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Abstract
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1 Introduction
In this paper, we are concerned with the following nonlinear viscoelastic Kirchhoff plate
equation with a time delay term in the internal feedback:

utt(x, t) + �u(x, t) – div F
(∇u(x, t)

)
– σ (t)

∫ t


g(t – s)�u(s) ds + μ|ut|m–ut(x, t)

+ μ
∣∣ut(x, t – τ )

∣∣m–ut(x, t – τ ) = , (.)

where � ⊆ R
n (n ≥ ) is a bounded domain with smooth boundary ∂�. The function

u = u(x, t) is the transverse displacement of a plate filament, and σ (t) and g(t) are positive
functions defined on R

+. μ, μ are positive constants and τ >  represents the time delay.
To equation (.), we add the following initial conditions:

{
u(x, ) = u(x), ut(x, ) = u(x), x ∈ �,
ut(x, t – τ ) = f(x, t – τ ), x ∈ �, t ∈ (, τ ),

(.)

and the support boundary conditions

u = �u =  on ∂� ×R
+. (.)

In , Woinowsky-Krieger [] introduced the one-dimensional nonlinear equation of
vibration of beams

utt + αuxxxx –
(

β + γ

∫ L


|ux| dx

)
uxx = ,
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where L is the length of the beam and α,β ,γ are positive physical constants. Since then
many mathematicians studied the related model in one dimension and higher dimensions.
The main results are mainly concerned with global existence, stability, and long-time dy-
namics, and many results may be found in the literature. It has been stabilized by means of
different controls, for example, internal damping, boundary controls, dynamic boundary
conditions, distributed damping and heat damping, and so on. See, for example, Brito [],
Cavalcanti et al. [–], Jorge Silva and Ma [], Ma [], Ma and Narciso [], Oliveira and
Lima [], Park [], Patcheu [], Munõz Rivera [, ], Yang [, ], and the references
therein. We would like here to mention the work of Andrade et al. []. In this paper the
authors studied a viscoelastic plate equation with p-Laplacian and memory terms with
strong damping,

utt + �u – �pu +
∫ t


g(t – s)�u(s) ds – �ut + f (u) = , (.)

and proved the existence of weak solutions by using Faedo-Galerkin approximations to the
IBVP of (.). In addition, they obtained the uniqueness of strong solutions and the expo-
nential stability of solutions to (.) under some suitable conditions on the memory kernel
g and a forcing term f . For σ (t) > , Messaoudi [] considered the following viscoelastic
wave equation:

utt – �u + σ (t)
∫ t


g(t – τ )�u(τ ) dτ = .

Under some assumptions on the relaxation function g and the potential σ , the author
established a general decay property which depends on the behavior of σ and g . Jorge
Silva et al. [] studied the following viscoelastic Kirchhoff plate equation:

utt – σ (t)�utt + �u – div F(∇u) –
∫ t


g(t – s)�u(s) ds = ,

and they mainly proved the global well-posedness of the solution for σ (t) =  and similarly
the result holds for σ (t) = . Moreover, the authors established the general rates of energy
decay of the system for σ ∈ [,∞). For more results on viscoelastic equations, we can refer
to Berrimi and Messaoudi [], Messaoudi [], Messaoudi and Tartar [, ], Tatar [],
and the references therein.

In recent years, there has been published much work concerning the wave equation with
time delay effects and the delay effects often appear in many practical problems. In Nicaise
and Pignotti [], the authors studied a wave equation with time delay,

utt – �u + μut + μut(t – τ ) = ,

and established stability results under the assumption  < μ < μ. In [], Kirane and
Said-Houari studied a viscoelastic wave equation with a delay term in internal feedbacks,
and they proved the global well-posedness of the IBVP to the equation by using some
suitable assumptions on the relaxation function and some restriction on the parameters μ

and μ. Furthermore, under the assumption μ ≤ μ, they obtained a general decay result
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of the total energy to the system. Dai and Yang [] improved the results in [] under
weaker conditions. For the plate equation with time delay term, Park [] considered

utt + �u – M
(‖∇u‖)�u + σ (t)

∫ t


g(t – s)�u(s) ds + aut + aut(t – τ ) = ,

which can be regarded as an extensive weak viscoelastic plate equation with a linear time
delay term. The author obtained a general decay result of energy by using suitable energy
and Lyapunov functionals. In [], one of the present authors investigated an extensible
plate equation with a weak viscoelastic term and a time delay term in the internal feedback,

utt + �u – M
(‖∇u‖)�u –

∫ t


g(t – s)�u(s) ds + μut + μut(t – τ ) = ,

and established the global well-posedness of the initial and boundary value problem by
using the Faedo-Galerkin approximations and some energy estimates. Moreover, the au-
thor proved a general rate result of energy decay when the weight of the delay is less than
the weight of the damping. Recently, Yang [] studied a viscoelastic plate equation with
a linear time delay term

utt + �u –
∫ t


g(t – s)�u(s) ds + μut + μut(t – τ ) = .

The author obtained the global well-posedness of the IBVP to the equation and established
the decay property of energy for either  < |μ| < μ or μ = ,  < |μ| < a, and ζ > ζ,
but one needs more assumptions on the kernel g . For more some results concerning the
different boundary conditions under an appropriate assumption between μ and μ, one
can refer to Datko et al. [], Kafini et al. [], Nicaise and Pignotti [], Nicaise et al. [],
Nicaise and Valein [], and the references therein.

Equation (.) is a Kirchhoff plate equation with a memory term and a nonlinear time
delay term in the internal feedback. To the best of our knowledge, the general rate of energy
decay for system (.)-(.) were not previously considered. So the main objective of the
present work is to establish the stability of initial boundary value problem (.)-(.).

The outline of this paper is as follows. In Section , we give some preparations for our
consideration and our main results. In Section , we establish the general decay result of
the energy by using energy perturbation method.

2 Assumptions and main results
We first introduce the following Hilbert spaces:

V = L(�), V = H
(�), V = H(�) ∩ H

(�),

with norms

‖u‖V = ‖u‖, ‖u‖V = ‖∇u‖ and ‖u‖V = ‖�u‖,

respectively. The notation ‖ · ‖p denotes the Lp-norm, and (·, ·) is the L-inner product.
In particular, we write ‖ · ‖ instead of ‖ · ‖ when p = . The constants λ,λ,λ,λ > 
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represent the embedding constants

λ‖u‖ ≤ ‖∇u‖, λ‖u‖ ≤ ‖�u‖, λ‖∇u‖ ≤ ‖�u‖, λ =

λ

+

λ

,

for u ∈ V.
For the relaxation function g and the potential σ , we assume
(A) g,σ : R+ →R

+ are nonincreasing differentiable functions satisfying

g() > , l =
∫ ∞


g(s) ds > ∞, σ (t) > ,

 – σ (t)
∫ t


g(s) ds ≥ l > , for t ≥ ,

(.)

with l =  – l, and there exists a nonincreasing differentiable function ζ : R+ → R
+ satis-

fying

ζ (t) > , g ′(t) ≤ –ζ (t)g(t) for t ≥ , lim
t→∞

–σ ′(t)
ζ (t)σ (t)

= . (.)

(A) The constant m satisfies

m ≥  if n = , ,  ≤ m ≤ n + 
n – 

if n ≥ . (.)

(A) The function F : Rn →R
n is a C-vector field given by F = (F, . . . , Fn) satisfying for

every j = , , . . . , n,

∣
∣∇Fj(u)

∣
∣ ≤ kj

(
 + |u|

pj–


)
, ∀u ∈R

n, (.)

where kj are positive constants and the constants pj satisfy

pj ≥  if n = , ,  ≤ pj ≤ n + 
n – 

if n ≥ . (.)

Moreover, the function F is a conservative vector field with F = ∇f , where f : Rn →R is a
real valued function satisfying

 ≤ f (u) ≤ F(u)u + αl|u|, ∀u ∈R
n, (.)

where α ∈ [,μ) with μ = λ
–σ (t)

∫ t
 g(s) ds

l .
The vector field F satisfying a condition like (.) possesses an interesting property. One

can find the detailed proof in [].

Remark . Let F : Rn → R
n is a C-vector field given by F = (F, . . . , Fn). If there exist

positive constants k, . . . , kn and q, . . . , qn such that, for every j = , . . . , n,

∣∣∇Fj(u)
∣∣ ≤ kj

(
 + |u|qj

)
, ∀u ∈R

n.
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Then there exists a positive constant K = K(kj, qj, n), j = , . . . , n, such that, for all x, y ∈R
n,

∣∣F(x) – F(y)
∣∣ ≤ K

n∑

j=

(
 + |x|qj + |y|qj

)|x – y|.

In particular, we have

∣
∣F(x)

∣
∣ ≤ ∣

∣F()
∣
∣ + K

n∑

j=

(
 + |x|qj

)|x|, ∀x ∈R
n. (.)

Now we give some estimates related to the convolution operator. By direct calculations,
we shall see below that

σ (t)(g ∗ u, ut)

= –
σ (t)


g(t)

∥∥u(t)
∥∥ –

d
dt

[
σ (t)


(g ◦ u)(t) –

σ (t)


(∫ t


g(s) ds

)∥∥u(t)
∥∥

]

+
σ (t)


(
g ′ ◦ u

)
(t) +

σ ′(t)


(g ◦ u)(t) –
σ ′(t)



∫ t


g(s) ds

∥
∥u(t)

∥
∥, (.)

(g ∗ u, u) ≤ 
(∫ t


g(s) ds

)∥∥u(t)
∥∥ +




(g ◦ u)(t), (.)

where

(g ∗ u)(t) =
∫ t


g(t – s)u(s) ds, (g ◦ u)(t) =

∫ t


g(t – s)

∥∥u(t) – u(s)
∥∥ ds.

Motivated by [, ], we introduce the following new dependent variable to deal with
the delay feedback term:

z(x,ρ, t) = ut(x, t – τρ), x ∈ �,ρ ∈ (, ), t > , (.)

which gives us

τzt(x,ρ, t) + zρ(x,ρ, t) = , in � × (, ) × (,∞). (.)

Thus, problem (.)-(.) is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

utt + �u – div F(∇u) – σ (t)
∫ t

 g(t – s)�u(s) ds

+ μ|ut|m–ut + μ|z(x, , t)|m–z(x, , t) = ,

τzt(x,ρ, t) + zρ(x,ρ, t) = ,

(.)

where x ∈ �,ρ ∈ (, ) and t > , and the initial and boundary conditions are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x, ) = u, ut(x, ) = u, x ∈ �

z(x,ρ, ) = f(x, –ρτ ), (x, t) ∈ � × (, τ ),
u = �u = , on ∂� ×R

+,
z(x, , t) = ut(x, t), x ∈ �, t > .

(.)
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Let ξ be a positive constant satisfying

τ
μm
m + 

< ξ < τ
(m + )μ – μ

m + 
. (.)

Now we define the weak solutions of (.)-(.): for given initial data (u, u) ∈ V × V,
we say that a function U = (u, ut) ∈ C(R+, V × V) is a weak solution to the problem (.)-
(.) if U() = (u, u) and

(utt ,ω) + (�u,�ω) +
(
F(∇u),∇ω

)
– σ (t)

∫ t


g(t – s)

(
�u(s),�ω

)
ds

+ μ
(|ut|m–ut ,ω

)
+ μ

(∣∣ut(t – τ )
∣
∣m–ut(t – τ ),ω

)
= ,

for all ω ∈ V.
The following theorem is concerned with the global well-posedness of problem (.)-

(.). By using the classical Faedo-Galerkin method, see, e.g., [, , , ], we can prove
the theorem, and we omit the proof here.

Theorem . Let μ ≤ mμ, and assume the assumptions (.)-(.) hold. If the initial
data (u, u) ∈ (V × V), f ∈ L(� × (, )), then problem (.)-(.) has a unique weak
solution (u, ut) ∈ C(, T ; V × V) such that, for any T > ,

u ∈ L∞(, T ; V), ut ∈ L∞(, T ; V).

We introduce the modified energy functional to problem (.)-(.) by

E(t) =


∥∥ut(t)

∥∥ +



[
 – σ (t)

(∫ t


g(s) ds

)]∥∥�u(t)
∥∥ +



σ (t)(g ◦ �u)

+
ξ



∫

�

∫ 


|z|m+(x,ρ, t) dρ dx +

∫

�

f
(∇u(t)

)
dx. (.)

Our main result is the general decay rate of the energy, which is given by the following
theorem.

Theorem . Let μ < mμ, and assume the assumptions (.)-(.) hold. Let (u, ut) be
the weak solutions of problem (.)-(.) with the initial data (u, u) ∈ (V × V), f ∈
L(� × (, )). Then there exist two constants β >  and γ >  such that the energy E(t)
defined by (.) satisfies

E(t) ≤ β exp

(
–γ

∫ t


ζ (s)σ (s) ds

)
, for all t ≥ . (.)

Remark . Generally speaking, the energy of problem (.)-(.) is usually defined by

F(t) =


‖ut‖ +



‖�u‖ +

ξ



∫

�

∫ 


|z|m+ dρ dx +

∫

�

f (∇u) dx.

From Theorem ., we can also get the decay

F(t) ≤ β ′ exp

(
–γ

∫ t


ζ (s)σ (s) ds

)
. (.)
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Indeed, by (.) and (.), we have

E(t) = F(t) –


σ (t)

∫ t


g(s) ds‖�u‖ +



σ (t)(g ◦ �u)

≥  + l


F(t),

which, together with (.), implies (.) with β ′ = β

l+ .

3 General decay rate
In this section, we shall establish the general decay property of the solution for problem
(.)-(.) in the case μ < mμ. For this purpose we define

L(t) := E(t) + εσ (t)�(t) + εσ (t)�(t), (.)

where ε and ε are positive constants and

�(t) =
∫

�

utu dx, (.)

�(t) = –
∫

�

ut

∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx. (.)

To prove Theorem ., we need the following technical lemmas.

Lemma . Under the assumptions in Theorem ., the modified energy functional defined
by (.) satisfies there exist two positive constants c and c such that, for any t ≥ ,

E′(t) ≤ –c‖ut‖m+
m+ – c

∥
∥z(x, , t)

∥
∥m+

m+ +
σ (t)


(
g ′ ◦ �u

)

–
σ ′(t)



∫ t


g(s) ds‖�u‖. (.)

Proof First the direct calculation yields

∫

�

F(∇u) · ∇u dx =
∫

�

∇f (∇u) · ∇u dx =
d
dt

∫

�

f (∇u) dx. (.)

Multiplying the first equation in (.) by ut , integrating the result over �, and using in-
tegration by parts, (.) and (.), we can obtain

d
dt

[


‖ut‖ +



‖�u‖ +

σ (t)


(g ◦ �) –
σ (t)



(∫ t


g(s) ds

)
‖�u‖ +

∫

�

f (∇u) dx
]

+ μ‖ut‖m+
m+ + μ

∫

�

∣∣z(x, , t)
∣∣m–z(x, , t)ut dx +

σ (t)


g(t)‖�u‖

–
σ (t)


(
g ′ ◦ �u

)
–

σ ′(t)


(g ◦ �u) +
σ ′(t)



∫ t


g(s) ds‖�u‖ = . (.)
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Multiplying the second equation in (.) by ξz and integrating the result over � × (, ),
we have

ξ
d
dt

∫

�

∫ 



∣
∣z(x,ρ, t)

∣
∣m–z(x,ρ, t) dρ dx

= –
ξ

τ (m + )

∫

�

∫ 



∂

∂ρ

∣∣z(x,ρ, t)
∣∣m+ dρ dx

= –
ξ

τ (m + )

∫

�

(∣∣z(x, , t)
∣∣m+ –

∣∣z(x, , t)
∣∣m+)dx

= –
ξ

τ

∫

�

∣
∣z(x, , t)

∣
∣m+ dx +

ξ

τ

∫

�

|ut|m+ dx. (.)

By using Young’s inequality, we get

μ

∣
∣∣∣

∫

�

∣∣z(x, , t)
∣∣m–z(x, , t)ut dx

∣
∣∣∣

≤ μm
m + 

∫

�

∣
∣z(x, , t)

∣
∣m+ dx +

μ

m + 

∫

�

|ut|m+ dx,

which, together with (.)-(.), gives us

E′(t) ≤ –
(

μ –
ξ

τ
–

μ

m + 

)
‖ut‖m+

m+ –
(

ξ

τ
–

μm
m + 

)∥∥z(x, , t)
∥∥m+

m+

+
σ (t)


(
g ′ ◦ �u

)
–

σ ′(t)


∫ t


g(s) ds‖�u‖.

By using condition (.), we get

c := μ –
ξ

τ
–

μ

m + 
>  and c :=

ξ

τ
–

μm
m + 

> ,

which implies the desired inequality (.). The proof is now complete. �

Lemma . Under the assumptions in Theorem ., for the functional �(t) defined in (.)
there exists a positive constant c such that, for any t ≥ ,

�′(t) ≤ ‖ut‖ – c‖�u‖ + Cε‖ut‖m+
m+ + Cε

∥∥z(x, , t)
∥∥m+

m+ +
σ (t)


(g ◦ �u), (.)

where Cε >  is a constant depending for any ε > .

Proof By using the first equation of (.), we obtain

d
dt

�(t) =
∫

�

uttu dx + ‖ut‖

= ‖ut‖ +
∫

�

(
–�u + div F(∇u) + σ (t)

∫ t


g(t – s)�u(s) ds

– μ|ut|m ut – μ
∣
∣z(x, , t)

∣
∣m–z(x, , t)

)
· u dx
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= ‖ut‖ – ‖�u‖ –
∫

�

F(∇u)∇u dx – μ

∫

�

∣∣z(x, , t)
∣∣m–z(x, , t)u dx

+ σ (t)
∫

�

∫ t


g(t – s)�u(s) ds · �u dx – μ

∫

�

|ut|m–utu dx. (.)

Using Young’s inequality, the embedding theorem, and (.), we know that, for any ε > ,

∣∣
∣∣μ

∫

�

|ut|m–utu dx
∣∣
∣∣ ≤

∫

�

|ut|m|u|dx

≤ ε‖u‖m+
m+ + Cε‖ut‖m+

m+

≤ Cε‖∇u‖m+ + Cε‖ut‖m+
m+

≤ Cε

λ

(
E()

l

)m–

‖�u‖ + Cε‖ut‖m+
m+, (.)

where the constant C >  is the embedding constant.
Similarly we get

∣
∣∣
∣μ

∫

�

∣∣z(x, , t)
∣∣m–z(x, , t)u dx

∣
∣∣
∣ ≤ Cε

λ

(
E()

l

)m–

‖�u‖ + Cε

∥∥z(x, , t)
∥∥m+

m+. (.)

We infer from (.) that

–
∫

�

F(∇u)∇u dx ≤ αl
∫

�

|∇u| dx ≤ αl
λ

‖�u‖. (.)

Combining (.) and (.)-(.) with (.), we can get

�′(t) ≤ ‖ut‖ –
[(

 – σ (t)
∫ t


g(s) ds

)
–

Cε

λ

(
E()

l

)m–

–
αl
λ

]
‖�u‖

+ Cε‖ut‖m+
m+ + Cε

∥
∥z(x, , t)

∥
∥m+

m+ +
σ (t)


(g ◦ �u). (.)

Due to (.) and (.) and choosing ε >  small enough, we know that

c :=
(

 – σ (t)
∫ t


g(s) ds

)
–

Cε

λ

(
E()

l

)m–

–
αl
λ

> ,

which, together with (.), give us (.). The proof is hence complete. �

Lemma . Under the assumptions in Theorem ., and for any δ > , there exists a posi-
tive constant Cδ such that the functional �(t) defined in (.) satisfies

� ′(t) ≤ –
(∫ t


g(s) ds – δ

)
‖ut‖ +

[
δ + δ( – l)σ (t)

]‖�u‖ + δμ‖ut‖m+
m+

+ δμ
∥∥z(x, , t)

∥∥m+
m+ + Cδ

[
 + ( – l)σ (t) +

(
E()

) p–


]
(g ◦ �u)

–
Cg()
δλ

(
g ′ ◦ �u

)
, (.)
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where

p =

{
maxj=,...,n{pj}, if E() ≥ ,
minj=,...,n{pj}, if E() < .

Proof The straightforward computation implies that

� ′(t) = –
∫

�

utt ·
∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx

–
∫

�

ut

[
ut

∫ t


g(t – s) ds +

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds

]
dx

= –
∫

�

(
–�u + div F(∇u) + σ (t)

∫ t


g(t – s)�u(s) ds – μ|ut|m–ut

– μ
∣
∣z(x, , t)

∣
∣m–z(x, , t)

)
·
∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx

–
∫ t


g(s) ds‖ut‖ –

∫

�

ut

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds dx

=
∫

�

�u
∫ t


g(t – s)

(
�u(t) – �u(s)

)
ds dx

+
∫

�

F(∇u)
∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds dx

– σ (t)
∫

�

(∫ t


g(t – s)�u(s) ds

)(∫ t


g(t – s)

(
�u(t) – �u(s)

)
ds

)
dx

+ μ

∫

�

|ut|m–ut

∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx + μ

∫

�

∣∣z(x, , t)
∣∣m–z(x, , t)

×
∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx –

∫ t


g(s) ds‖ut‖

–
∫

�

ut

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds dx. (.)

By using Hölder’s inequality, Young’s inequality, and the embedding theorem, we can infer
that, for any δ > ,

∫

�

�u
∫ t


g(t – s)

(
�u(t) – �u(s)

)
ds dx ≤ δ‖�u‖ +

 – l
δ

(g ◦ �u), (.)

–σ (t)
∫

�

(∫ t


g(t – s)�u(s) ds

)(∫ t


g(t – s)

(
�u(t) – �u(s)

)
ds

)
dx

≤ δ( – l)σ (t)‖�u‖ +
(

δ +


δ

)
( – l)σ (t)(g ◦ �u), (.)

μ

∫

�

|ut|m–ut

∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx

≤ δμ‖ut‖m+
m+ +

μ

δ

∫ t


g(t – s)

∥∥u(t) – u(s)
∥∥m+

m+ ds

≤ δμ‖ut‖m+
m+ +

Cμ

δλ
(g ◦ �u), (.)
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μ

∫

�

∣∣z(x, , t)
∣∣m–z(x, , t)

∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx

≤ δμ
∥
∥z(x, , t)

∥
∥m+

m+ +
Cμ

δλ
(g ◦ �u), (.)

–
∫

�

ut

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds dx

≤ δ‖ut‖ +


δ

(∫ t



(
–g ′(t – s)

)∥∥u(t) – u(s)
∥∥ds

)

≤ δ‖ut‖ –
Cg()
δλ

(
g ′ ◦ �u

)
. (.)

Now we estimate the term
∫
�

F(∇u)
∫ t

 g(t – s)(∇u(t) – ∇u(s)) ds dx by using the method
in []. Noting (.) and the embedding V ↪→ W ,pj+

 (�), j = , . . . , n, we know that there
exist positive constants μp , . . . ,μpn satisfying

‖∇u‖pj+ ≤ μpj‖�u‖, ∀j = , . . . , n.

Using (.) with F() = , Hölder’s inequality, Young’s inequality, and the embedding the-
orem, we can conclude that, for any δ > ,

∫

�

∣
∣F(∇u)

∣
∣
∣
∣∇u(t) – ∇u(s)

∣
∣dx

≤ K
∫

�

( n∑

j=

(
 + |∇u|

pj–


)
)

|∇u|∣∣∇u(t) – ∇u(s)
∣∣dx

≤ K
n∑

j=

(|�|
pj–

(pj+) + ‖∇u‖
pj–


pj+

)‖∇u‖pj+
∥∥∇u(t) – ∇u(s)

∥∥

≤ K
λ

n∑

j=

μpj

(|�|
pj–

(pj+) + ‖∇u‖
pj–


pj+

)‖�u‖∥∥�u(t) – �u(s)
∥
∥

≤ δ‖�u‖ +


δ

[
K
λ

n∑

j=

μpj

(|�|
pj–

(pj+) + ‖∇u‖
pj–


pj+

)
]

∥∥�u(t) – �u(s)
∥∥

≤ δ‖�u‖ +

[
K

λ


( n∑

j=

μpj |�|
pj–

(pj+)

)

+
K

λ


( n∑

j=

μ

pj+


pj

(

l

) pj–
 (

E()
) pj–



)]

× 
δ

∥∥�u(t) – �u(s)
∥∥

:= δ‖�u‖ +


δ

(
α + α

(
E()

) p–


)∥∥�u(t) – �u(s)
∥
∥, (.)

where

p =

{
maxj=,...,n{pj}, if E() ≥ ,
minj=,...,n{pj}, if E() < ,
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and

α :=
K

λ


( n∑

j=

μpj |�|
pj–

(pj+)

)

,

α :=
K

λ


( n∑

j=

μ

pj+


pj

(

l

) pj–
 (

E()
) pj–



)

.

It follows from (.), Hölder’s inequality, and Young’s inequality that

∫

�

F(∇u)
∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds dx

≤
∫ t


g(t – s)

(∫

�

∣∣F(∇u)
∣∣∣∣∇u(t) – ∇u(s)

∣∣dx
)

ds

≤ δ‖�u‖ +


δ

(
α + α

(
E()

) p–


)
(g ◦ �u). (.)

Inserting (.)-(.) and (.) into (.), we obtain (.). The proof is therefore com-
plete. �

Lemma . For ε >  and ε >  small enough, there exist two positive constants β and
β such that

βE(t) ≤L(t) ≤ βE(t). (.)

Proof Using Hölder’s inequality, Young’s inequality, and Poincaré’s inequality, we can eas-
ily get

∣
∣L(t) – E(t)

∣
∣ ≤ ε


σ ()‖ut‖ +

ε

λ
σ ()‖�u‖ +

ε


σ ()‖ut‖

+
ε



∫

�

(∫ t


g(t – s)

(
u(t) – u(s)

)
ds

)

dx

≤ ε + ε


σ ()‖ut‖ +

ε

λ
σ ()‖�u‖ +

εl

λ
σ ()(g ◦ �u),

which, choosing ε >  and ε >  small enough, implies (.). The proof is complete.
�

Proof of Theorem . Combining (.), (.), and (.) with assumption (A), we can ob-
tain

L′(t) = E′(t) + εσ (t)�(t) + εσ (t)�′(t) + εσ (t)�(t) + εσ (t)� ′(t)

≤ – σ (t)
(

c

σ ()
– ε – εδμ

)
‖ut‖m+

m+ – σ (t)
[
ε

(∫ t


g(s) ds – δ

)
– ε

]
‖ut‖

– σ (t)
(

c

σ ()
– Cεε – εδμ

)∥∥z(x, , t)
∥∥m+

m+ + σ (t)
(




– ε
Cg()
δλ

)
(
g ′ ◦ �u

)

– σ (t)
[
cε – εδ – εσ (t)( – l)]‖�u‖ –



σ ′(t)

(∫ t


g(s) ds

)
‖�u‖



Feng and Li Boundary Value Problems  (2016) 2016:174 Page 13 of 16

+ σ (t)
[
ε


σ (t) + εCδ

[
 + ( – l)σ (t) +

(
E()

) p–


]]
(g ◦ �u)

+ εσ
′(t)

∫

�

uut dx + εσ
′(t)

∫

�

ut

∫ t


g(t – s)

(
u(s) – u(t)

)
ds dx. (.)

By using the Young inequality and the Poincaré inequality, we shall see that

σ ′(t)
∫

�

uut dx + σ ′(t)
∫

�

ut

∫ t


g(t – s)

(
u(s) – u(t)

)
ds dx

≤ –
σ ′(t)
λ

‖�u‖ – σ ′(t)‖ut‖ –
σ ′(t)
λ

(∫ t


g(s) ds

)
(g ◦ �u). (.)

For any fixed t > , we know that, for any t ≥ t,

∫ t


g(s) ds ≥

∫ t


g(s) ds := g,

which, along with (.)-(.), implies for any t ≥ t,

L′(t) ≤ –σ (t)
(

c

σ ()
– ε – εδμ

)
‖ut‖m+

m+ – σ (t)
[
ε(g – δ) – ε +

σ ′(t)
σ (t)

]
‖ut‖

– σ (t)
(

c

σ ()
– Cεε – εδμ

)∥∥z(x, , t)
∥∥m+

m+ + σ (t)
(




– ε
Cg()
δλ

)
(
g ′ ◦ �u

)

– σ (t)
[

cε – εδ – εσ (t)( – l) +


λ

σ ′(t)
σ (t)

]
‖�u‖

+ σ (t)
[
ε


σ (t) + εCδ

[
 + ( – l)σ (t) +

(
E()

) p–


]
–

g

λ

σ ′(t)
σ (t)

]
(g ◦ �u). (.)

At this point we first choose  < δ < min{ g
 , cg

[+(–l)] }, and we get

g – δ >



g and
δ

c

[
 + ( – l)] <




g.

For any fixed δ > , we take ε >  and ε >  satisfying

g


ε < ε <

g


ε (.)

so small that

η := ε(g – δ) – ε > ,

η := cε – εδσ – εδ( – l) > .

We at last choose ε >  and ε >  small enough for (.) and (.) to remain valid, and
further,

c

σ ()
– ε – εδμ > ,

c

σ ()
– Cεε – εδμ > ,




– ε
Cg()
δλ

> .
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From this it follows that, for positive constants η, η, and η,

L′(t) ≤ –σ (t)
(

η +



σ ′(t)
σ (t)

)
‖ut‖ – σ (t)

(
η +


λ

σ ′(t)
σ (t)

)
‖�u‖

+
(

η –
g

λ

σ ′(t)
σ (t)

)
σ (t)(g ◦ �u), ∀t ≥ t. (.)

Since limt→∞ σ ′(t)
σ (t) = , we choose t ≥ t and use (.) to get

L′(t) ≤ –σ (t)
(
η‖ut‖ + η‖�u‖) + ησ (t)(g ◦ �u)

≤ –ησ (t)E(t) + ησ (t)(g ◦ �u), ∀t ≥ t, (.)

where η and η are positive constants.
Multiplying (.) by ζ (t) and using (.), we obtain

ζ (t)L′(t) ≤ –ηζ (t)σ (t)E(t) + ηζ (t)σ (t)(g ◦ �u)

≤ –ηζ (t)σ (t)E(t) – η

[
E′(t) + σ ′(t)

(∫ t


g(s) ds

)
‖�u‖

]
,

which, combining with (.), gives us for any t ≥ t,

ζ (t)L′(t) + ηE′(t) ≤ –σ (t)ζ (t)
[
η +

lσ ′(t)
ζ (t)σ (t)

(∫ t


g(s) ds

)]
E(t). (.)

Since limt→∞ σ ′(t)
ζ (t)σ (t) = , we can choose t ≥ t so that

ζ (t)L′(t) + ηE′(t) ≤ –
η


σ (t)ζ (t)E(t), ∀t ≥ t. (.)

Let E(t) = ζ (t)L(t) + ηE(t), then it is easy to see that E(t) is equivalent to the modified
energy E(t) by using (.), that is, there exist two positive constants β and β such that

βE(t) ≤ E(t) ≤ βE(t), (.)

which, together with (.) and using ζ ′(t) ≤ , shows that there exists a positive constant
γ >  such that, for any t ≥ t,

E ′(t) ≤ –
η

β
ζ (t)σ (t)E(t). (.)

Integrating (.) over (t, t) with respect to t, we get for any t ≥ t,

E(t) ≤ E(t) exp

(
–

η

β

∫ t

t

ζ (s)σ (s) ds
)

≤ E(t) exp

(
η

β

∫ t


ζ (s)σ (s) ds

)
exp

(
–

η

β

∫ t


ζ (s)σ (s) ds

)
,

which, using (.), implies for any t ≥ t,

E(t) ≤ β

β
γE(t) exp

(
–

η

β

∫ t


ζ (s)σ (s) ds

)
. (.)
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Therefore (.) follows by renaming the constants, and by the continuity and bounded-
ness of E(t). The proof is hence complete. �

Remark . We illustrate several rates of energy decay through the following examples,
some of which can be found in [, ].

Example  If g decays exponentially, i.e., ζ (t) = a, and σ (t) = b
+t , then (.) gives us

E(t) ≤ β

( + t)γ ab .

Example  If g decays exponentially, i.e., ζ (t) = a, and σ (t) = b, then (.) gives us

E(t) ≤ βe–abγ t .

Example  When g(t) = ae–b(+t)α and σ (t) = 
+t for a, b >  and  < α < , then ζ (t) =

bα( + t)α– satisfies (.)-(.). Estimate (.) takes the form

E(t) ≤ β exp

(
–

bαγ

α – 
( + t)α–

)
.

Example  If g(t) = a exp(–b lnα( + t)) and σ (t) = 
ln(+t) for a, b >  and α > , we know

that ζ (t) = bα lnα–(+t)
+t satisfies (.)-(.). Estimate (.) takes the form

E(t) ≤ β exp

(
–

bαγ

α – 
lnα–( + t)

)
.
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