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Abstract
A nonlinear second-order ordinary differential equation with four cases of three-point
boundary value conditions is studied by investigating the existence and
approximation of solutions. First, the integration method is proposed to transform the
considered boundary value problems into Hammerstein integral equations. Second,
the existence of solutions for the obtained Hammerstein integral equations is
analyzed by using the Schauder fixed point theorem. The contraction mapping
theorem in Banach spaces is further used to address the uniqueness of solutions.
Third, the approximate solution of Hammerstein integral equations is constructed by
using a new numerical method, and its convergence and error estimate are analyzed.
Finally, some numerical examples are addressed to verify the given theorems and
methods.
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1 Introduction
Nonlocal boundary value problems for linear and nonlinear ordinary differential equa-
tions are arising in the theory of mathematical physics and some engineering applications
[–]. They have attracted much attention and lots of interesting observations have been
given [–]. The existence and approximation of solutions are very important in order to
understand various phenomena in physics, engineering, and so on []. Here we generally
consider the following nonlinear second-order ordinary differential equation:

ϕ′′(x) + ψ
(
x,ϕ(x)

)
= g(x), x ∈ [a, b], ()

where ψ(x,ϕ(x)) and g(x) are known, and ϕ(x) is the unknown to be computed. The non-
linear ordinary differential equation () can be understood as the case that a linear problem
is imposed upon a nonlinear loading ψ(x,ϕ(x)). Moreover, the three-point boundary value
condition is equipped and it is assumed to be one of the following four cases:

I: ϕ(a) = α, ϕ(b) + kϕ(ξ ) = β , ξ ∈ (a, b), ()
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II: ϕ(a) + kϕ(ξ ) = α, ϕ(b) = β , ξ ∈ (a, b), ()

III: ϕ(a) = α, ϕ(b) + kϕ′(ξ ) = β , ξ ∈ (a, b), ()

IV: ϕ(a) + kϕ′(ξ ) = α, ϕ(b) = β , ξ ∈ (a, b), ()

where α, β , ξ , and k are the known constants. It is found that II and IV can be reformulated
by using the variable transformation u(x) = a + b – x from I and III, respectively. That is,
under the assumption of ϕ̄(u) = ϕ(a + b – u) = ϕ(x), one has

II′: ϕ̄(a) + kϕ̄(η) = β , ϕ̄(b) = α, η = a + b – ξ ∈ (a, b), ()

by using case I, and

IV′: ϕ̄(a) – kϕ̄′(η) = β , ϕ̄(b) = α, η = a + b – ξ ∈ (a, b), ()

from case III. Since the constants α, β , ξ , and k are arbitrary, the cases of I and III will be
considered mainly in the following sections. When k = , the three-point boundary value
problems degenerate to two-point boundary value problems.

It is noted that when g(x) = , the existence of solutions for equation () with various
boundary value conditions has been studied widely. For example, the method of lower
and upper solutions is developed by Ma [] and the multiplicity solutions for a three-
point boundary value problem at resonance were given. Xu [, ] considered the sin-
gular three-point and m-point boundary value problems, respectively. The multiplicity
results and existence of positive solutions were analyzed by using a fixed point index the-
ory. Yao [] investigated the existence of positive solutions for a second-order three-point
boundary value problem and a successive iteration method was given for computing the
solutions. Nieto [] studied the existence of solution for a second-order nonlinear or-
dinary differential equation with three-point boundary value conditions at resonance. In
addition, the problems of nonlinear second-order ordinary differential equations with m-
point and integral boundary value conditions were further investigated in [–] and
so on. On the other hand, when ψ(x,ϕ(x)) = a(x)F(x,ϕ(x)) and ψ(x,ϕ(x)) degenerates
to a(x)ψ(ϕ(x)), the multipoint boundary value problems of nonlinear second-order or-
dinary differential equations were dealt with in [–]. Recently, the special linear case
of ψ(x,ϕ(x)) = q(x)ϕ(x) has been studied in [] and an approximate solution has been
given. The case of g(x) =  in equation () with impulse three-point boundary value con-
ditions have been studied in [], where the existence conditions for obtaining a nontrivial
solution have been given.

As shown in the above-mentioned work, the existence of the solutions for second-
order multipoint boundary value problems is always focused on. Moreover, the approx-
imate solutions of boundary value problems are very important in engineering applica-
tions. A monotone iterative technique was developed for the approximate solution of a
second-order three-point boundary value problem in []. This paper generally focuses
on the nonlinear second-order ordinary differential equation with four cases of three-
point boundary value conditions in ()-(). A general method is proposed to transform
the nonlinear three-point boundary value problems into nonlinear Hammerstein integral
equations. The existence and uniqueness of solutions for the obtained Hammerstein in-
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tegral equations are considered by using the Schauder fixed point theorem and the con-
traction mapping theorem, respectively. A new numerical method is further proposed to
construct the approximate solutions of Hammerstein integral equations. Some numerical
examples are computed to show the effectiveness of the proposed methods.

2 Hammerstein integral equations
In this section, we will transform the nonlinear second-order ordinary differential equa-
tion () with three-point boundary value conditions in ()-() into Hammerstein integral
equations. Then the existence and uniqueness of solutions for the obtained Hammerstein
integral equations will be investigated.

2.1 Transformations
In the following, we apply the integration method to get the following four theorems.

Theorem  When (b – a) + k(ξ – a) �= , the three-point boundary value problem
{

ϕ′′(x) + ψ(x,ϕ(x)) = g(x), x ∈ [a, b],
ϕ(a) = α, ϕ(b) + kϕ(ξ ) = β , ξ ∈ (a, b),

()

can be transformed into the Hammerstein integral equation as follows:

ϕ(x) +
∫ b

a
K(x, t)ψ

(
t,ϕ(t)

)
dt = f(x), ()

where

K(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a–t)[(b–x)+k(ξ–x)]
(b–a)+k(ξ–a) , a ≤ t ≤ min{x, ξ} ≤ b,

(a–x)(b–t)
(b–a)+k(ξ–a) , a ≤ max{x, ξ} ≤ t ≤ b,
(a–t)(b–x)+k(ξ–a)(x–t)

(b–a)+k(ξ–a) , a ≤ ξ ≤ t ≤ x ≤ b,
(a–x)[(b–t)+k(ξ–t)]

(b–a)+k(ξ–a) , a ≤ x ≤ t ≤ ξ ≤ b,

f(x) =
∫ b

a
K(x, t)g(t) dt +

(b – x) + k(ξ – x)
(b – a) + k(ξ – a)

α +
(x – a)

(b – a) + k(ξ – a)
β .

Proof By integrating twice, from a to x, both sides of the differential equation in () with
respect to x, one gets

ϕ(x) +
∫ x

a
(x – t)ψ

(
t,ϕ(t)

)
dt =

∫ x

a
(x – t)g(t) dt + ϕ′(a)(x – a) + ϕ(a). ()

Then the unknowns ϕ′(a) and ϕ(a) in () will be determined by using the boundary value
conditions in (), respectively. By setting x = b in () one obtains

ϕ′(a) =


b – a

[
ϕ(b) – ϕ(a) +

∫ b

a
(b – t)ψ

(
t,ϕ(t)

)
dt –

∫ b

a
(b – t)g(t) dt

]
. ()

Applying () to (), it follows that

ϕ(x) +
∫ x

a
(x – t)ψ

(
t,ϕ(t)

)
dt –

∫ b

a

(x – a)(b – t)
(b – a)

ψ
(
t,ϕ(t)

)
dt

=
∫ x

a
(x – t)g(t) dt –

∫ b

a

(x – a)(b – t)
(b – a)

g(t) dt +
b – x
b – a

ϕ(a) +
x – a
b – a

ϕ(b). ()
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Now we let x = ξ in () and obtain

ϕ(x) +
∫ x

a
(x – t)ψ

(
t,ϕ(t)

)
dt –

∫ ξ

a

(x – a)(ξ – t)
(ξ – a)

ψ
(
t,ϕ(t)

)
dt

=
∫ x

a
(x – t)g(t) dt –

∫ ξ

a

(x – a)(ξ – t)
(ξ – a)

g(t) dt +
ξ – x
ξ – a

ϕ(a) +
x – a
ξ – a

ϕ(ξ ). ()

In virtue of (), (), and (), it gives

ϕ(x) +
∫ x

a
(x – t)ψ

(
t,ϕ(t)

)
dt –

∫ b

a

(x – a)(b – t)
(b – a) + k(ξ – a)

ψ
(
t,ϕ(t)

)
dt

–
∫ ξ

a

k(x – a)(ξ – t)
(b – a) + k(ξ – a)

ψ
(
t,ϕ(t)

)
dt

=
(b – x) + k(ξ – x)
(b – a) + k(ξ – a)

α +
(x – a)

(b – a) + k(ξ – a)
β +

∫ x

a
(x – t)g(t) dt

–
∫ b

a

(x – a)(b – t)
(b – a) + k(ξ – a)

g(t) dt –
∫ ξ

a

k(x – a)(ξ – t)
(b – a) + k(ξ – a)

g(t) dt. ()

Since the right side of equation () is a function with respect to x, we let

f(x) =
(b – x) + k(ξ – x)
(b – a) + k(ξ – a)

α +
(x – a)

(b – a) + k(ξ – a)
β +

∫ x

a
(x – t)g(t) dt

–
∫ b

a

(x – a)(b – t)
(b – a) + k(ξ – a)

g(t) dt –
∫ ξ

a

k(x – a)(ξ – t)
(b – a) + k(ξ – a)

g(t) dt. ()

After some computations, one verifies that () and () can be rewritten as indicated
in (). �

Furthermore, one can obtain the following theorem and the proof has been omitted for
saving space.

Theorem  Under the condition of (b – a) + k(ξ – a) �= , the three-point boundary value
problem

{
ϕ′′(x) + ψ(x,ϕ(x)) = g(x), x ∈ [a, b],
ϕ(a) + kϕ(ξ ) = α, ϕ(b) = β , ξ ∈ (a, b),

()

is equivalent to the following Hammerstein integral equation:

ϕ(x) +
∫ b

a
K(x, t)ψ

(
t,ϕ(t)

)
dt = f(x), ()

where

K(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x–b)(t–a)
(b–a)+k(b–ξ ) , a ≤ t ≤ min{x, ξ} ≤ b,
(t–b)[(x–a)+k(x–ξ )]

(b–a)+k(b–ξ ) , a ≤ max{x, ξ} ≤ t ≤ b,
(x–b)[(t–a)+k(t–ξ )]

(b–a)+k(b–ξ ) , a ≤ ξ ≤ t ≤ x ≤ b,
(x–a)(t–b)+k(b–ξ )(t–x)

(b–a)+k(b–ξ ) , a ≤ x ≤ t ≤ ξ ≤ b,
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f(x) =
∫ b

a
K(x, t)g(t) dt +

(b – x)
(b – a) + k(b – ξ )

α +
(x – a) + k(x – ξ )
(b – a) + k(b – ξ )

β .

In the following, by considering the boundary value conditions in the cases of III and IV,
we give Theorems  and , respectively.

Theorem  In virtue of k + (b – a) �= , the ordinary differential equation with three-point
boundary value conditions

{
ϕ′′(x) + ψ(x,ϕ(x)) = g(x), x ∈ [a, b],
ϕ(a) = α, ϕ(b) + kϕ′(ξ ) = β , ξ ∈ (a, b),

()

can be changed to the Hammerstein integral equation. That is, one has

ϕ(x) +
∫ b

a
K(x, t)ψ

(
t,ϕ(t)

)
dt = f(x), ()

where

K(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a–t)[k+(b–x)]
k+(b–a) , a ≤ t ≤ min{x, ξ} ≤ b,

(a–x)(b–t)
k+(b–a) , a ≤ max{x, ξ} ≤ t ≤ b,

(a–t)(b–x)+k(x–t)
k+(b–a) , a ≤ ξ ≤ t ≤ x ≤ b,

(a–x)[k+(b–t)]
k+(b–a) , a ≤ x ≤ t ≤ ξ ≤ b,

f(x) =
∫ b

a
K(x, t)g(t) dt +

(k + b – x)
k + (b – a)

α +
(x – a)

k + (b – a)
β .

Proof Performing the integration procedures similar to those in Theorems  and , we
obtain

ϕ(x) +
∫ x

ξ

(x – t)ψ
(
t,ϕ(t)

)
dt =

∫ x

ξ

(x – t)g(t) dt + ϕ′(ξ )(x – ξ ) + ϕ(ξ ). ()

It is assumed that x = a in () and one arrives at

ϕ(ξ ) = ϕ(a) +
∫ a

ξ

(a – t)ψ
(
t,ϕ(t)

)
dt –

∫ a

ξ

(a – t)g(t) dt – ϕ′(ξ )(a – ξ ). ()

Insertion of () into () yields

ϕ(x) +
∫ x

ξ

(x – t)ψ
(
t,ϕ(t)

)
dt +

∫ ξ

a
(a – t)ψ

(
t,ϕ(t)

)
dt

=
∫ x

ξ

(x – t)g(t) dt +
∫ ξ

a
(a – t)g(t) dt + ϕ′(ξ )(x – a) + ϕ(a). ()

With the knowledge of ϕ(b) in (), and using the boundary value conditions in (), one
further has

ϕ(x) +
∫ x

a

(b – a)(x – t)
k + (b – a)

ψ
(
t,ϕ(t)

)
dt –

∫ b

a

(x – a)(b – t)
k + (b – a)

ψ
(
t,ϕ(t)

)
dt

+
∫ x

ξ

k(x – t)
k + (b – a)

ψ
(
t,ϕ(t)

)
dt +

∫ ξ

a

k(a – t)
k + (b – a)

ψ
(
t,ϕ(t)

)
dt
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=
∫ x

a

(b – a)(x – t)
k + (b – a)

g(t) dt –
∫ b

a

(x – a)(b – t)
k + (b – a)

g(t) dt

+
∫ x

ξ

k(x – t)
k + (b – a)

g(t) dt +
∫ ξ

a

k(a – t)
k + (b – a)

g(t) dt

+
(k + b – x)
k + (b – a)

α +
(x – a)

k + (b – a)
β . ()

The proof is completed by rewriting () as (). �

Theorem  If (b – a) – k �= , the following boundary value problem:

{
ϕ′′(x) + ψ(x,ϕ(x)) = g(x), x ∈ [a, b],
ϕ(a) + kϕ′(ξ ) = α, ϕ(b) = β , ξ ∈ (a, b),

()

is equivalent to the Hammerstein integral equation as follows:

ϕ(x) +
∫ b

a
K(x, t)ψ

(
t,ϕ(t)

)
dt = f(x), ()

where

K(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x–b)(t–a)
(b–a)–k , a ≤ t ≤ min{x, ξ} ≤ b,

(t–b)[(x–a)–k]
(b–a)–k , a ≤ max{x, ξ} ≤ t ≤ b,

(x–b)[(t–a)–k]
(b–a)–k , a ≤ ξ ≤ t ≤ x ≤ b,

(x–a)(t–b)+k(x–t)
(b–a)–k , a ≤ x ≤ t ≤ ξ ≤ b,

f(x) =
∫ b

a
K(x, t)g(t) dt +

(b – x)
(b – a) – k

α +
(x – a – k)
(b – a) – k

β .

The proof can be completed similar to that of Theorem .
It is seen from Theorems - that the nonlinear second-order three-point boundary

value problems have been transformed into Hammerstein integral equations. We remark
that the integration method is uniform and enough to transform any nonlocal boundary
value problem of ordinary differential equations into an integral equation [, ]. In the
end, as a check, we consider the special case of g(x) = α = β =  and obtain the boundary
value problems as those in []. Based on Theorems -, the solutions and Green’s func-
tions of the nonlinear three-point boundary value problems in [] can be determined
easily.

2.2 Existence and uniqueness of solution
For a nonlinear equation, the fixed point theorems are always used to address the exis-
tence and uniqueness of solutions [–]. Here since the considered three-point bound-
ary value problems have been transformed into the Hammerstein integral equations, it is
natural to study the existence and uniqueness of solutions for the obtained Hammerstein
integral equations. Moreover, it is seen that the existence and uniqueness of solutions for
Hammerstein integral equations have been investigated widely such as those in the book
[] and the recent results on L spaces []. In the present paper, for the obtained Ham-
merstein integral equations, we will use the Schauder fixed point theorem to address the
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existence of the solutions, and apply the Banach fixed point theorem to investigate the
uniqueness of the solutions. The obtained results are related to the considered nonlinear
boundary value problems of ordinary differential equations.

Now it is convenient to rewrite equations (), (), (), and () in the following general
form, namely:

ϕ(x) +
∫ b

a
Ki(x, t)ψ

(
t,ϕ(t)

)
dt =

∫ b

a
Ki(x, t)g(t) dt + ρi(x), ()

where ρi(x) (i = , , , ) are the linear functions with respect to x. It is easy to see that
Ki(x, t) and ρi(x) are continuous on [a, b; a, b] and [a, b], respectively. Furthermore, we as-
sume that

Ai = max
a≤x,t≤b

∣
∣Ki(x, t)

∣
∣, Di = max

a≤x≤b

∣
∣ρi(x)

∣
∣.

Based on the Schauder fixed point theorem, we first give the following theorem to address
the existence of the solutions in ().

Theorem  It is assumed that S = {ϕ|ϕ ∈ L[a, b],‖ϕ‖ ≤ M}. ∀ϕ ∈ S, one has

∫ b

a

∣∣ψ
(
t,ϕ(t)

)
– g(t)

∣∣ dt ≤ B.

∀ε > , ϕ,ϕ ∈ S, ∃δ(ε) > , when ‖ϕ – ϕ‖ < δ(ε), it gives

∫ b

a

∣
∣ψ

(
t,ϕ(t)

)
– ψ

(
t,ϕ(t)

)∣∣ dt < ε.

If AiB(b – a) + Di
√

b – a < M, the nonlinear integral equation () at least has a solution
in S.

Proof Obviously S is a closed convex set. For convenience, we define the integral operator
T from L[a, b] to L[a, b] such that

ϕ =
∫ b

a
Ki(x, t)

[
g(t) – ψ

(
t,ϕ(t)

)]
dt + ρi = Tϕ.

First, one can see that T is a mapping from S to S. In fact, for ‖ϕ‖ ≤ M, we have

∣∣Tϕ(x)
∣∣ =

∣∣∣
∣

∫ b

a
Ki(x, t)

[
g(t) – ψ

(
t,ϕ(t)

)]
dt + ρi(x)

∣∣∣
∣

≤
∫ b

a

∣∣Ki(x, t)
∣∣ · ∣∣g(t) – ψ

(
t,ϕ(t)

)∣∣dt +
∣∣ρi(x)

∣∣

≤ Ai

∫ b

a

∣
∣g(t) – ψ

(
t,ϕ(t)

)∣∣dt + Di

≤ Ai

[∫ b

a

∣
∣g(t) – ψ

(
t,ϕ(t)

)∣∣ dt ·
∫ b

a
 dt

] 


+ Di

≤ AiB
√

b – a + Di <
M√
b – a

,
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then

‖Tϕ‖ =
(∫ b

a

∣
∣Tϕ(x)

∣
∣ dx

)/

< M.

Second, we prove that T is continuous. ∀ε > , ϕ,ϕ ∈ S, ∃δ(ε) > , such that when
‖ϕ – ϕ‖ < δ(ε), it follows that

|Tϕ – Tϕ| =
∣
∣∣∣

∫ b

a
Ki(x, t)

[
ψ

(
t,ϕ(t)

)
– ψ

(
t,ϕ(t)

)]
dt

∣
∣∣∣

≤ Ai

[∫ b

a

∣∣ψ
(
t,ϕ(t)

)
– ψ

(
t,ϕ(t)

)∣∣ dt ·
∫ b

a
 dt

] 


≤ (Ai
√

b – a)ε

and

‖Tϕ – Tϕ‖ =
(∫ b

a

∣∣Tϕ(x) – Tϕ(x)
∣∣ dx

)/

≤ Ai(b – a)ε.

In the end, let us prove that T(S) is relatively compact. Since Ki(x, t) and ρi(x) are contin-
uous on [a, b; a, b] and [a, b], respectively, they are uniformly continuous. Consequently,
∀ε > , ϕ ∈ S, ∃η(ε) > , for |x – x| < η(ε), one has

∣∣Tϕ(x) – Tϕ(x)
∣∣

=
∣∣
∣∣

∫ b

a

[
Ki(x, t) – Ki(x, t)

] · [g(t) – ψ
(
t,ϕ(t)

)]
dt +

[
ρi(x) – ρi(x)

]
∣∣
∣∣

≤
[∫ b

a

∣∣Ki(x, t) – Ki(x, t)
∣∣ dt ·

∫ b

a

∣∣g(t) – ψ
(
t,ϕ(t)

)∣∣ dt
] 


+

∣∣ρi(x) – ρi(x)
∣∣

< (B
√

b – a + )ε.

It is seen that T(S) is uniformly bounded and equicontinuous. According to Ascoli-Arzela
theorem [], {Tϕ(x)} has a subsequence with uniform convergence, so T(S) is relatively
compact.

By using the Schauder fixed point theorem, there exists at least a point ϕ ∈ S such that
Tϕ = ϕ. �

In addition, we can change some conditions in Theorem  to obtain the following corol-
lary.

Corollary  Let S = {ϕ|ϕ ∈ L[a, b],‖ϕ‖ ≤ M}, and

E = max
a≤x≤b

max
u∈S

∣
∣ψ(x, u)

∣
∣, F = max

a≤x≤b

∣
∣g(x)

∣
∣.

∀ε > , ϕ,ϕ ∈ S, ∃δ(ε) > , when ‖ϕ – ϕ‖ < δ(ε), one has

∫ b

a

∣∣ψ
(
t,ϕ(t)

)
– ψ

(
t,ϕ(t)

)∣∣dt < ε.
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If Ai(E + F)(b – a) + Di < M√
b–a

, the nonlinear integral equation () at least has a solution
in S.

Furthermore, strengthening the conditions of the nonlinear term ψ(x,ϕ(x)), we have the
uniqueness theorem of solution in Banach spaces.

Theorem  Suppose that g(x) ∈ L[a, b], and ψ(x,ϕ(x)) satisfies the following Lipschitz
condition:

∥∥ψ
(
x,ϕ(x)

)
– ψ

(
x,ϕ(x)

)∥∥ ≤ L
∥∥ϕ(x) – ϕ(x)

∥∥,

with the Lipschitz constant L > . Moreover, one has the constraint conditions as

∥
∥∥
∥

∫ b

a
Ki(x, t)ψ

(
t,ϕ(t)

)
dt

∥
∥∥
∥ ≤ N‖ϕ‖,

∫ b

a

∫ b

a
K

i (x, t) dx dt = C
i < +∞,

where N and Ci are positive constants. When LCi < , the nonlinear integral equation ()
has a unique solution in L[a, b].

Proof Since g(x) ∈ L[a, b], we can easily get fi(x) ∈ L[a, b]. The kernel Ki(x, t) is a poly-
nomial function with respect to x and t, so Ki(x, t) ∈ L[a, b; a, b]. Assume that T is an
operator form L[a, b] to L[a, b], and Tϕ = fi – κ iϕ, where

κ iϕ(x) =
∫ b

a
Ki(x, t)ψ

(
t,ϕ(t)

)
dt.

By using

∥
∥∥∥

∫ b

a
Ki(x, t)ψ

(
t,ϕ(t)

)
dt

∥
∥∥∥ ≤ N‖ϕ‖,

it is seen that κ i is a bounded operator form L[a, b] to L[a, b]. ∀ϕ,ϕ ∈ L[a, b], we fur-
ther have

|κ iϕ – κ iϕ| =
∣∣∣
∣

∫ b

a
Ki(x, t)ψ

(
t,ϕ(t)

)
dt –

∫ b

a
Ki(x, t)ψ

(
t,ϕ(t)

)
dt

∣∣∣
∣

≤
∫ b

a

∣∣Ki(x, t)
∣∣ · ∣∣ψ(

t,ϕ(t)
)

– ψ
(
t,ϕ(t)

)∣∣dt

≤
(∫ b

a

∣∣Ki(x, t)
∣∣ dt

) 
 ∥∥ψ

(
t,ϕ(t)

)
– ψ

(
t,ϕ(t)

)∥∥

≤ L
(∫ b

a

∣
∣Ki(x, t)

∣
∣ dt

) 
 ∥
∥ϕ(t) – ϕ(t)

∥
∥.

Then it gives

‖κ iϕ – κ iϕ‖ ≤ L
(∫ b

a

∫ b

a

∣
∣Ki(x, t)

∣
∣ dt dx

) 
 ‖ϕ – ϕ‖ = LCi‖ϕ – ϕ‖
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and

‖Tϕ – Tϕ‖ = ‖κ iϕ – κ iϕ‖ ≤ LCi‖ϕ – ϕ‖.

When LCi < , T is a contraction operator. According to the fixed point theorem in Ba-
nach spaces, one can see that Tϕ = ϕ has a unique solution in L[a, b]. �

3 Approximation of the solution
In practical applications, of much interest is how to obtain the solutions except for the ex-
istence of the solutions. However, the closed-form solutions of the Hammerstein integral
equations in (), (), (), and () cannot be determined easily due to the complexity of
the kernels. Thus it is interesting to obtain numerical solutions of Hammerstein integral
equations and many methods have been proposed [, –]. Moreover, it is noted that a
simple Taylor-series expansion method has been proposed in [] and modified in [, ]
for numerically solving linear Fredholm integral equations of the second kind. Recently,
by using the idea of piecewise approximation, the simple Taylor-series expansion method
has been further modified in []. Here the proposed method in [] is further extended
and applied to solve the nonlinear integral equation of Hammerstein type. The conver-
gence and error estimate of the approximate solution will be made. Moreover, it is seen
from Theorems  and  that a solution in L[a, b] is only determined by using the given
conditions. Based on the proposed numerical method, the solution ϕ(x) should have more
smoothing property and here it is assumed ϕ(x) ∈ Cn+[a, b] (n ≥ ). Indeed, the case of
ϕ(x) ∈ Cn+[a, b] (n ≥ ) is important in practical applications. Two examples will be given
in Section  to verify the extended numerical method by comparing a difference format.

3.1 Constructing the approximate solution
Generally, we write the Hammerstein integral equation as

ϕ(x) +
∫ b

a
K(x, t)ψ

(
t,ϕ(t)

)
dt = f (x), x ∈ [a, b], ()

where K(x, t) and f (x) are known functions. It is convenient to define the integral operator
κ as

(κϕ)(x) =
∫ b

a
K(x, t)ψ

(
t,ϕ(t)

)
dt, x ∈ [a, b], ()

and it is compact from C(n+)[a, b] into C(n+)[a, b] for K(x, t) ∈ C(n+)[a, b; a, b].
Similar to those in [], we choose a series of quadrature points as a = x < x < · · · <

xm = b for m ≥ . The integral operator κ can be further expressed as the following sum:

(κϕ)(x) =
m–∑

q=

∫ xq+

xq

K(x, t)ψ
(
t,ϕ(t)

)
dt. ()

For the simplified case, the equidistant quadrature points are always chosen as

xq = a + qh, q = , , . . . , m, h =
b – a

m
. ()
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By letting t = xq + hs, equation () is reexpressed as

(κϕ)(x) = h
m–∑

q=

∫ 


K(x, xq + hs)ψ

(
xq + hs,ϕ(xq + hs)

)
ds. ()

Now it is assumed that ψ(xq + hs,ϕ(xq + hs)) can be expanded as the following Taylor
series:

ψ
(
xq + hs,ϕ(xq + hs)

)
= ψ

(
xq,ϕ(xq)

)
+ (hs) · dψ(y,ϕ(y))

dy

∣∣
∣∣
y=xq

+ · · ·

+
(hs)n

n!
· dnψ(y,ϕ(y))

dyn

∣∣
∣∣
y=xq

+ Rn(θq, h, s), ()

where Rn(θq, h, s) denotes the Lagrange remainder,

Rn(θq, h, s) =
(hs)n+

(n + )!
· dn+ψ(y,ϕ(y))

dyn+

∣∣
∣∣
y=θq

, xq ≤ θq ≤ xq + hs. ()

By eliminating the Lagrange remainder, the operator (κϕ)(x) can be approximated by using

(κnϕ)(x) = h
m–∑

q=

n∑

j=

hj

j!
· djψ(y,ϕ(y))

dyj

∣
∣∣
∣
y=xq

∫ 


K(x, xq + hs) · sj ds. ()

Moreover, we suppose that

(κϕ)(i)(x) = h
m–∑

q=

∫ 


K (i)

x (x, xq + hs)ψ
(
xq + hs,ϕ(xq + hs)

)
ds, ()

where the superscript (i) denotes the ith-order differentiation with respect to x and
(κϕ)()(x) = (κϕ)(x). Making use of (), (κϕ)(i)(x) can be approximated by

(κnϕ)(i)(x) = h
m–∑

q=

n∑

j=

hj

j!
· djψ(y,ϕ(y))

dyj

∣
∣∣
∣
y=xq

∫ 


K (i)

x (x, xq + hs) · sj ds. ()

Now we further have the following theorem.

Theorem  Assume that one has the following conditions:

∥∥K (i)
x (x, t)

∥∥∞ = max
a≤x,t≤b

∣∣K (i)
x (x, t)

∣∣ = Mi < +∞,
∥∥
∥∥

dn+ψ(y,ϕ(y))
dyn+

∥∥
∥∥∞

= max
a≤y≤b

∣∣
∣∣
dn+ψ(y,ϕ(y))

dyn+

∣∣
∣∣ = N < +∞,

where i = , , , . . . , n. The sequence (κnϕ)(i)(x) is convergent, namely

(κnϕ)(i)(x) → (κϕ)(i)(x) =
∫ b

a
K (i)

x (x, t)ψ
(
t,ϕ(t)

)
dt, n → +∞. ()
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Proof Applying equations () and (), we get

∥
∥(κnϕ)(i)(x) – (κϕ)(i)(x)

∥
∥∞

=

∥∥
∥∥
∥

h
m–∑

q=

∫ 


K (i)

x (x, xq + hs) · (hs)n+

(n + )!
· dn+ψ(y,ϕ(y))

dyn+

∣∣
∣∣
y=θq

ds

∥∥
∥∥
∥∞

≤ hmMiN

∫ 



(hs)n+

(n + )!
ds =

MiN(b – a)
(n + )!

hn+. ()

From () it follows that ‖(κnϕ)(i)(x) – (κϕ)(i)(x)‖∞ →  with n → +∞ and the proof is
completed. �

In the end, let us give the approximate solution of Hammerstein integral equations. From
equations () and (), the discretization format of the derivatives of the Hammerstein
integral equation () can be expressed as

ϕ
(i)
l + h

m–∑

q=

n∑

j=

hj

j!
· djψ

dyj

∣
∣∣∣
(xq ,ϕ(j)

q )

∫ 


K (i)

x (xl, xq + hs) · sj ds = f (i)(xl), ()

with i = , , . . . , n and l = , , . . . , (m – ). Hereafter djψ
dyj |(xq ,ϕ(j)

q ) means that the variable y

equals xq and the exact value ϕ(j)(xq) is replaced by the approximate one ϕ
(j)
q . Once the

solution of the nonlinear system () is given, the approximate solution of ϕ(x) can be
further constructed as

ϕm,n(x) = f (x) – h
m–∑

q=

n∑

j=

hj

j!
· djψ

dyj

∣
∣∣
∣
(xq ,ϕ(j)

q )

∫ 


K(x, xq + hs) · sj ds, ()

where a ≤ x ≤ b.
As shown in [], one can see from equation () that the approximate solution has

two parameters. The proposed method is based on the discretization points xq (q =
, , . . . , m – ), which is different from the simple Taylor-series expansion method in [–
]. The effectiveness and advantage of the new method will be shown in the given nu-
merical examples of Section . Furthermore, in order to give the approximate solution in
(), the convergence of the nonlinear system () is requisite. Under some conditions,
the nonlinear system () is convergent and it will be proved in the next subsection about
the error estimate of the approximate solution.

On the other hand, it should be pointed out that when the proposed method is applied
to solve the Hammerstein integral equations in (), (), (), and (), the derivatives
K (i)

x (x, t) (i = , , . . . , n) for x = t in () must be dealt with again. The reason is based on the
fact that the derivatives ∂ iKj(x, t)/∂xi (i = , , . . . , n; j = , , , ) for x = t are not existing.
As shown in [], for the practical computations, it is reasonable to adopt the following
method:

∫ b

a
K (i)

x (x, t)ψ
(
t,ϕ(t)

)
dt =

∫ x

a
K (i)

x (x, t)
∣
∣
x>tψ

(
t,ϕ(t)

)
dt

+
∫ b

x
K (i)

x (x, t)
∣
∣
x<tψ

(
t,ϕ(t)

)
dt. ()
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In addition, we can rewrite equation () as

ϕ(x) +
∫ b

a
Ki(x, t)

[
ψ

(
t,ϕ(t)

)
– g(t)

]
dt = ρi(x), ()

where ρi(x) (i = , , , ) are the linear functions with respect to x. For generic nonlinear
functions ψ(t,ϕ(t)) and g(t), the proposed numerical methods can be used similarly for
equation ().

3.2 Convergence and error estimate
From the viewpoint of mathematical theory and practical applications, the convergence
and error estimate of the approximate solution are all important. For the approximation
method, we have the following theorem.

Theorem  It is assumed that djψ(y,ϕ(y))/dyj satisfies the Lipschitz conditions as follows:

∥
∥∥
∥

djψ(y,ϕ(y))
dyj –

djψ(y,ϕ(y))
dyj

∥
∥∥
∥∞

≤
j∑

ν=

Lν

∥∥ϕ
(ν)
 (y) – ϕ

(ν)
 (y)

∥∥∞

with the Lipschitz constants Lν >  and j = , , . . . , n. One further has the following condi-
tions:

∥∥K (i)
x (x, t)

∥∥∞ = max
a≤x,t≤b

∣∣K (i)
x (x, t)

∣∣ = Mi <


L̄(b – a)eh
< +∞,

∥
∥∥
∥

dn+ψ(y,ϕ(y))
dyn+

∥
∥∥
∥∞

= max
a≤y≤b

∣
∣∣
∣
dn+ψ(y,ϕ(y))

dyn+

∣
∣∣
∣ = N < +∞,

where L̄ = maxν=,,...,j Lv and i = , , , . . . , n. The approximate solution ϕm,n(x) in () is
convergent to the exact solution ϕ(x). That is, we get

lim
n→+∞

∥
∥ϕm,n(x) – ϕ(x)

∥
∥∞ = 

and

lim
h→

∥
∥ϕm,n(x) – ϕ(x)

∥
∥∞ = .

Moreover, the following error estimate can be obtained:

∥∥ϕm,n(x) – ϕ(x)
∥∥∞ ≤ MN(b – a)hn+

[ – M̄L̄(b – a)eh](n + )!
,

where M̄ = maxi=,,...,n Mi.

Proof Equation () can be further rewritten as

Φ̃ + W (Φ̃) = F , ()

where

Φ̃ =
[
ϕ

(j)
l

]
m(n+)× =

[
ϕ

()
 ,ϕ()

 , . . . ,ϕ(n)
m–

]T ,
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W (Φ̃) =
[
w̃(i)

l (Φ̃)
]

m(n+)×,

F =
[
f (i)(xl)

]
m(n+)× =

[
f ()(x), f ()(x), . . . , f (n)(xm–)

]T ,

with

w̃(i)
l (Φ̃) = h

m–∑

q=

n∑

j=

hj

j!
· djψ

dyj

∣∣
∣∣
(xq ,ϕ(j)

q )

∫ 


K (i)

x (xl, xq + hs) · sj ds

for i = , , . . . , n and l = , , . . . , (m – ).
On the other hand, application of equations () and () leads to

Φ +
[
W (Φ) + R

]
= F , ()

where

Φ =
[
ϕ(j)(xq)

]
m(n+)× =

[
ϕ()(x),ϕ()(x), . . . ,ϕ(n)(xm–)

]T ,

W (Φ) =
[
w(i)

l (Φ)
]

m(n+)×,

R = [rs]m(n+)×,

with

w(i)
l (Φ) = h

m–∑

q=

n∑

j=

hj

j!
· djψ(y,ϕ(y))

dyj

∣
∣∣
∣
y=xq

∫ 


K (i)

x (xl, xq + hs) · sj ds,

|r| ≤ h
m–∑

q=

∫ 



∣∣K(x, xq + hs)Rn(θq, h, s)
∣∣ds,

|r| ≤ h
m–∑

q=

∫ 



∣
∣K(x, xq + hs)Rn(θq, h, s)

∣
∣ds,

. . . ,

|rm(n+)–| ≤ h
m–∑

q=

∫ 



∣
∣K (n)

x (xm–, xq + hs)Rn(θq, h, s)
∣
∣ds.

Then it is further found that
∥∥W (Φ) – W (Φ̃)

∥∥∞

≤ hMi

m–∑

q=

n∑

j=

hj

j!
·
∫ 


sj ds ·

∥
∥∥∥

djψ(y,ϕ(y))
dyj

∣
∣∣∣
y=xq

–
djψ

dyj

∣
∣∣∣
(xq ,ϕ(j)

q )

∥
∥∥∥∞

≤ hM̄
m–∑

q=

n∑

j=

hj

(j + )!
·

j∑

ν=

Lν

∥∥ϕ(ν)(xq) – ϕ(ν)
q

∥∥∞

≤ hM̄L̄
m–∑

q=

+∞∑

j=

hj

j!
· ‖Φ – Φ̃‖∞ ≤ M̄L̄(b – a)eh · ‖Φ – Φ̃‖∞, ()

where M̄ = maxi=,,...,n Mi and L̄ = maxν=,,...,j Lv.
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Now let us assume that

 < M̄ <


L̄(b – a)eh
. ()

Based on () and (), it follows that

‖Φ – Φ̃‖∞ ≤ ∥∥W (Φ) – W (Φ̃)
∥∥∞ + ‖R‖∞

≤ M̄L̄(b – a)eh · ‖Φ – Φ̃‖∞ + ‖R‖∞. ()

Furthermore, one has

‖Φ – Φ̃‖∞ ≤ 
 – M̄L̄(b – a)eh

‖R‖∞

=


 – M̄L̄(b – a)eh
· max

≤s≤m(n+)
|rs|

≤ 
 – M̄L̄(b – a)eh

· hM̄N

m–∑

q=

∫ 



(hs)(n+)

(n + )!
ds

≤ M̄N(b – a)hn+

[ – M̄L̄(b – a)eh](n + )!
. ()

One can see from () that the nonlinear system () is convergent with n → +∞ and
h → , respectively.

In the following, we define a sequence of numerical integration operators κ̄n such as

(κ̄nϕ)(x) = h
m–∑

q=

n∑

j=

hj

j!
· djψ

dyj

∣
∣∣∣
(xq ,ϕ(j)

q )

∫ 


K(x, xq + hs) · sj ds. ()

From Theorem , it is seen that

∥
∥ϕ(x) – ϕm,n(x)

∥
∥∞

=
∥
∥(κϕ)(x) – (κ̄nϕ)(x)

∥
∥∞

=
∥∥(κϕ)(x) – (κnϕ)(x) + (κnϕ)(x) – (κ̄nϕ)(x)

∥∥∞

≤ ∥
∥(κϕ)(x) – (κnϕ)(x)

∥
∥∞ +

∥
∥(κnϕ)(x) – (κ̄nϕ)(x)

∥
∥∞

≤ MN(b – a)
(n + )!

hn+ + hM

m–∑

q=

n∑

j=

hj

(j + )!

∥∥
∥∥

djψ

dyj

∣∣
∣∣
y=xq

–
djψ

dyj

∣∣
∣∣
(xq ,ϕ(j)

q )

∥∥
∥∥∞

≤ MN(b – a)
(n + )!

hn+ + hM

m–∑

q=

n∑

j=

hj

(j + )!
·

j∑

ν=

Lν

∥
∥ϕ(ν)(xq) – ϕ(ν)

q
∥
∥∞

≤ MN(b – a)
(n + )!

hn+ + ML̄(b – a)eh · ‖Φ – Φ̃‖∞

≤ MN(b – a)hn+

[ – M̄L̄(b – a)eh](n + )!
. ()
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It is found from () that when n → +∞ or m → +∞ (i.e. h → ), one always has ‖ϕ(x)–
ϕm,n(x)‖∞ → . This completes the proof. �

As shown in Theorem , one can choose a pair of feasible values for m (i.e. h) and n to
obtain a good approximation of the exact solution. The above observations will be further
verified by using the numerical examples in the next section.

4 Numerical results
In order to show the effectiveness of the proposed methods, we give two numerical ex-
amples corresponding to cases I and IV, respectively. The existence and uniqueness of the
solution will be considered, and the approximate solution will be calculated numerically.
All the computations are made by using the programming language of MATLAB (R).

Example  Assume that a second-order three-point boundary value problem is given as
{

ϕ′′(x) + e–xϕ(x) = (x + x + )ex, x ∈ [, ],
ϕ() = , ϕ() + ϕ(/) = e + e/,

()

where x ∈ [, ], ϕ(x) ∈ C∞[, ] and |ϕ(x)| < . The exact solution is ϕ(x) = xex.
According to Theorem , the nonlinear ordinary differential equation with three-point

boundary value conditions in () can be transformed into the following Hammerstein
integral equation:

ϕ(x) +
∫ 


K(x, t)e–tϕ(t) dt = f(x), ()

where

K(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t(x–)
 ,  ≤ t ≤ min{ 

 , x} ≤ ,
x(t–)

 ,  ≤ max{ 
 , x} < t ≤ ,

x+tx–t
 , 

 ≤ t ≤ x ≤ ,
x(t–)

 ,  ≤ x < t < 
 ,

f(x) =
(
x – x + 

)
ex +




(
 – e – e



)
x – .

We first prove the uniqueness of the solution and choose the Lipschitz constant as

L =
∥∥
∥∥
∂ψ(x,ϕ(x))

∂ϕ(x)

∥∥
∥∥ =

∥
∥e–xϕ(x)

∥
∥ < .

Then one obtains

∫ 



∫ 



∣∣K(x, t)
∣∣ dx dt =

(∫ 




∫ 

t
+

∫ 




∫ 

t
+

∫ 




∫ t


+

∫ 




∫ t



)∣∣K(x, t)
∣∣ dx dt

=
∫ 





∫ 

t

t(x – )


dx dt +

∫ 




∫ t



x(t – )


dx dt

+
∫ 




∫ 

t

(x + tx – t)


dx dt +

∫ 




∫ t



x(t – )


dx dt

= . = C
 .
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Figure 1 The exact solution ϕ(x) and the approximate one ϕm,n(x) with (m, n) = (1, 0).

Table 1 The absolute errors of the approximate and exact solutions for Example 1

x ϕm,n(x): The present method ϕh(x): The difference method

(2, 2) (2, 4) (4, 2) (4, 4) h = 0.1 h = 0.05

0.10 1.8921e–3 1.3455e–4 4.0629e–4 8.1435e–6 1.7128e–4 4.2829e–5
0.20 3.7502e–3 2.6842e–4 7.8165e–4 1.5896e–5 3.0443e–4 7.6114e–5
0.30 5.4142e–3 3.9569e–4 1.0209e–3 2.0120e–5 3.9356e–4 9.8358e–5
0.40 6.4733e–3 4.8748e–4 1.2069e–3 2.3084e–5 4.3201e–4 1.0798e–4
0.50 6.1339e–3 4.5086e–4 1.2227e–3 2.3171e–5 4.1224e–4 1.0301e–4
0.60 4.6732e–3 2.8768e–4 1.0183e–3 1.7900e–5 3.2672e–4 8.1720e–5
0.70 3.0518e–3 1.2016e–4 6.9688e–4 1.1472e–5 1.6693e–4 4.1672e–5
0.80 7.6299e–4 6.2865e–5 9.8850e–4 3.8926e–6 7.3872e–5 1.8509e–5
0.90 3.5063e–3 3.2838e–4 2.0438e–3 2.2064e–5 4.0280e–4 1.0080e–4
1.00 1.2268e–2 9.0172e–4 3.5652e–3 4.6343e–5 8.2447e–4 2.0603e–4

Since LC < 
√

. = . < , the nonlinear three-point boundary value prob-
lem has a unique solution according to Theorem .

Now the proposed numerical method is applied to solve the obtained Hammerstein in-
tegral equation (). It is seen that because f(x) in () is explicit, the reformulation of
the problem in () is unnecessary and the proposed numerical method is carried out di-
rectly. Similar to those in [], it is convenient to write the parameters m and n in vector
style (m, n). Figure  shows the exact solution and the approximate one with (m, n) = (, ).
It is seen that the approximate solution is approached to the exact one. Moreover, the
cases of (m, n) = (, ), (m, n) = (, ), (m, n) = (, ), and (m, n) = (, ) are chosen to com-
pute, respectively. The absolute errors between the approximate and exact solutions are
listed in Table . One can see from Table  that we have given a good approximation of
the exact solution and the proposed numerical method is effective. On the other hand,
the central difference format is used to compute the nonlinear boundary value problem
and the obtained results are given in Table  for comparisons. A system of nonlinear alge-
braic equations is constructed and it is solved by using the Broyden iterative method [].
The initial vectors are x = [, , . . . , ]T

× and x = [, , . . . , ]T
× for the step h = . and

h = ., respectively. The results are obtained by iterating five times. The comparisons
reveal that the proposed method is effective.
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Example  Consider a second-order three-point boundary value problem as follows:

{
ϕ′′(x) + sin x · eϕ(x) = ex

sin x + , x ∈ [, ],
ϕ() – ϕ′(/) = –, ϕ() = .

()

where x ∈ [, ], ϕ(x) ∈ C∞[, ] and |ϕ(x)| ≤ . The exact solution is ϕ(x) = x.
Making use of Theorem , the boundary value problem () can be transformed into

the following Hammerstein integral equation:

ϕ(x) +
∫ 


K(x, t) sin t · eϕ(t) dt = f(x), ()

where

K(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t(x–)
 ,  ≤ t ≤ min{ 

 , x} ≤ ,
(x+)(t–)

 ,  ≤ max{ 
 , x} < t ≤ ,

(x–)(t+)
 , 

 ≤ t ≤ x ≤ ,
(xt–x+t)

 ,  ≤ x < t < 
 ,

f(x) =
∫ 


K(x, t)

(
et

sin t + 
)

dt + x.

If we choose the Lipschitz constant as

L =
∥∥
∥∥
∂ψ(x,ϕ(x))

∂ϕ(x)

∥∥
∥∥ =

∥
∥sin x · eϕ(x)∥∥ ≤ e,

it follows that

∫ 



∫ 



∣∣K(x, t)
∣∣ dx dt =

(∫ 




∫ 

t
+

∫ 




∫ 

t
+

∫ 




∫ t


+

∫ 




∫ t



)∣∣K(x, t)
∣∣ dx dt

=
∫ 





∫ 

t

t(x – )


dx dt +

∫ 




∫ t



(x + )(t – )


dx dt

+
∫ 




∫ 

t

(x – )(t + )


dx dt +

∫ 




∫ t



(xt – x + t)


dx dt

= . = C
.

Under the consideration of LC ≤ e
√

. = . < , one can see that the three-
point boundary value problem has a unique solution by using Theorem .

For numerical computations, as shown in (), equation () should be rewritten as

ϕ(x) +
∫ 


K(x, t)

[
sin t · eϕ(t) – et

sin t – 
]

dt = x. ()

In addition, the exact solution and the approximate one for (m, n) = (, ) are depicted
in Figure . The absolute errors of the exact and approximate solutions by using (m, n) =
(, ), (m, n) = (, ), (m, n) = (, ), and (m, n) = (, ), and the central difference format
are shown in Table . It is found from Figure  and Table  that a good approximation
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Figure 2 The exact solution ϕ(x) and the approximate one ϕm,n(x) with (m, n) = (1, 0).

Table 2 The absolute errors of the approximate and exact solutions for Example 2

x ϕm,n(x): The present method ϕh(x): The difference method

(2, 1) (2, 2) (4, 1) (4, 2) h = 0.1 h = 0.05

0.00 1.8390e–3 9.9247e–4 1.0502e–3 1.6925e–4 4.9821e–2 2.5019e–2
0.10 3.7770e–3 1.2501e–3 1.5834e–3 2.2288e–4 4.5369e–2 2.2780e–2
0.20 5.6959e–3 1.5063e–3 2.0998e–3 2.7613e–4 4.0870e–2 2.0517e–2
0.30 7.5115e–3 1.7571e–3 2.5446e–3 3.2734e–4 3.6285e–2 1.8212e–2
0.40 9.0093e–3 1.9876e–3 2.9475e–3 3.7623e–4 3.1581e–2 1.5848e–2
0.50 9.7699e–3 2.1512e–3 3.2074e–3 4.1161e–4 2.6730e–2 1.3411e–2
0.60 9.9119e–3 2.2428e–3 3.2926e–3 4.2675e–4 2.1712e–2 1.0891e–2
0.70 9.8280e–3 2.3012e–3 3.2046e–3 4.2358e–4 1.6516e–2 8.2834e–3
0.80 9.0100e–3 2.2273e–3 2.5986e–3 3.3970e–4 1.1146e–2 5.5885e–3
0.90 6.3775e–3 1.7078e–3 1.7315e–3 2.2813e–4 5.6224e–3 2.8184e–3

solution is determined. When m or n is increasing, the absolute error |ϕ(x) – ϕm,n(x)| is
decreasing. The observation is in accordance with the theoretical analysis in Theorem 
and that in [].

5 Conclusions
Four cases of nonlinear second-order three-point boundary value problems have been in-
vestigated and they are transformed into the Hammerstein integral equations by using the
integration method. Based on the Schauder fixed point theorem, the sufficient conditions
for the existence of the solutions have been given. The uniqueness of the solutions has been
considered by using the Banach fixed point theorem. Furthermore, we have constructed
the approximate solution of Hammerstein integral equations by applying a novel numer-
ical method, which depends on the values of two parameters. The convergence and error
estimate of the approximate solution have been made, and they show that one can get a
good approximation of the exact solution by choosing a pair of the parameters. Two ex-
amples have been carried out numerically and the obtained results have revealed that the
proposed methods are effective. In the future, the proposed method will be extended to
solve nonlinear second-order differential equations with various nonlocal boundary value
conditions.
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