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Abstract
Calvert and Gupta’s results concerning the perturbations on the ranges ofm-accretive
mappings have been employed widely in the discussion of the existence of solutions
of nonlinear elliptic differential equation with Neumann boundary. In this paper, we
shall focus our attention on certain hyperbolic differential equation withmixed
boundaries. By defining some suitable nonlinear mappings, we shall demonstrate
that Calvert and Gupta’s results can be applied to hyperbolic equations, in addition to
its wide usage in elliptic equations. Due to the differences between hyperbolic and
elliptic equations, some new techniques have been developed in this paper, which
can be regarded as the complement and extension of the previous work.
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1 Introduction and preliminaries
1.1 Introduction
Nonlinear boundary value problems involving the generalized p-Laplacian operator arise
from many physical phenomena, such as reaction-diffusion problems, petroleum extrac-
tion, flow through porous media, and non-Newtonian fluids, just to name a few. Thus,
the study of such problems and their generalizations have attracted much attention in
recent years. Many methods have been employed to tackle the existence of solutions of
boundary value problems and one important method is to apply theories of the perturba-
tions on ranges of nonlinear operators. Indeed, we recall that Calvert and Gupta [] have
used such a perturbation result (namely Theorem ., which is stated in Section .) to
provide sufficient conditions so that some nonlinear boundary value problems with Neu-
mann boundaries involving the Laplacian operator have solutions in Lp(�).

Inspired by Calvert and Gupta’s perturbation result of Theorem ., the p-Laplacian
boundary value problems and their general forms have been extensively studied in
the work of [–]. For example, the following problem that involves the generalized
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p-Laplacian operator with Neumann boundaries has been discussed in []:

⎧
⎨

⎩

– div[(C(x) + |∇u|)
p–

 ∇u] + ε|u|q–u + g(x, u(x)) = f (x), a.e. in �,

–〈ϑ , (C(x) + |∇u|)
p–

 ∇u〉 ∈ βx(u(x)), a.e. on �.
(.)

It is shown that (.) has solutions in Ls(�) under some conditions, where N
N+ < p ≤ s <

+∞,  ≤ q < +∞ if p ≥ N , and  ≤ q ≤ Np
N–p if p < N , for N ≥ . The study of (.) in [] can

be regarded as the summary of the work done in [–].
A more general version of (.) has recently been tackled in []. Here, by using Calvert

and Gupta’s perturbation result (Theorem .) again, Wei, Agarwal, and Wong [] tack-
led the following elliptic p-Laplacian-like equation with Neumann boundary conditions,
which is more general than (.) and includes (.):

⎧
⎨

⎩

– div[(C(x) + |∇u|) s
 |∇u|m–∇u] + ε|u|q–u + g(x, u(x)) = f (x), a.e. in �,

–〈ϑ , (C(x) + |∇u|) s
 |∇u|m–∇u〉 ∈ βx(u), a.e. on �.

(.)

It is shown that (.) has solutions in Lp(�) under some conditions, where N
N+ < p < +∞,

 ≤ q < +∞ if p ≥ N , and  ≤ q ≤ Np
N–p if p < N , for N ≥ .

On the other hand, a type of integro-differential equation with generalized p-Laplacian
operator has also been studied in [],

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u]

+ ε|u|q–u + a ∂
∂t

∫

�
u(x, t) dx = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|)
p–

 ∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T),

u(x, ) = u(x, T), x ∈ �.

(.)

By using some results on the ranges of bounded pseudo-monotone operator and max-
imal monotone operator presented in [–], it is shown that (.) has solutions in
Lp(, T ; W ,p(�)), for  < q ≤ p < +∞.

Motivated by the above research on elliptic and integro-differential equations, in this
paper we focus our attention on hyperbolic differential equations. We shall explore the
applicability of Calvert and Gupta’s perturbation result (Theorem .) to the existence of
solution of certain hyperbolic differential equation. To be specific, we shall consider the
following hyperbolic p-Laplacian-like problem with mixed boundaries:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ∂
∂t (α( ∂u

∂t )) – div[(C(x, t) + |∇u|) s
 |∇u|m–∇u]

+ ε|u|q–u + g(x, u(x, t)) = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|) s
 |∇u|m–∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T),

α( ∂u
∂t (x, )) = α( ∂u

∂t (x, T)), x ∈ �,

u(x, ) = u(x, T), x ∈ �.

(.)

In (.), α is the subdifferential of j, i.e., α = ∂j, where j : R → R is a proper, convex, and
lower-semi continuous function, and βx is the subdifferential of ϕx, i.e., βx ≡ ∂ϕx, where
ϕx = ϕ(x, ·) : R →R is a proper, convex, and lower-semicontinuous function. More details



Wei et al. Boundary Value Problems  (2016) 2016:179 Page 3 of 18

of (.) will be presented in Section . We shall investigate the existence of a solution of
(.) in L(, T ; L(�)). In the subsequent development, we shall demonstrate new appli-
cations of Calvert and Gupta’s perturbation result.

Compared to most of the previous studies on hyperbolic differential equations, the main
term – ∂u

∂t in the previous work is replaced by – ∂
∂t (α( ∂u

∂t )) in (.), which leads to the dif-
ferences in the proofs of the main result. Moreover, the existence of solution of (.) will
be discussed in L(, T ; L(�)), which does not change while p is varying from N

N+ to +∞
for N ≥ .

1.2 Preliminaries
Let X be a real Banach space with a strictly convex dual space X∗. We shall use (·, ·) to
denote the generalized duality pairing between X and X∗. We shall use ‘→’ and ‘w-lim’
to denote strong and weak convergence, respectively. Let ‘X ↪→ Y ’ denote the space X em-
bedded continuously in space Y . Let ‘X ↪→↪→ Y ’ denote the space X embedded compactly
in space Y . For any subset G of X, we denote by int G its interior and G its closure, re-
spectively. For two subsets G and G in X, if G = G and int G = int G, then we say G

is almost equal to G, which is denoted by G � G. A mapping T : X → X∗ is said to be
hemi-continuous on X [, ] if w – limt→ T(x + ty) = Tx for any x, y ∈ X.

A function � is called a proper convex function on X [, ] if � is defined from X to
(–∞, +∞], not identically +∞, such that �(( – λ)x + λy) ≤ ( – λ)�(x) + λ�(y), whenever
x, y ∈ X and  ≤ λ ≤ .

A function � : X → (–∞, +∞] is said to be lower-semicontinuous on X [, ] if
lim infy→x �(y) ≥ �(x), for any x ∈ X.

Given a proper convex function � on X and a point x ∈ X, we denote by ∂�(x) the set of
all x∗ ∈ X∗ such that �(x) ≤ �(y) + (x – y, x∗), for every y ∈ X. Such an element x∗ is called
the subgradient of � at x, and ∂�(x) is called the subdifferential of � at x [].

Let Jr denote the duality mapping from X into X∗ , which is defined by

Jr(x) =
{

f ∈ X∗ : (x, f ) = ‖x‖r ,‖f ‖ = ‖x‖r–}, ∀x ∈ X,

where r >  is a constant. If r = , then J is called normalized duality mapping, which is
denoted by J in our paper. If X∗ is strictly convex, then J is a single-valued mapping []. If,
X is reduced to the Hilbert space, then J is the identity mapping.

A multi-valued mapping A : X → X is said to be accretive [] if (v – v, Jr(u – u)) ≥ ,
for any ui ∈ D(A) and vi ∈ Aui, i = , . The accretive mapping A is said to be m-accretive
if R(I + λA) = X for some λ > . We say that a mapping A : X → X is boundedly inversely
compact [] if, for any pair of bounded subsets G and G′ of X, the subset G ∩ A–(G′) is
relatively compact in X.

A multi-valued operator B : X → X∗ is said to be monotone [] if its graph G(B) is a
monotone subset of X × X∗ in the sense that (u – u, w – w) ≥ , for any [ui, wi] ∈ G(B),
i = , . Further, B is called strictly monotone if (u – u, w – w) ≥  and the equality holds
if and only if u = u. The monotone operator B is said to be maximal monotone if G(B)
is maximal among all monotone subsets of X × X∗ in the sense of inclusion. Also, B is
maximal monotone if and only if R(B + λJ) = X∗, for any λ > . The mapping B is said to be
coercive [] if limn→+∞ (xn, x∗

n)/‖xn‖ = +∞ for all [xn, x∗
n] ∈ G(B) such that limn→+∞ ‖xn‖ =

+∞.
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Let  < p < +∞, then Lp(, T ; X) denotes the space of all X-valued strongly measurable
functions x(t) defined a.e. on (, T) such that ‖x(t)‖p

X is Lebesgue integrable over (, T). It
is well known that Lp(, T ; X) is a Banach space with the norm defined by

‖x‖Lp(,T ;X) =
(∫ T



∥
∥x(t)

∥
∥p

X dt
) 

p
.

If X is reflexive, then Lp(, T ; X) is reflexive, and its dual space coincides with Lp′ (, T ; X∗),
where 

p + 
p′ = . Moreover, Lp(, T ; X) is reflexive in the case when X is reflexive, and

Lp(, T ; X) is strictly (uniformly) convex in the case when X is strictly (uniformly) convex.
For  ≤ r < p < +∞, if X ↪→ Y , then Lp(, T ; X) ↪→ Lr(, T ; Y ).

Lemma . ([]) If A : X → X∗ is a everywhere defined, monotone and hemi-continuous
mapping, then A is maximal monotone. If, moreover, A is coercive, then R(A) = X∗.

Lemma . ([]) If � : X → (–∞, +∞] is a proper convex and lower-semicontinuous func-
tion, then ∂� is maximal monotone from X to X∗.

Lemma . ([]) If A and A are two maximal monotone operators in X such that
(int D(A)) ∩ D(A) �= ∅, then A + A is maximal monotone.

Definition . ([]) The duality mapping Jr : X → X∗ is said to satisfy Condition (I) if there
exists a function η : X → [, +∞) such that for u, v ∈ X,

‖Jru – Jrv‖ ≤ η(u – v). (I)

Lemma . ([]) Let � be a bounded domain in R
N and let Jp : Lp(�) → Lp′ (�) denote

the duality mapping, where 
p + 

p′ = . Then Jp satisfies Condition (I). Moreover, for  ≤
p < +∞, Jpu = |u|p– sgn u‖u‖–p

p , for any u ∈ Lp(�); for  < p ≤ , Jpu = |u|p– sgn u, for any
u ∈ Lp(�).

Definition . ([]) Let A : X → X be an accretive mapping and Jr : X → X∗ be a duality
mapping. We say that A satisfies Condition (∗) if, for any f ∈ R(A) and a ∈ D(A), there
exists a constant C(a, f ) such that, for any u ∈ D(A), v ∈ Au,

(
v– f , Jr(u–a)

) ≥ C(a, f ). (∗)

Theorem . ([]) Let X be a real Banach space with a strictly convex dual X∗. Let Jr : X →
X∗ be the duality mapping on X satisfying Condition (I). Let A, C : X → X be accretive
mappings such that:

(i) either both A and C satisfy Condition (∗), or D(A) ⊂ D(C) and C satisfies
Condition (∗),

(ii) A + C is m-accretive and boundedly inversely compact.
Let C : X → X be a bounded continuous mapping such that, for any y ∈ X, there is a

constant C(y) satisfying (C(u + y), Jru) ≥ –C(y) for any u ∈ X. Then:
(a) [R(A) + R(C)] ⊂ R(A + C + C);
(b) int[R(A) + R(C)] ⊂ int R(A + C + C).
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Lemma . ([]) Let � be a bounded conical domain in R
N . If mp > N , then W m,p(�) ↪→

CB(�); if  < mp < N and q = Np
N–mp , then W m,p(�) ↪→ Lq(�); if mp = N and p > , then

W m,p(�) ↪→ Lq(�), where  ≤ q < +∞.

Lemma . ([]) Let � be a bounded conical domain in R
N . If mp > N , then

W m,p(�) ↪→↪→ CB(�); if  < mp ≤ N and q = Np
N–mp , then W m,p(�) ↪→ Lq(�), where

 ≤ q < q.

2 Main results
In this paper, unless otherwise stated, we shall assume that N ≥ , N

N+ < p < +∞,  ≤ q ≤
min{p, p′}, 

p + 
p′ = , 

q + 
q′ = , m + s +  = p and m ≥ .

In (.), � is a bounded conical domain of a Euclidean space R
N with its boundary � ∈

C [], T is a positive constant, ε is a non-negative constant, and ϑ denotes the exterior
normal derivative of �.  ≤ C(x, t) ∈ Lp(, T ; W ,p(�)).

Suppose that α = ∂j, where j : R → R is a proper, convex, and lower-semi continu-
ous function,  ∈ ∂j(), and βx ≡ ∂ϕx, where ϕx = ϕ(x, ·) : R → R is a proper, convex,
and lower-semi continuous function. For each x ∈ �,  ∈ βx(), and for each t ∈ R, the
function x ∈ � → (I + λβx)–(t) ∈ R is measurable for λ > . Suppose g : � × R → R is
a given function satisfying the Carathéodory conditions and u(x, t) ∈ L(, T ; L(�)) →
g(x, u(x, t)) ∈ L(, T ; L(�)) is well defined. Moreover, suppose there exists non-negative
function T(x) ∈ L(�) satisfying g(x, s)s ≥ , for all |s| ≥ T(x) and x ∈ �. We shall assume
that Green’s formula is available.

Now, we present our discussion in the sequel.

Lemma . ([]) For N
N+ < p < +∞ and N ≥ , we have, for u(x, t) ∈ Lp(, T ; W ,p(�)),

‖u‖Lp(,T ;W ,p(�)) ≤ k

(∫ T



∫

�

|∇u|p dx dt
) 

p
+ k,

where k and k are positive constants.

Lemma . For p ≥ , define the mapping B() : Lp(, T , W ,p(�)) → Lp′ (, T , (W ,p(�))∗)
by

(
v, B()u

)
=

∫ T



∫

�

〈(
C(x, t) + |∇u|) s

 |∇u|m–∇u,∇v
〉
dx + ε

∫

�

∣
∣u(x)

∣
∣q–u(x)v(x) dx dt

for any u, v ∈ Lp(, T , W ,p(�)). Then B() is everywhere defined, monotone, hemi-
continuous, and coercive.

(Here, 〈·, ·〉 and | · | denote the Euclidean inner product and Euclidean norm in R
N , re-

spectively.)

Proof Step . B() is everywhere defined.
Case . Suppose s ≥ . For u, w ∈ Lp(, T ; W ,p(�)), we find

∣
∣
(
w, B()u

)∣
∣ ≤ 

s


∫ T



∫

�

C(x, t)
s
 |∇u|m|∇w|dx dt

+ 
s


∫ T



∫

�

|∇u|s+m|∇w|dx dt + ε

∫ T



∫

�

|u|q–|w|dx dt
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≤ 
s


(∫ T



∫

�

C(x, t)
s
 p′ |∇u|mp′

dx dt
) 

p′
‖w‖Lp(,T ;W ,p(�))

+ 
s
 ‖u‖p/p′

Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�)) + ε‖w‖Lq(,T ;Lq(�))‖u‖q/q′
Lq(,T ;Lq(�))

≤ 
s

∥
∥C(x, t)

∥
∥s

Lp(,T ;Lp(�))‖u‖m
Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�))

+ 
s
 ‖u‖p/p′

Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�)) + ε‖w‖Lq(,T ;Lq(�))‖u‖q/q′
Lq(,T ;Lq(�)).

From Lemma ., we have W ,p(�) ↪→ Lp(�) ↪→ Lq(�), then for v ∈ W ,p(�), we have
‖v‖Lq(�) ≤ k‖v‖W ,p(�), where k is a positive constant. Hence,

∣
∣
(
w, B()u

)∣
∣ ≤ 

s

∥
∥C(x, t)

∥
∥s

Lp(,T ;W ,p(�))‖u‖m
Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�))

+ 
s
 ‖u‖p/p′

Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�))

+ εk‖u‖q/q′
Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�)),

where k is a positive constant, which implies that B() is everywhere defined.
Case . Suppose s < . For u, v ∈ Lp(, T ; W ,p(�)), we have

∣
∣
(
w, B()u

)∣
∣ ≤

∫ T



∫

�

|∇u|m|∇w|
(C(x, t) + |∇u|)– s


dx dt + ε‖w‖Lq(,T ;Lq(�))‖u‖q/q′

Lq(,T ;Lq(�))

≤
∫ T



∫

�

|∇u|m|∇w|
|∇u|–s dx dt + ε‖w‖Lq(,T ;Lq(�))‖u‖q/q′

Lq(,T ;Lq(�))

≤ ‖u‖p/p′
Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�)) + εk‖u‖q/q′

Lp(,T ;W ,p(�))‖w‖Lp(,T ;W ,p(�)),

which implies that B() is everywhere defined.
Step . B() is strictly monotone.
For u, v ∈ Lp(, T ; W ,p(�)), we have

(
u – v, B()u – B()v

)

≥
∫ T



∫

�

[(
C(x, t) + |∇u|) s

 |∇u|m+ –
(
C(x, t) + |∇v|) s

 |∇v|m|∇u|

–
(
C(x, t) + |∇u|) s

 |∇u|m|∇v| +
(
C(x, t) + |∇v|) s

 |∇v|m+]dx dt

+ ε

∫ T



∫

�

(|u|q– – |v|q–)(|u| – |v|)dx dt

=
∫ T



∫

�

[(
C(x, t) + |∇u|) s

 |∇u|m –
(
C(x, t) + |∇v|) s

 |∇v|m](|∇u| – |∇v|)dx dt

+ ε

∫ T



∫

�

(|u|q– – |v|q–)(|u| – |v|)dx dt.

Let h(x) = (C + x) s
 xm, for x ≥ . Then h′(x) = xm–(C + x) s

 –[mC + (p – )x] ≥ , for
x ≥ , which implies that B() is strictly monotone.

Step . B() is hemi-continuous.
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It suffices to show that for any u, v, w ∈ Lp(, T ; W ,p(�)) and t ∈ [, ], (w, B()(u + tv) –
B()u) →  as t → . Since

 ≤ lim
t→

∣
∣
(
w, B()(u + tv) – B()u

)∣
∣

≤
∣
∣
∣
∣

∫ T



∫

�

lim
t→

〈(
C(x, t) + |∇u + t∇v|) s

 |∇u + t∇v|m–(∇u + t∇v)

–
(
C(x, t) + |∇u|) s

 |∇u|m–∇u,∇w
〉
dx dt

∣
∣
∣
∣

+ ε

∫ T



∫

�

lim
t→

∣
∣|u + tv|q–(u + tv) – |u|q–u

∣
∣|w|dx dt,

by Lebesque’s dominated convergence theorem, we find

lim
t→

(
w, B()(u + tv) – B()u

)
= .

Hence, B() is hemi-continuous.
Step . B() is coercive.
Case . Suppose s ≥ . For u ∈ Lp(, T ; W ,p(�)), let ‖u‖Lp(,T ;W ,p(�)) → +∞. Using

Lemma ., we find

(u, B()u)
‖u‖Lp(,T ;W ,p(�))

=
∫ T


∫

�
(C(x, t) + |∇u|) s

 |∇u|m+ dx dt
‖u‖Lp(,T ;W ,p(�))

+ ε

∫ T


∫

�
|u|q dx dt

‖u‖Lp(,T ;W ,p(�))

≥ 
‖u‖Lp(,T ;W ,p(�))

(∫ T



∫

�

|∇u|p dx dt + ε

∫ T



∫

�

|u|q dx dt
)

>


‖u‖Lp(,T ;W ,p(�))

∫ T



∫

�

|∇u|p dx dt → +∞,

which implies that B() is coercive.
Case . Suppose s < . For u ∈ Lp(, T ; W ,p(�)), let ‖u‖Lp(,T ;W ,p(�)) → +∞. Using

Lemma . again, we find

(u, B()u)
‖u‖Lp(,T ;W ,p(�))

=
∫ T


∫

�
(C(x, t) + |∇u|) s

 |∇u|p–s dx dt
‖u‖Lp(,T ;W ,p(�))

+ ε

∫ T


∫

�
|u|q dx dt

‖u‖Lp(,T ;W ,p(�))

≥ 
‖u‖Lp(,T ;W ,p(�))

×
(∫ T



∫

�


s

[
max

{
C(x, t), |∇u|}] s

 |∇u|p–s dx dt + ε

∫ T



∫

�

|u|q dx dt
)

>


‖u‖Lp(,T ;W ,p(�))

∫ T



∫

�


s
 |∇u|p dx dt → +∞,

which implies that B() is coercive.
This completes the proof. �
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Lemma . For N
N+ < p ≤ , define the mapping B() : Lp′ (, T ; W ,p(�)) → Lp(, T ;

(W ,p(�))∗) by

(
v, B()u

)
=

∫ T



∫

�

〈(
C(x, t) + |∇u|) s

 |∇u|m–∇u,∇v
〉
dx

+ ε

∫

�

∣
∣u(x)

∣
∣q–u(x)v(x) dx dt

for any u, v ∈ Lp′ (, T , W ,p(�)). Then B() is everywhere defined, monotone, hemi-
continuous, and coercive.

Proof The proof is similar to that of Lemma .. �

Definition . ([]) For p ≥ , �() : Lp(, T ; W ,p(�)) →R defined by

�()(u) =
∫ T



∫

�

ϕx
(
u|�(x, t)

)
d�(x) dt,

for any u ∈ Lp(, T ; W ,p(�)), is proper, convex, and lower-semi continuous on Lp(, T ;
W ,p(�)).

Further, Lemma . implies that ∂�() : Lp(, T ; W ,p(�)) → Lp′ (, T ; (W ,p(�))∗) is max-
imal monotone.

Lemma . ([]) For u, v ∈ Lp(, T ; W ,p(�)), where p ≥ ,

(
v, ∂�()(u)

)
=

∫ T



∫

�

βx
(
u|�(x, t)

)
v|�(x, t) d�(x) dt,

and  ∈ ∂�()(), also (ϕ, ∂�()(u)) = , for any ϕ ∈ C∞
 (� × (, T)) and u ∈ Lp(, T ;

W ,p(�)). Moreover, if w(x, t) ∈ ∂�()(u(x, t)), then w(x, t) = βx(u(x, t)), a.e. on � × (, T).

Definition . ([]) For N
N+ < p ≤ , �() : Lp′ (, T ; W ,p(�)) →R defined by

�()(u) =
∫ T



∫

�

ϕx
(
u|�(x, t)

)
d�(x) dt,

for any u ∈ Lp′ (, T ; W ,p(�)), is proper, convex, and lower-semi continuous on Lp′ (, T ;
W ,p(�)).

Further, Lemma . implies that ∂�() : Lp′ (, T ; W ,p(�)) → Lp(, T ; (W ,p(�))∗) is max-
imal monotone.

Lemma . ([]) For u, v ∈ Lp′ (, T ; W ,p(�)), where N
N+ < p ≤ ,

(
v, ∂�()(u)

)
=

∫ T



∫

�

βx
(
u|�(x, t)

)
v|�(x, t) d�(x) dt

and  ∈ ∂�()(), also (ϕ, ∂�()(u)) = , for any ϕ ∈ C∞
 (� × (, T)) and u ∈ Lp(, T ;

W ,p(�)). Moreover, if w(x, t) ∈ ∂�()(u(x, t)), then w(x, t) = βx(u(x, t)), a.e. on � × (, T).



Wei et al. Boundary Value Problems  (2016) 2016:179 Page 9 of 18

Definition . For p ≥ , define a mapping A() : L(, T ; L(�)) → L(,T ;L(�)) by

A()u =
{

w(x) ∈ L(, T ; L(�)
) | w(x) ∈ B()u + ∂�()(u)

}

for u ∈ D(A()) = {u ∈ L(, T ; L(�)) | there exists a w(x) ∈ L(, T ; L(�)) such that
w(x) ∈ B()u + ∂�()(u)}.

Lemma . The mapping A() : L(, T ; L(�)) → L(, T ; L(�)) defined in Definition .
is m-accretive.

Proof It is easy to check that A() is accretive in view of Lemmas . and ..
Next, we shall show that R(I +A()) = L(, T ; L(�)), which ensures that A is m-accretive.

Since p ≥ , we define F () : Lp(, T ; W ,p(�)) → Lp′ (, T ; (W ,p(�))∗) by

F ()u = u,
(
v, F ()u

)

Lp(,T ;W ,p(�))×Lp′ (,T ;(W ,p(�))∗) = (v, u)L(,T ;L(�)),

where (·, ·)L(,T ;L(�)) denotes the inner product of L(, T ; L(�)).Then F () is everywhere
defined, monotone, and hemi-continuous, which implies that F () is maximal monotone in
view of Lemma .. Combining with the facts of Lemmas ., ., and ., we have R(B() +
F () + ∂�()) = Lp′ (, T ; (W ,p(�))∗). For f ∈ L(, T ; L(�)) ⊂ Lp′ (, T ; (W ,p(�))∗), there
exists u ∈ Lp(, T ; W ,p(�)) ⊂ L(, T ; L(�)) such that

f = B()u + F ()u + ∂�()(u) = A()u + u,

which implies that R(I + A()) = L(, T ; L(�)).
This completes the proof. �

Definition . For N
N+ < p ≤ , define a mapping A() : L(, T ; L(�)) → L(,T ;L(�))

by

A()u =
{

w(x) ∈ L(, T ; L(�)
) | w(x) ∈ B()u + ∂�()(u)

}

for u ∈ D(A()) = {u ∈ L(, T ; L(�)) | there exists a w(x) ∈ L(, T ; L(�)) such that
w(x) ∈ B()u + ∂�()(u)}.

Lemma . The mapping A() : L(, T ; L(�)) → L(, T ; L(�)) defined in Definition .
is m-accretive.

Proof Since N
N+ < p ≤ , we have p′ ≥ . Similar to the proof of Lemma ., define F () :

Lp′ (, T ; W ,p(�)) → Lp(, T ; (W ,p(�))∗) by

F ()u = u,
(
v, F ()u

)

Lp′ (,T ;W ,p(�))×Lp(,T ;(W ,p(�))∗) = (v, u)L(,T ;L(�)).
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Then R(B() + F () + ∂�()) = Lp(, T ; (W ,p(�))∗). So, for f ∈ L(, T ; L(�)) ⊂ Lp(, T ;
(W ,p(�))∗), there exists u ∈ Lp′ (, T ; W ,p(�)) ⊂ L(, T ; L(�)) such that

f = B()u + F ()u + ∂�()u = A()u + u,

which implies that R(I + A()) = L(, T ; L(�)).
This completes the proof. �

Lemma . Define S : L(, T ; L(�)) → (–∞, +∞] by

Su(x, t) =
∫ T



∫

�

j
(

∂u
∂t

)

dx dt, u(x, t) ∈ D(S),

where D(S) = {u(x, t) ∈ H(, T ; L(�)) : j( ∂u
∂t ) ∈ L(, T ;�), u(x, ) = u(x, T),α( ∂u

∂t (x, )) =
α( ∂u

∂t (x, T))} ⊂ L(, T ; L(�)). Then the mapping S is proper, convex, and lower-semi con-
tinuous.

Proof Since j is proper and convex, it is not difficult to show that S is proper and convex.
It remains to show that S is lower-semi continuous on H(, T ; L(�)).

For this purpose, let {un} be such that un → u in H(, T ; L(�)) as n → ∞. Then
there exists s subsequence of {un}, which, for simplicity we still denote by {un}, such that
∂un(x,t)

∂t → ∂u(x,t)
∂t for a.e. (x, t) ∈ � × (, T). Since j is lower-semi continuous, we have

j
(

∂u(x, t)
∂t

)

≤ lim inf
n→∞ j

(
∂un(x, t)

∂t

)

,

a.e. on � × (, T). Using Fatou’s lemma, it follows that

∫ T



∫

�

j
(

∂u(x, t)
∂t

)

dx dt ≤ lim inf
n→∞

∫ T



∫

�

j
(

∂un(x, t)
∂t

)

dx dt.

Therefore, Su ≤ lim infn→∞ S(un), whenever un → u in H(, T ; L(�)). The proof is com-
plete. �

Lemma . Let S be the same as that in Lemma .. If w(x, t) ∈ ∂S(u(x, t)), then w(x, t) =
– ∂

∂t (α( ∂u
∂t )) a.e. in � × (, T).

Proof Let w(x, t) = ∂w(x,t)
∂t . In view of the definition of subdifferential, we have for w(x, t) ∈

∂S(u(x, t)),

∫ T



∫

�

[

j
(

∂u
∂t

)

– j
(

∂v
∂t

)]

dx dt ≤
∫ T



∫

�

w(x, t)
[
u(x, t) – v(x, t)

]
dx dt

=
∫ T



∫

�

∂w(x, t)
∂t

[
u(x, t) – v(x, t)

]
dx dt

= –
∫ T



∫

�

w(x, t)
(

∂u
∂t

–
∂v
∂t

)

dx dt. (.)
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Let E be any measurable subset of � such that for t ∈ (, T),

w̃(x, t) =

⎧
⎨

⎩

v(x, t), x ∈ E,

u(x, t), x ∈ EC ,

where EC is the complement of E in �. Taking v(x, t) = w̃(x, t) in (.), we have

∫ T



∫

E

[

j
(

∂u
∂t

)

– j
(

∂v
∂t

)

+ w(x, t)
(

∂u
∂t

–
∂v
∂t

)]

dx dt ≤ .

For any measurable subset E of �, we have

j
(

∂u
∂t

)

– j
(

∂v
∂t

)

≤ –w(x, t)
(

∂u
∂t

–
∂v
∂t

)

, a.e. (x, t) ∈ � × (, T).

Thus, w(x, t) = –∂j( ∂u
∂t ) = –α( ∂u

∂t ), a.e. (x, t) ∈ � × (, T). Then w(x, t) = – ∂
∂t (α( ∂u

∂t )), a.e.
(x, t) ∈ � × (, T). This completes the proof. �

Remark . Lemmas . and . will play an important role in the discussion of the term
– ∂

∂t (α( ∂u
∂t )) in (.).

Definition . Define a mapping C() : L(, T ; L(�)) → L(,T ;L(�)) by

C()u(x, t) = A()u(x, t) + ∂S
(
u(x, t)

)
,

for u(x, t) ∈ D(S). Define a mapping C() : L(, T ; L(�)) → L(,T ;L(�)) by

C()u(x, t) = A()u(x, t) + ∂S
(
u(x, t)

)
,

for u(x, t) ∈ D(S).

Proposition .
(i) The mapping C() : L(, T ; L(�)) → L(,T ;L(�)) is m-accretive and has a compact

resolvent.
(ii) The mapping C() : L(, T ; L(�)) → L(,T ;L(�)) is also m-accretive and has a

compact resolvent.

Proof (i) Since L(, T ; L(�)) is a Hilbert space, m-accretive mappings and maximal
monotone operators are the same. Thus, Lemmas ., ., ., and . imply that C() is
m-accretive.

To show that C() has a compact resolvent, it suffices to show that if u(x, t) +λC()u(x, t) =
f (x, t) (λ > ) with {f (x, t)} being bounded in L(, T ; L(�)), then {u(x, t)} is relatively com-
pact in L(, T ; L(�)).

To proceed, define H () : Lp(, T ; W ,p(�)) → Lp′ (, T ; (W ,p(�))∗) by

H ()u(x, t) = F ()u(x, t) + λB()u(x, t) + λ∂�()u(x, t),
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where F () is the same as that in the proof of Lemma .. Then H () is maximal monotone
and coercive in view of Lemmas .-., ., . and Definition .. Since Lp(, T ; W ,p

(�)) ↪→↪→ L(, T ; L(�)), we have

(u, H ()u)
‖u‖Lp(,T ;W ,p(�))

=
(u, F ()u(x, t)) + λ(u, B()u(x, t)) + λ(u, ∂�()u(x, t))

‖u‖Lp(,T ;W ,p(�))

=
(u, u) + λ(u, C()u(x, t)) – λ(u, ∂S(u(x, t)))

‖u‖Lp(,T ;W ,p(�))

=
(u, f (x, t)) – λ(u, ∂S(u(x, t)))

‖u‖Lp(,T ;W ,p(�))

≤ (u, f (x, t))
‖u‖Lp(,T ;W ,p(�))

≤ ‖u‖L(,T ;L(�))‖f (x, t)‖L(,T ;L(�))

‖u‖Lp(,T ;W ,p(�))

≤ ‖u‖Lp(,T ;W ,p(�))‖f (x, t)‖L(,T ;L(�))

‖u‖Lp(,T ;W ,p(�))

=
∥
∥f (x, t)

∥
∥

L(,T ;L(�)),

which implies that {u(x, t)} is bounded in Lp(, T ; W ,p(�)) and so it is relatively compact
in L(, T ; L(�)).

The proof of (ii) is similar. This completes the proof. �

Proposition . If f (x, t) ∈ L(, T ; L(�)) satisfies f (x, t) = C()u(x, t) or f (x, t) = C()u(x,
t), then the following hold:

(a) – ∂
∂t (α( ∂u

∂t )) – div[(C(x, t) + |∇u|) s
 |∇u|m–∇u] + ε|u|q–u = f (x, t), (x, t) ∈ � × (, T);

(b) –〈ϑ , (C(x, t) + |∇u|) s
 |∇u|m–∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T);

(c) α( ∂u
∂t (x, )) = α( ∂u

∂t (x, T)), u(x, ) = u(x, T), x ∈ �.

Proof It suffices to show that if f (x, t) = C()u(x, t), then the results are true. The proof for
the case f (x, t) = C()u(x, t) is similar.

Now, for any ψ ∈ C∞
 (� × (, T)), Lemma . implies that (ψ , ∂�()(u)) = . Thus,

f (x, t) = C()u(x, t) implies that

–
∫ T



∫

�

∂

∂t

(

α

(
∂u
∂t

))

ψ dx dt

+
∫ T



∫

�

〈(
C(x, t) + |∇u|) s

 |∇u|m–∇u,∇ψ
〉
dx dt

+ ε

∫ T



∫

�

|u|q–uψ dx dt =
∫ T



∫

�

f (x, t)ψ dx dt.

Then

∂

∂t

(

α

(
∂u
∂t

))

– div
[(

C(x, t) + |∇u|) s
 |∇u|m–∇u

]
+ ε|u|q–u = f (x, t),

(x, t) ∈ � × (, T).

Hence, (a) is true.
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Since f (x, t) = C()u(x, t), we have ∂S(u(x, t)) + B()u(x, t) + ∂�()(u(x, t)) = f (x, t). For û ∈
L(, T ; L(�)), we have (̂u – u, ∂S(u(x, t)) + B()u + ∂�()(u(x, t)) – f (x, t)) = . In view of the
definition of the subdifferential, we get

(

û – u, –
∂

∂t

(

α

(
∂u
∂t

)))

+
(
û – u, B()u

)
+ �()(̂u) – �()(u) – (̂u – u, f ) ≥ .

Using Green’s formula, we find

–
∫ T



∫

�

∂

∂t

(

α

(
∂u
∂t

))

(̂u – u) dx dt

–
∫ T



∫

�

div
[(

C(x, t) + |∇u|) s
 |∇u|m–∇u

]
(̂u – u) dx dt

+
∫ T



∫

�

〈
ϑ ,

(
C(x, t) + |∇u|) s

 |∇u|m–∇u
〉
(̂u – u)|� d�(x) dt

+ ε

∫ T



∫

�

|u|q–u(̂u – u) dx dt + �()(̂u) – �()(u)

≥
∫ T



∫

�

f (x, t)(̂u – u) dx dt.

The result of (a) implies that

�()(̂u) – �()(u) ≥ –
∫ T



∫

�

〈
ϑ ,

(
C(x, t) + |∇u|) s

 |∇u|m–∇u
〉
(̂u – u)|� d�(x) dt.

Then –〈ϑ , (C(x, t) + |∇u|) s
 |∇u|m–∇u〉 ∈ ∂�()(u).

Using Lemma ., we have –〈ϑ , (C(x, t) + |∇u|) s
 |∇u|m–∇u〉 ∈ βx(u), (x, t) ∈ � × (, T).

Hence, (b) is true.
It can be seen from the definition of S that (c) is true. This completes the proof. �

Lemma . ([]) If βx ≡  for any x ∈ �, then ∂�()(u) ≡  for u ∈ Lp(, T ; W ,p(�)), when
p ≥ ; and ∂�()(u) ≡  for u ∈ Lp(, T ; W ,p(�)), when N

N+ < p ≤ , where N ≥ .

Proposition .
(i) For p ≥ , if βx ≡  for any x ∈ �, then

{

f ∈ L(, T ; L(�)
) ∣
∣
∣

∫ T



∫

�

f dx dt = 
}

⊂ R
(
C()).

(ii) For N
N+ < p ≤ , if βx ≡  for any x ∈ �, then

{

f ∈ L(, T ; L(�)
) ∣
∣
∣

∫ T



∫

�

f dx dt = 
}

⊂ R
(
C()).

Proof (i) In view of Lemmas ., ., ., and ., we have R(B() + ∂�() + ∂S) = Lp′ (, T ;
(W ,p(�))∗). Note that, for any f ∈ L(, T ; L(�)) with

∫ T


∫

�
f dx dt = , the linear func-

tion u ∈ Lp(, T ; W ,p(�)) → ∫ T


∫

�
fu dx dt is an element of Lp′ (, T ; (W ,p(�))∗). So there
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exists an u ∈ Lp(, T ; W ,p(�)) (we actually have u ∈ L(, T ; L(�))), such that

∫ T



∫

�

fv dx dt

=
∫ T



∫

�

–
∂

∂t

(

α

(
∂u
∂t

))

v(x, t) dx dt

+
∫ T



∫

�

〈(
C(x, t) + |∇u|) s

 |∇u|m–∇u,∇v
〉
dx dt + ε

∫ T



∫

�

|u|q–uv dx dt,

for any v ∈ Lp(, T ; W ,p(�)). In view of Lemma ., we have f = C()u.
The proof of (ii) is similar. This completes the proof. �

Definition . ([]) For t ∈ R and x ∈ �, let β
x (t) ∈ βx(t) be the element with the least

absolute value if βx(t) �= ∅, and β
x (t) = ±∞ if βx(t) = ∅, where t >  or < , respectively.

Finally, let β±(x) = limt→±∞ β
x (t) (in the extended sense) for x ∈ �. Note that β±(x) defines

measurable functions on � in view of our assumptions on βx.

Proposition . Let f ∈ L(, T ; L(�)) satisfy

T
∫

�

β–(x) d�(x) <
∫ T



∫

�

f dx dt < T
∫

�

β+(x) d�(x). (.)

Then f ∈ int R(C()) and f ∈ int R(C()).

Proof Let f ∈ L(, T ; L(�)) and satisfy (.). In view of Proposition ., there exists un ∈
L(, T ; L(�)) such that for each n ≥ , f = 

n un + C(i)un, i = , . As in Proposition .
of [], we only need to prove that ‖un‖L(,T ;L(�)) ≤ const, for all n ≥ .

Indeed, suppose to the contrary that  ≤ ‖un‖L(,T ;L(�)) → ∞, as n → ∞. Let

vn =
un

‖un‖L(,T ;L(�))
.

Taking the inner product of the equation f = 
n un + C(i)un with un, we get, for i = , ,

(un, f ) =
(

un,

n

un

)

+
(
un, B(i)un

)
+

(
un, ∂�(i)(un)

)
+

(
un, ∂S(un)

)
. (.)

From (.) we have (un, B(i)un) ≤ (un, f ), i.e.,

∫ T



∫

�

〈(
C(x, t) + |∇un|

) s
 |∇un|m–∇un,∇un

〉
dx dt + ε

∫ T



∫

�

|un|q dx dt ≤ (un, f ),

so
∫ T


∫

�
|∇un|p dx dt ≤ (un, f ). Dividing by ‖un‖p

L(,T ;L(�)) then gives

∫ T



∫

�

|∇vn|p dx dt ≤ (un, f )
‖un‖p

L(,T ;L(�))
≤ ‖f ‖L(,T ;L(�))

‖un‖p–
L(,T ;L(�))

→ ,

as n → +∞. So vn → k (a constant) in Lp(, T ; W ,p(�)), as n → +∞.
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Next, we shall show that k is in L(, T ; L(�)) and k �= .
If p ≥ , we can easily see that k is in L(, T ; L(�)) and k �=  since ‖vn‖L(,T ;L(�)) = .
If N

N+ < p < , from the above proof, we see that {vn} is bounded in Lp(, T ; W ,p(�)).
Since Lp(, T ; W ,p(�)) ↪→↪→ L(, T ; L(�)), we know that {vn} is relatively compact in
L(, T ; L(�)). Then there exists a subsequence of {vn}, for simplicity we denote it by
{vn} again, such that vn → k in L(, T ; L(�)). Then k �=  since ‖vn‖L(,T ;L(�)) =  and
k = k a.e. in � × (, T). So k �=  in L(, T ; L(�)).

Assume now that k > , we see from (.) that (un, ∂�(i)(un)) ≤ (un, f ), i = , . It follows
that




∫ T



∫

�

βx

(



un|�(x, t)
)

un|�(x, t) d�(x) dt

≤
∫ T



∫

�

[

ϕx
(
un|�(x, t)

)
– ϕx

(



un|�(x, t)
)]

d�(x) dt

≤ 

(
un, ∂�(i)(un)

) ≤ 


(un, f ).

Dividing the above inequality by ‖un‖L(,T ;L(�)), we get

∫ T



∫

�

βx

(



un|�(x, t)
)

vn|�(x, t) d�(x) dt ≤ (vn, f ).

Choose a subsequence of {un}, which is also denoted by {un}, such that un|�(x, t) → +∞
a.e. on � × (, T) and let n → +∞. We can see from the above that

T
∫

�

β+(x) d�(x) =
∫ T



∫

�

β+(x) d�(x) dt ≤
∫ T



∫

�

f (x, t) dx dt,

which is a contradiction to (.).
Similarly, if k < , it also leads to a contradiction. Thus, f ∈ int R(C()) and f ∈ int R(C()).

This completes the proof. �

Definition . ([]) Define g+(x) = lim inft→+∞ g(x, t) and g–(x) = lim supt→–∞ g(x, t). Fur-
ther, define a function g : � ×R →R by

g(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(infs≥t g(x, s)) ∧ (t – T(x)), t ≥ T(x),

, t ∈ [–T(x), T(x)],

(sups≤t g(x, s)) ∨ (t + T(x)), t ≤ –T(x).

Then, for any x ∈ �, g(x, t) is increasing in t and limt→±∞ g(x, t) = g±(x). Moreover, g :
� × R → R satisfies Carathéodory’s conditions and the functions g±(x) are measurable
on �. Further, if g(x, t) = g(x, t) – g(x, t), then g(x, t)t ≥  for |t| ≥ T(x) and x ∈ �.

Similar to Propositions . and . in [], we have the following result.

Proposition . Define the mapping H : L(, T ; L(�)) → L(, T ; L(�)) by (Hu)(x, t) =
g(x, u(x, t)) for u ∈ L(, T ; L(�)) and (x, t) ∈ � × (, T). Then H is a bounded, contin-
uous, m-accretive mapping and satisfies Condition (∗). Also define H : L(, T ; L(�)) →
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L(, T ; L(�)) by (Hu)(x, t) = g(x, u(x, t)), where g(x, t) = g(x, t) – g(x, t). Then H satis-
fies the inequality

(
H(u + y), u

) ≥ –C(y),

for any u, y ∈ L(, T ; L(�)), where C(y) is a constant depending on y.

Theorem . Let f (x, t) ∈ L(, T ; L(�)) be such that

T
∫

�

β–(x) d�(x) +
∫ T



∫

�

g–(x) dx dt <
∫ T



∫

�

f (x, t) dx dt

< T
∫

�

β+(x) d�(x) +
∫ T



∫

�

g+(x) dx dt.

Then equation (.) has a solution in L(, T ; L(�)).

Proof For i = , , let C(i) : L(, T ; L(�)) → L(,T ;L(�)) be the m-accretive mapping de-
fined in Definition . and Hi : L(, T ; L(�)) → L(, T ; L(�)) be the mappings defined
in Proposition .. In view of Proposition ., it suffices to show that f ∈ R(C(i) + H + H)
which, in view of Theorem ., would be implied by f ∈ int[R(C(i)) + R(H)].

To use Theorem ., we only need to check that C(i) +H is boundedly inversely compact,
for i = , .

In fact, it suffices to show that if w = C(i)u + Hu with {w} and {u} being bounded in
L(, T ; L(�)), then {u} is relatively compact in L(, T ; L(�)), i = , .

Case . Suppose p ≥ .
We note that

∫ T



∫

�

|∇u|p dx dt ≤ (
u, B()u

)

=
(
u, C()u

)
–

(
u, ∂�()(u)

)
–

(
u, ∂S(u)

)

≤ (
u, C()u

)
+ (u, Hu)

≤ ‖u‖L(,T ;L(�))‖w‖L(,T ;L(�)) ≤ k.

Since p ≥ , then {u} is bounded in L(, T ; H(�)). Thus, {u} is relatively compact in
L(, T ; L(�)) in view of the fact that L(, T ; H(�)) ↪→↪→ L(, T ; L(�)).

Case . N
N+ < p < . The relative compactness of {u} in L(, T ; L(�)) follows from the

result that C() has a compact resolvent in Proposition ..
Similar to the proof of the main result in [], we see that the other conditions of The-

orem . are also satisfied. Furthermore, we can also get the result that f ∈ int[R(C()) +
R(H)] by using Propositions . and . and discussing in two cases as in []. Therefore,
the conclusion follows.

The proof is complete. �
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Remark . If, in (.), the function α ≡ I (the identity mapping), then (.) reduces to
the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ∂u
∂t – div[(C(x, t) + |∇u|) s

 |∇u|m–∇u]

+ ε|u|q–u + g(x, u(x, t)) = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|) s
 |∇u|m–∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T),

∂u
∂t (x, ) = ∂u

∂t (x, T), x ∈ �,

u(x, ) = u(x, T), x ∈ �.

(.)

If, in (.), m =  and s = p – , then (.) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ∂u
∂t – div[(C(x, t) + |∇u|)

p–
 ∇u]

+ ε|u|q–u + g(x, u(x, t)) = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u|)
p–

 ∇u〉 ∈ βx(u(x, t)), (x, t) ∈ � × (, T),
∂u
∂t (x, ) = ∂u

∂t (x, T), x ∈ �,

u(x, ) = u(x, T), x ∈ �.

(.)

If, in addition, C(x, t) ≡ , then (.) reduces to the case of hyperbolic p-Laplacian prob-
lems.
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