D]

for all x, y ∈ C([σ , a], [D]) and some constant K > , which is independent of t, x, y.
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Repeating this argument, we can show that �n is a contraction for n large enough. If x(·)
denotes the fixed point of �, then x(·) is a solution of problem (.)-(.).

To obtain (.) we proceed as in the proof of Theorem .. Besides, for z ∈ D(A), from
(.) we get

S(t, s)P(s, θ )z = S(t – s)P(s, θ )z +
∫ t

s
S(t – τ )B(τ )S(τ , s)P(s, θ )z dτ ,

which implies

∥∥S(t, s)P(s, θ )z
∥∥ ≤ k‖z‖ + k

∫ t

s

∥∥S(τ , s)P(s, θ )z
∥∥dτ

for some constant k > . Hence, using the Gronwall-Bellman lemma we infer that there
exists a k >  such that

∥∥S(t, s)P(s, θ )z
∥∥ ≤ k‖z‖

for all  ≤ θ ≤ s ≤ a,  ≤ τ ≤ a. This shows that condition (.) holds, and arguing as in
the proof of Theorem . we can conclude that inequality (.) is fulfilled. �

In the rest of this section we assume that the hypotheses of Theorem ., Theorem .
or Theorem . are satisfied including condition (H). Therefore, in all cases, inequality
(.) holds. Let now R(t, s) : [D] → [D] be the map

R(t, s)z = x(t, s, z),

where x(·, s, z) is the solution of problem (.)-(.) constructed in the above development.
It is clear that R(t, s) is linear and bounded. Moreover, R(t, s) : D → X is also bounded, and
therefore, it has a bounded linear extension to X. We keep the symbol R to denote this
extension. We say that R is the resolvent operator for system (.)-(.). Next we study
some properties of R.

(i) It is clear from our construction that R : � →L(X) is a strongly continuous map. We
denote by M >  a constant such that

∥∥R(t, s)
∥∥ ≤ M, (t, s) ∈ �. (.)

(ii) Let z ∈ D. Since R(·,σ )z is a solution of problem (.)-(.) we have

∂

∂t R(t,σ )z = A(t)R(t,σ )z +
∫ t

σ

P(t, ξ )R(ξ ,σ )z dξ .

We will denote by G(t, ξ ) : X → X the extension of the operator
∫ t
ξ

S(t, s)P(s, ξ )x ds. It is
clear that G(·, ·) is a strongly continuous map from � into L(X), and

R(t, s)x = S(t, s)x +
∫ t

s
G(t, ξ )R(ξ , s)x dξ , x ∈ X. (.)



Henríquez and Pozo Boundary Value Problems  (2016) 2016:168 Page 14 of 24

We consider the equation

v(t, s) =
∂

∂s
S(t, s)x +

∫ t

s
G(t, ξ )v(ξ , s) dξ .

It is not difficult to show that this integral equation has a unique solution v ∈ C(�, X). By
integration with respect to the second variable, we obtain

∫ t

s
v(t, τ ) dτ =

∫ t

s

[
∂

∂τ
S(t, τ )x +

∫ t

τ

G(t, ξ )v(ξ , τ ) dξ

]
dτ

= –S(t, s)x +
∫ t

s
G(t, ξ )

∫ ξ

s
v(ξ , τ ) dτ dξ .

By comparing with the equality (.) we infer that
∫ t

s v(t, τ ) dτ = –R(t, s)x. Consequently,
the function s �→ ∂

∂s R(t, s)x is continuous and satisfies the equation

∂

∂s
R(t, s)x =

∂

∂s
S(t, s)x +

∫ t

s
G(t, ξ )

∂

∂s
R(ξ , s)x dξ (.)

for all x ∈ X. Moreover, since ∂
∂s S(t, s)x|t=s = –x, it follows from (.) that ∂

∂s R(t, s)x|t=s = –x.
Let now z ∈ D. We consider the equation

v(t, s) =
∂

∂s S(t, s)z + G(t, s)z +
∫ t

s
G(t, ξ )v(ξ , s) dξ .

Proceeding as above we can prove that the above equation has a unique solution in C(�, X)
and that v(t, s) = ∂

∂s R(t, s)z.

Corollary . Under the above conditions, for each y ∈ D, problem (.) with initial con-
dition

x(σ ) = y, x′(σ ) = , (.)

has a unique solution x(·) given by

x(t) = –
∂

∂s
R(t,σ )y.

Proof It follows from (.) that the solution x(·) of (.)-(.) satisfies

x(t) = –
∂

∂s
S(t,σ )y +

∫ t

σ

∫ s

σ

S(t, s)P(s, ξ )x(ξ ) dξ ds

= –
∂

∂s
S(t,σ )y +

∫ t

σ

∫ t

ξ

S(t, s)P(s, ξ )x(ξ ) dξ ds

= –
∂

∂s
S(t,σ )y +

∫ t

σ

G(t, ξ )x(ξ ) dξ ,

and comparing with equation (.) we infer that x(t) = – ∂
∂s R(t,σ )y. �
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We next apply the previous construction to the study of problem (.)-(.), where
f : [, a] → X is an integrable function. We generalize to inhomogeneous equations the
notion introduced in Definition ..

Definition . A function x : [, a] → X is said to be a solution (or classical solution) of
problem (.)-(.) if x ∈ C([, a], [D]) ∩ C([, a], X) and (.)-(.) are satisfied.

Corollary . Under the above conditions, let y, z ∈ D, and let f : [, a] → D be a contin-
uous function. Then the solution x(·) of problem (.)-(.) is given by

x(t) = –
∂

∂s
R(t, )y + R(t, )z +

∫ t


R(t, ξ )f (ξ ) dξ . (.)

Proof As a consequence of the previous discussion, we can assume that y = z = . Further-
more, combining the properties of R(·) with the fact that A(t) are closed linear operators,
we obtain

∂x(t)
∂t

= R(t, t)f (t) +
∫ t



∂

∂t
R(t, ξ )f (ξ ) dξ

=
∫ t



∂

∂t
R(t, ξ )f (ξ ) dξ ,

∂x(t)
∂t =

∂

∂t
R(t, t)f (t) +

∫ t



[
A(t)R(t, ξ )f (ξ ) +

∫ t

ξ

P(t, s)R(s, ξ )f (ξ ) ds
]

dξ

= f (t) + A(t)x(t) +
∫ t



∫ t

ξ

P(t, s)R(s, ξ )f (ξ ) ds dξ

= f (t) + A(t)x(t) +
∫ t



∫ s


P(t, s)R(s, ξ )f (ξ ) dξ ds

= A(t)x(t) +
∫ t


P(t, s)x(s) ds + f (t),

which completes the proof. �

By comparing Corollary . with Definition . and Theorem ., we are led to establish
the following concept.

Definition . The function x : [, a] → X given by (.) is said to be the mild solution
of problem (.)-(.).

4 Existence of solutions
In this section we study the existence of solutions for problem (.)-(.). Throughout this
section we assume that the hypotheses of Theorem ., Theorem . or Theorem . are
satisfied including condition (H). As a consequence, there exists a resolvent operator
R(·) defined on �. In addition, we assume that f : [, a] → X is an integrable function that
satisfies additional properties which will be specified later. Under these general conditions,
our aim is to study the differentiability of the mild solution x(·) defined by (.). Assuming
that y, z ∈ D, this issue is reduced to a study of the differentiability of the function

u(t) =
∫ t


R(t, ξ )f (ξ ) dξ .
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It follows from (.) that

∥∥u(t)
∥∥ ≤ M‖f ‖L([,a],X). (.)

We begin by establishing a few general properties of the function u(·).

Lemma . Let ϕ : [, a] → [D] be a continuous function. Let � : [, a] → X be the function
given by

�(t) =
∫ t


S(t, ξ )ϕ(ξ ) dξ ,  ≤ t ≤ a. (.)

Then � : [, a] → [D] is a continuous function.

Proof It is a direct consequence of properties of evolution operator S. �

We consider the following condition for f .
(F) Let f : [, a] → X be a function such that the function F : [, a] → X given by

F(t) =
∫ t


S(t, ξ )f (ξ ) dξ

is a solution of the abstract Cauchy problem (.) with initial conditions
F() = F ′() = .

Lemma . Assume condition (F) holds. Then u(t) ∈ D and u : [, a] → [D] is continuous.

Proof Let v : [, a] → [D] be a continuous function. We consider the integral equation

x(t) = v(t) +
∫ t



∫ s


S(t, s)P(s, ξ )x(ξ ) dξ ds,  ≤ t ≤ a, (.)

in the space C([, a], [D]). Since we are assuming that the hypotheses of Theorem .,
Theorem . or Theorem . are fulfilled, proceeding as in the proof of Theorem .,
Theorem . or Theorem ., respectively, we can see that (.) has a unique solution.
Furthermore, the solutions of equation (.) have the following properties:

(i) If f : [, a] → [D] is continuous, and v(t) = F(t), then x(t) = u(t). In fact, substituting
R(t, s)f (s) from (.), we have

u(t) =
∫ t



[
S(t, s)f (s) +

∫ t

s

∫ τ

s
S(t, τ )P(τ , ξ )R(ξ , s)f (s) dξ dτ

]
ds

=
∫ t


S(t, s)f (s) ds +

∫ t


S(t, τ )

∫ τ



∫ τ

s
P(τ , ξ )R(ξ , s)f (s) dξ ds dτ

=
∫ t


S(t, s)f (s) ds +

∫ t


S(t, τ )

∫ τ


P(τ , ξ )

(∫ ξ


R(ξ , s)f (s) ds

)
dξ dτ

=
∫ t


S(t, s)f (s) ds +

∫ t


S(t, τ )

∫ τ


P(τ , ξ )u(ξ ) dξ dτ ,

which implies that u(t) = x(t).
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(ii) Since D is dense in X, for an integrable function f : [, a] → X there exists a se-
quence (ϕn)n in C([, a], D) such that ϕn → f as n → ∞ for the norm in L([, a], X).
As a matter of fact, we can take ϕn as a trapezoidal function with values in D. Conse-
quently, we can assume that ϕn ∈ C([, a], [D]). Let �n be the function defined by (.)
with ϕn instead of ϕ. Let xn(·) be the solution of equation (.) with v(t) = �n(t), and let
un(t) =

∫ t
 R(t, ξ )ϕn(ξ ) dξ .

It follows from (i) that xn(t) = un(t). Moreover, it is immediate from (.) that

∥∥un(t) – u(t)
∥∥ ≤ M‖ϕn – f ‖L([,a],X).

Furthermore, if x(·) denotes the solution of equation (.) with v(t) = F(t), as in this state-
ment we are assuming that the condition (H) is fulfilled, proceeding as in the proof of
Theorem . to obtain the estimate (.), we can assert that

∥∥xn(t) – x(t)
∥∥ ≤

∥∥∥∥
∫ t


S(t, s)

(
ϕn(s) – f (s)

)
ds

∥∥∥∥

+
∥∥∥∥
∫ t



∫ s


S(t, s)P(s, ξ )

(
xn(ξ ) – x(ξ )

)
dξ ds

∥∥∥∥

≤ N‖ϕn – f ‖L([,a],X) + N

∫ t



∥∥xn(ξ ) – x(ξ )
∥∥dξ ,

which shows that the sequence (xn(t))n converges to x(t). Clearly, by the previous remark,
x(t) = u(t) and u ∈ C([, a], [D]). �

Lemma . Assume that conditions (H) and (F) hold. Let g : [, a] → X be the function
given by

g(t) =
∫ t


P(t, s)u(s) ds,  ≤ t ≤ a.

Then g is a Lipschitz continuous function.

Proof For  ≤ t ≤ t ≤ a, we have

g(t) – g(t) =
∫ t


P(t, s)u(s) ds –

∫ t


P(t, s)u(s) ds

=
∫ t



[
P(t, s) – P(t, s)

]
u(s) ds +

∫ t

t

P(t, s)u(s) ds

and, applying (H) and (H),

∥∥g(t) – g(t)
∥∥ ≤

∥∥∥∥
∫ t



[
P(t, s) – P(t, s)

]
u(s) ds

∥∥∥∥ +
∥∥∥∥
∫ t

t

P(t, s)u(s) ds
∥∥∥∥

≤ LP|t – t|
∫ t



∥∥u(s)
∥∥

[D] ds + b
∫ t

t

∥∥u(s)
∥∥

[D] ds,

which shows the assertion. �
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We are in a position to establish our first result of the existence of solutions of prob-
lem (.)-(.). This result is an immediate consequence of Kozak [], Theorem ., and
Henríquez [], Corollary ..

Theorem . Let y, z ∈ D. Assume that condition (H) holds. Assume further that the fol-
lowing conditions are fulfilled:

(i) The space X verifies the RNP.
(ii) For each x ∈ D the function A(·)x is continuously differentiable.

(iii) There exists λ ∈C such that λ ∈ ρ(A(t)) for all t ∈ [, a].
(iv) The function f is Lipschitz continuous.

Then the function x(·) given by (.) is the solution of problem (.)-(.).

Proof We can assume that y = z = . With the notation introduced in Lemma ., we con-
sider the abstract Cauchy problem

w′′(t) = A(t)w(t) + g(t) + f (t), (.)

w() = w′() = . (.)

Since the function g + f is Lipschitz continuous, using [], Corollary ., we see that the
solution of (.)-(.) is given by

w(t) =
∫ t


S(t, s)

(
g(s) + f (s)

)
ds.

On the other hand, let z(·) be the solution of equation (.) with v(t) = F(t). It follows from
Lemma . that

u(t) = z(t) =
∫ t


S(t, s)f (s) ds +

∫ t


S(t, s)

∫ s


P(s, ξ )z(ξ ) dξ ds

=
∫ t


S(t, s)f (s) ds +

∫ t


S(t, s)

∫ s


P(s, ξ )u(ξ ) dξ ds

= w(t),

which completes the proof. �

We finish this section with an application of Theorem ..

Theorem . Let y, z ∈ D. Assume that conditions of Theorem . are fulfilled. Assume
further that B : [, a] → L([D], E) is a strongly continuous operator valued map. Let f :
[, a] → X be a continuously differentiable function. Then the function x(·) given by (.)
is the solution of problem (.)-(.).

Proof We proceed as in the proof of Theorem .. It follows from Lemma . that u ∈
C([, a], [D]). Applying the properties of P, we infer that the function g is continuously
differentiable. Consequently, the function g + f is continuously differentiable. Using the
properties of B(·), we can easily show that the conditions of Theorem . in [] are sat-
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isfied. As a consequence we see that the solution of (.)-(.) is given by

w(t) =
∫ t


S(t, s)

(
g(s) + f (s)

)
ds.

We complete the proof arguing as in the proof of Theorem . �

5 Applications
The one dimensional wave equation modeled as an abstract Cauchy problem has been
studied extensively. See for example []. In this section, we apply the results established
previously to study the existence of solutions to a non-autonomous wave equation mod-
eled by an integro-differential equation. To avoid technical difficulties, we will consider
only a pair of simple types of wave equation.

Initially, we will study the initial value problem

∂w(t, ξ )
∂t =

∂w(t, ξ )
∂ξ  + b(t)w(t, ξ ) +

∫ t


α(t – s)

∂w(s, ξ )
∂ξ

ds + f̃ (t, ξ ), (.)

w(t, ) = w(t,π ) = , (.)

w(, ξ ) = ϕ(ξ ),
∂w(, ξ )

∂t
= z(ξ ) (.)

for t ≥  and  ≤ ξ ≤ π . Here we assume that α, b : [,∞) →R are continuously differen-
tiable functions, and that f̃ , ϕ and z satisfy appropriate conditions which will be specified
later.

We model this problem in the space X = L([,π ]). For this reason, we assume that
ϕ, z ∈ X. Similarly, H([,π ]) denotes the Sobolev space of functions x : R → C such that
x′′ ∈ L([,π ]).

We consider the operator Ax(ξ ) = x′′(ξ ) with domain

D(A) =
{

x ∈ H([,π ]
)

: x() = x(π ) = 
}

.

Furthermore, we assume that the function f̃ : [,∞) × [,π ] →R satisfies the following
conditions:

(i) For each ξ ∈ [,π ], f̃ (·, ξ ) is continuous.
(ii) For t ≥ , f̃ (t, ·) is measurable, and there exists a positive function η ∈ L([,π ])

such that |f̃ (t, ξ )| ≤ η(ξ ) for ξ ∈ [,π ].
Under these conditions, the function f : [,∞) → X given by f (t)(ξ ) = f̃ (t, ξ ), for ξ ∈ [,π ],
is continuous.

It is well known that A is the infinitesimal generator of a strongly continuous cosine
function (C(t))t∈R on X. The spectrum of A consists of eigenvalues –n for n ∈ N, with
associated eigenvectors

zn(ξ ) =
√


π

sin nξ , n ∈N.

Furthermore, the set {zn : n ∈ Z} is an orthonormal basis of X. Using this orthonormal
basis, we obtain that

Au =
∑
n∈N

–n〈u, zn〉zn
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for u ∈ D(A), and the cosine function (C(t))t∈R is given by

C(t)u =
∞∑

n=

cos (nt)〈u, zn〉zn, t ∈R,

with associated sine function

S(t)u =
∞∑

n=

sin (nt)
n

〈u, zn〉zn, t ∈R. (.)

It is clear that ‖C(t)‖ ≤  for all t ∈R. Thus, C(·) is uniformly bounded on R.
We take B(t)x(ξ ) = b(t)x(ξ ) defined on X. It is easy to see that A(t) = A + B(t) is a closed

linear operator. Moreover, it is clear that condition (A) is fulfilled. Consequently, A(t) gen-
erates an evolution operator S(t, s). In addition, since B(t) : [D(A)] → [D(A)], we see that
B : [,∞) →L([D(A)], E) is a strongly continuous map.

To complete our construction, we specify the map P. Let P(t, s) : [D(A)] → X be given
by

P(t, s)x(ξ ) = α(t – s)
∂x(ξ )
∂ξ

, ξ ∈ [,π ].

It is clear that P : � →L([D(A)], X) is a strongly continuous map such that the map ∂P(t,s)
∂t :

� →L([D(A)], X) is also strongly continuous.
Using this construction, and defining x(t) = w(t, ·) ∈ X, problem (.)-(.) is modeled

in the abstract form (.)-(.). The following result is a consequence of Theorem . and
Theorem ..

Corollary . Under the above conditions, the following properties are fulfilled:
(a) There exists a resolvent operator R(t, s) for equation (.).
(b) Problem (.)-(.) has a mild solution given by

w(t, ξ ) = –
∂R(t, )ϕ

∂s
(ξ ) + R(t, )z(ξ ) +

[∫ t


R(t, s)f (s) ds

]
(ξ ). (.)

(c) If ϕ, z ∈ D(A), and f̃ satisfies the local Lipschitz condition

∣∣f̃ (t, ξ ) – f̃ (t, ξ )
∣∣ ≤ La|t – t| (.)

for all t, t ∈ [, a] and ξ ∈ [π ], where La ≥ , then problem (.)-(.) has a
classical solution given by (.).

Proof Assertion (a) is a consequence of Theorem .. We only need to show that (.)
holds. We define wn =

√

π

cos nξ for n ∈ N and w = √
π

. Let x ∈ D(A). Then

x′ =
∞∑

n=

〈
x′, zn

〉
zn,
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where

〈
x′, zn

〉
=

√

π

∫ π


x′(ξ ) sin nξ dξ

= –
√


π

n
∫ π


x(ξ ) cos nξ dξ

= –n〈x, wn〉.

Therefore,

S(t)x′ =
∞∑

n=

sin nt
n

〈
x′, zn

〉
zn =

∞∑
n=

– sin (nt)〈x, wn〉zn.

Since {wn : n ∈N} is an orthonormal basis of X, we obtain

∥∥S(t)x′∥∥ =
∞∑

n=

sin (nt)
∣∣〈x, wn〉

∣∣

≤
∞∑

n=

∣∣〈x, wn〉
∣∣

≤ ‖x‖.

Consequently

∥∥S(τ )P(s, θ )x
∥∥ ≤ ∣∣α(s – θ )

∣∣‖x‖ ≤ ‖α‖∞‖x‖,

which establishes (.).
(b) This assertion is a consequence of (i) and Definition ..
(c) Since X is Hilbert, X satisfies RNP. We fix a >  and study problem (.)-(.) for

t ∈ [, a]. Since the function b(·) is continuous, then b(·) is bounded on [, a]. This implies
that ρ(A(t)) = ρ(A + b(t)I) �= ∅. In addition,

∥∥f (t) – f (t)
∥∥ =

(∫ π



∣∣f̃ (t, ξ ) – f̃ (t, ξ )
∣∣ dξ

)/

≤ Laπ
/|t – t|

for t, t ∈ [, a]. This shows that f is Lipschitz continuous. Consequently, the hypotheses
of Theorem . are satisfied, which implies that problem (.)-(.) has a classical solution
given by (.). �

Finally we study a non-autonomous wave equation where the operator A(t) is obtained
as a multiplicative perturbation of A. Specifically, in what follows we are concerned with
the initial value problem

∂w(t, ξ )
∂t = b(t)

∂w(t, ξ )
∂ξ  +

∫ t


α(t – s)

∂w(s, ξ )
∂ξ

ds + f̃ (t, ξ ), t ≥ ,  < ξ < π , (.)

w(t, ) = w(t,π ) = , t ≥ , (.)
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w(, ξ ) = ϕ(ξ ),
∂w(, ξ )

∂t
= z(ξ ),  ≤ ξ ≤ π . (.)

We proceed as in the previous development. We model this problem in the space X =
L([,π ]). We assume that ϕ, z ∈ X, α, and f̃ satisfy the general conditions mentioned
above. Moreover, we assume that b : [,∞) → R is a continuously differentiable function
such that b(t) ≥  for all t ≥ .

We consider the operator A(t) = b(t)A with domain D(A(t)) = D(A). Initially we will
show that A(t) generates an evolution operator S(t, s). It is known ([], Theorem ..)
that the solution of the scalar initial value problem

r′′(t) + nb(t)r(t) = , t ≥ s, (.)

r(s) = , r′(s) = , (.)

satisfies

∣∣r(t, s)
∣∣ ≤ √

b(s)n
, (.)

∣∣∣∣∂r(t, s)
∂s

∣∣∣∣ ≤  (.)

for t ≥ s.
We denote by rn(t, s) the solution of (.)-(.). We define

S(t, s)x =
∞∑

n=

rn(t, s)〈x, zn〉zn.

It follows from the estimate (.)-(.) that S(t, s) : X → X is well defined. It is not diffi-
cult to show that S is an evolution operator.

Using again that every Hilbert space satisfies the RNP we get the following consequence.

Corollary . Under the above conditions, the following properties are fulfilled.
(a) There exists a resolvent operator R(t, s) for problem (.)-(.).
(b) There exists a mild solution of (.)-(.) given by (.).
(c) If ϕ, z ∈ D(A), and f̃ satisfies the local Lipschitz condition (.), then there exists a

classical solution of (.)-(.) given by (.).

Proof Assertion (a) is a consequence of Theorem .. Conditions (H)-(H) are immedi-
ate consequences of the definition of P and the properties of α(·). It only remains to show
that estimate (.) holds. We proceed as in the proof of Corollary ..

Let x ∈ D(A). Then

S(t, s)x′ =
∞∑

n=

rn(t, s)
〈
x′, zn

〉
zn

=
∞∑

n=

–rn(t, s)n〈x, wn〉zn.
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Using again that {wn : n ∈N} is an orthonormal basis of X, and applying (.), we obtain

∥∥S(t, s)x′∥∥ =
∞∑

n=

rn(t, s)n∣∣〈x, wn〉
∣∣

≤ 
b(s)

∞∑
n=

∣∣〈x, wn〉
∣∣

≤ 
b(s)

‖x‖.

Consequently

∥∥S(t, s)P(s, θ )x
∥∥ ≤ |α(s – θ )|

b(s)
‖x‖ ≤ ‖α‖∞‖x‖,

which establishes (.). We complete the proof as in the proof of Corollary .. �
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