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Abstract
This paper considers the following chemotaxis-Stokes system:

⎧
⎪⎪⎨

⎪⎪⎩

nt + u · ∇n =�n –∇ · ( nc∇c),
ct + u · ∇c =�c – nc,
ut =�u +∇P + n∇φ ,
∇ · u = 0,

in two-dimensional smoothly bounded domains, which can be seen as a model to
describe the migration of aerobic bacteria swimming in an incompressible fluid. It is
proved that the corresponding initial-boundary value problem possesses a global
generalized solution for any sufficiently regular initial data (n0, c0,u0) satisfying n0 ≥ 0

and c0 > 0. Moreover, the solution component c satisfies c(·, t) �
⇀ 0 in L∞(�) as

t → ∞ and c(·, t) → 0 in Lp(�) as t → ∞ for any p ∈ [1,∞).
To the best of our knowledge, this is the first result on global solvability in a

chemotaxis-Stokes system with singular sensitivity and signal absorption.
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1 Introduction
In biological contexts, many simple life-forms exhibit a complex collective behavior.
Chemotaxis is one particular mechanism responsible for some instances of such de-
meanor, where the organisms, like bacteria, adapt their movement according to the con-
centrations of a chemical signal (see [–] and the references therein).

In this paper, we consider the following chemotaxis-Stokes system with singular sensi-
tivity:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = �n – ∇ · ( n
c ∇c), x ∈ �, t > ,

ct + u · ∇c = �c – nc, x ∈ �, t > ,
ut = �u + ∇P + n∇φ, x ∈ �, t > ,
∇ · u = , x ∈ �, t > ,
∂n
∂ν

= ∂c
∂ν

= , u = , x ∈ ∂�, t > ,
n(x, ) = n(x), c(x, ) = c(x), u(x, ) = u(x), x ∈ �,

(.)

© 2016 Wang. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0687-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0687-3&domain=pdf
mailto:wangelongelone@163.com


Wang Boundary Value Problems  (2016) 2016:177 Page 2 of 24

where � ⊂ R
 is a bounded domain with smooth boundary, n(x, t) and c(x, t) denote the

density of the bacteria and the concentration of the oxygen, respectively, and u = u(x, t)
and P represent the velocity of fluid and the associated pressure, φ is a given potential
function.

The initial data are assumed to satisfy

⎧
⎪⎨

⎪⎩

n ∈ C(�̄), n ≥  in � and n �≡ ,
c ∈ W ,∞(�), c >  in �̄,
u ∈ D(Aβ

r ) for some β ∈ ( 
 , ) and r ∈ (,∞),

(.)

where Ar stands for the Stokes operator with domain D(Ar) := W ,r(�) ∩ W ,r
 (�) ∩ Lr

σ (�)
(see []). Here Lr

σ := {ϕ ∈ Lr(�)|∇ · ϕ = } for r ∈ (,∞). The function φ is known and
satisfies

φ ∈ W ,∞(�). (.)

This type system arises in mathematical biology to model the evolution of oxygen-driven
swimming bacteria in an impressible fluid. In the first equation of system (.), it is as-
sumed that besides moving randomly and transported by the fluid, bacteria are able to
adapt their swimming upwards gradients of the oxygen to survive, and that the chemo-
tactic stimulus is perceived in accordance with the Weber-Fechner law, thus requiring the
chemotactic sensitivity function S(n, c) := n

c proportional to the reciprocal oxygen density
c(x, t). In the second equation of system (.), it is assumed that the oxygen also diffuses
randomly and is transported by the fluid, and is consumed by the bacteria. In the third
and fourth equation of system (.), the motion of the fluid is modeled by incompressible
Stokes equations, and is affected by gravitational force exerted from aggregating bacteria
onto the fluid. System (.) can be seen as a generalization of the following model, which
is proposed by Tuval et al. [] to model the pattern formation and the spontaneous emer-
gence of turbulence observed experimentally when populations of aerobic bacteria are
suspended in water:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nt + u · ∇n = �n – ∇ · (nχ (c)∇c), x ∈ �, t > ,
ct + u · ∇c = �c – nf (c), x ∈ �, t > ,
ut + κ(u · ∇)u = �u + ∇P + n∇φ, x ∈ �, t > ,
∇ · u = , x ∈ �, t > ,

(.)

where κ ∈ R, f (c) and χ (c) denote the rate of consumption of the oxygen and the chemo-
tactic sensitivity function, respectively. However, Tuval et al. in [] assumed that χ (c) is
unity at large c and vanishes rapidly for small c, that is, χ (c) is bounded for any c. For this
type of χ (c), there have been many literatures. For example, many literatures deal with
global solvability, boundedness, large time behavior of solutions to the model (.) for the
bounded domains and the whole space (see [–] and the references therein for details).
For the model (.) with nonlinear diffusion, there also exist some results on global exis-
tence, boundedness and large time behavior for the bounded domains and the whole space
(see [–] and the references therein for details). We also remark that there are several
recent works to deal with system (.) under the assumption that the oxygen is produced,
rather than consumed, by the bacteria (see [–]).
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However, for the model (.), to the best our knowledge, there is no result on global
solvability. There are only few rigorous results on global existence and qualitative behavior
of solutions to the following fluid-free subcase of system (.):

{
nt = �n – ∇ · ( n

c ∇c), x ∈ �, t > ,
ct = �c – nc, x ∈ �, t > ,

(.)

which was first proposed by Keller-Segel [] in . The model (.) describes that the
cells (e.g. Escherichiacoli) are much more primitive in that they merely follow a chemical
cue (e.g. oxygen), which they cannot produce, but which they consume as a nutrient. In [],
Keller and Segel have discussed that the model (.) generates wave-like solution behav-
ior, which has attracted some scholars to study analytically on the existence and stability
properties of traveling wave solutions to (.) (see [–]) and some closely related mod-
els (see [–]). The singular chemotactic sensitivities as in (.) are very important in
biology, which have been underlined independently in modeling approaches (see [–])
and in tumor angiogenesis (see [, ]) and also in taxis-driven morphogen transport (see
[]). In [, ], the global existence for the spatially one-dimensional initial-boundary
value problems for (.) was derived for arbitrary initial data. For the higher-dimensional
case, Wang et al. [] proved that the Cauchy problem for (.) in R

n (n ∈ {, }) pos-
sesses globally defined classical solutions for the appropriately small initial data. In [],
Winkler proved that spatially two-dimensional Neumann initial-boundary value problems
for (.) possess a global generalized solution for any arbitrarily large initial data. Further-
more, some further boundedness and relaxation properties and the large time behavior of
c(x, t) are derived. When the second equation in (.) is replaced by the ODE ct = –nc, the
global existence is known only in one-dimensional cases, whereas in higher-dimensional
cases the corresponding results have been obtained only under sufficient smallness con-
ditions on the initial data. However, unlike model (.), there have been many works for
the classical Keller-Segel model and its variants (see [–] and the references therein,
for instance).

Recently, Winkler in [] constructed large-data global generalized solutions to a two-
dimensional chemotaxis system with tensor-valued sensitivities, and in [] he also con-
structed large-data global generalized solutions to a two-dimensional chemotaxis system
with singular sensitivity. Motivated by the above works, the goal of this paper is to deal
with global solvability and the large time behavior of c(x, t) in the two-dimensional version
of system (.)-(.) for arbitrary large initial data in an appropriate framework. We now
state the main results of this paper.

Theorem . Let � ⊂R
 be a bounded domain with smooth boundary and φ satisfy (.).

Suppose that n, c and u comply with (.). Then there exists at least one triple of func-
tions

n ∈ L
loc

(
�̄ × [,∞)

)
,

c ∈ L∞(
� × (,∞)

) ∩ L
loc

(
[,∞); W ,(�)

)
and (.)

u ∈ L
loc

(
�̄ × [,∞)

) ∩
⋂

p∈[,)

Lp
loc

(
[,∞); W ,p

 (�)
)
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such that (n, c, u) is a global generalized solution in the sense of Definition . below. The
solution component c satisfies

c(·, t)
�

⇀  in L∞(�) as t → ∞ (.)

and

c(·, t) →  in Lp(�) as t → ∞ (.)

for any p ∈ [,∞). Moreover, the solution component c has the additional property
that

c ∈ C
w�

(
[,∞); L∞(�)

)
, (.)

that is, c is continuous on [,∞) as an L∞(�)-valued function with respect to the weak-�
topology possibly after redefinition on a null set of times.

To the best of our knowledge, this is the first result on global solvability in a chemotaxis-
Stokes system with singular sensitivity and signal absorption of type (.).

The rest of this paper is arranged as follows. In Section , we first give the concept of
global generalized solutions and then derive a priori estimates for the approximate solu-
tions to the approximate problems (.) and (.). In Section , we complete the proof
of Theorem . by an approximation procedure.

2 A generalized solution concept and a priori estimates
2.1 A generalized solution concept and the approximate problems
First of all, we specify our solution concept. As far as the second component c and the third
u are concerned, a generalized solution of the respective sub-problem of (.) is straight-
forward. The most important part of a generalized solution concept is with respect to the
first equation in (.). This concept is very weak due to the poor regularity of solutions.
Our solution concept parallels the generalized solution concept in the fluid-free chemo-
taxis system which is studied in [].

Definition . Suppose that n, c, and u satisfy (.). Then a triple (n, c, u) of functions

⎧
⎪⎨

⎪⎩

n ∈ L
loc(�̄ × [,∞)),

c ∈ L∞
loc(� × (,∞)) ∩ L

loc([,∞); W ,(�)) and
u ∈ L

loc([,∞); W ,
 (�))

(.)

with
⎧
⎪⎨

⎪⎩

n ≥  a.e. in � × (,∞),
c >  a.e. in � × (,∞),
∇ · u =  a.e. in � × (,∞)

(.)

as well as

∇ ln(n + ) ∈ L
loc

(
�̄ × [,∞)

)
and ∇ ln c ∈ L

loc
(
�̄ × [,∞)

)
, (.)
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will be called a global generalized solution of (.) if n satisfies the mass conservation
property

∫

�

n(x, t) dx =
∫

�

n(x) dx for a.e. t > , (.)

if the inequality

–
∫ ∞



∫

�

ln(n + )ϕt dx dt –
∫

�

ln(n + )ϕ(x, ) dx

≥
∫ ∞



∫

�

∣
∣∇ ln(n + )

∣
∣

ϕ dx dt –
∫ ∞



∫

�

∇ ln(n + ) · ∇ϕ dx dt

–
∫ ∞



∫

�

n
n + 

(∇ ln(n + ) · ∇ ln c
)
ϕ dx dt +

∫ ∞



∫

�

n
n + 

∇ ln c · ∇ϕ dx dt

+
∫ ∞



∫

�

ln(n + )(u · ∇ϕ) dx dt (.)

holds for each nonnegative ϕ ∈ C∞
 (�̄ × [,∞)), if moreover the identity

∫ ∞



∫

�

cϕt dx dt +
∫

�

cϕ(x, ) dx

=
∫ ∞



∫

�

∇c · ∇ϕ dx dt +
∫ ∞



∫

�

ncϕ dx dt –
∫ ∞



∫

�

c(u · ∇ϕ) dx dt (.)

holds for any ϕ ∈ L∞(�̄ × (,∞)) ∩ L((,∞); W ,(�)) having compact support in �̄ ×
[,∞) with ϕt ∈ L(� × (,∞)), and if finally the identity

–
∫ ∞



∫

�

uϕt dx dt –
∫

�

uϕ(x, ) dx

= –
∫ ∞



∫

�

∇u · ∇ϕ dx dt +
∫ ∞



∫

�

n∇φ · ϕ dx dt (.)

is valid for all ϕ ∈ C∞
 (� × [,∞);R) with ∇ · ϕ = .

Remark
(i) The regularity requirements in (.), (.), and (.) along with the fact that

 ≤ ln(n + ) ≤ n for all n ≥  ensure that all integrals in (.), (.), and (.) are
well defined.

(ii) Under the hypotheses in Definition ., it is well known [] that there exists a
distribution P on � × (,∞) such that ut = �u + ∇P + n∇φ holds in
D′(� × (,∞)).

(iii) Following the proof of a statement in [], Lemma ., and in conjunction with the
mass conversation identity (.), we can see that if n ≥  and c >  are functions
from C(�̄ × [,∞)) ∩ C,(�̄ × (,∞)) and u ∈ C(�̄ × [,∞);R) ∩
C,(�̄ × (,∞);R) such that ∇ · u ≡  and such that (n, c, u) is a global
generalized solution of (.) in the sense that Definition ., then there exists
P ∈ C,(� × (,∞)) such that (n, c, u, P) also is a classical solution of (.) in
� × (,∞).
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In order to construct a global generalized solution of (.) in the above sense, following
the approaches in [] we fix a nonincreasing cut-off function ρ ∈ C∞([,∞)) satisfying
ρ ≡  in [, ] and ρ ≡  in [,∞) and define fε ∈ C∞([,∞)) by letting

fε(s) :=
∫ s


ρ(εσ ) dσ , s ≥  (.)

for ε ∈ (, ). Then for any such ε and ρ , fε fulfills

fε() =  and  ≤ f ′
ε ≤  on [,∞) (.)

and

fε(s) = s for all s ∈
[

,

ε

]

and f ′
ε (s) =  for all s ≥ 

ε
(.)

as well as

fε(s) ↗ s and f ′
ε (s) ↗  as ε ↘  for each s ≥ .

Thus, for any such ε, the approximate problems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

nεt + uε · ∇nε = �nε – ∇ · ( nε f ′
ε (nε)
cε ∇cε), x ∈ �, t > ,

cεt + uε · ∇cε = �cε – fε(nε)cε , x ∈ �, t > ,
uεt = �uε + ∇Pε + nε∇φ, x ∈ �, t > ,
∇ · uε = , x ∈ �, t > ,
∂nε

∂ν
= ∂cε

∂ν
= , uε = , x ∈ ∂�, t > ,

nε(x, ) = n(x), cε(x, ) = c(x), uε(x, ) = u(x), x ∈ �

(.)

are indeed globally solvable in the classical sense.

Lemma . Let � ⊂R
 be a bounded domain with smooth boundary and (n, c, u) sat-

isfy (.). Let ε ∈ (, ) and ϑ > . Then there exist functions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nε ∈ C(�̄ × [,∞)) ∩ C,(�̄ × (,∞)),
cε ∈ C(�̄ × [,∞)) ∩ C,(�̄ × (,∞)) ∩ L∞

loc([,∞); W ,ϑ (�)),
uε ∈ C(�̄ × [,∞);R) ∩ C,(�̄ × (,∞);R),
Pε ∈ C,(�̄ × (,∞))

such that (nε , cε , uε , Pε) solves (.) classically in � × (,∞), and such that nε >  in �̄ ×
(,∞) and

∫

�

nε(x, t) dx =
∫

�

n(x) dx for all t >  (.)

as well as

 < cε ≤ ‖c‖L∞(�) in �̄ × [,∞). (.)

Moreover, this solution is unique, up to addition of constants to P.
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Proof By taking a well-known fixed point argument (see [], Lemma ., for details), one
can readily verify that for each ε ∈ (, ) and ϑ >  there exist Tmax,ε ∈ (,∞] and functions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nε ∈ C(�̄ × [, Tmax,ε)) ∩ C,(�̄ × (, Tmax,ε)),
cε ∈ C(�̄ × [, Tmax,ε)) ∩ C,(�̄ × (, Tmax,ε)) ∩ L∞

loc([, Tmax,ε); W ,ϑ (�)),
uε ∈ C(�̄ × [, Tmax,ε);R) ∩ C,(�̄ × (, Tmax,ε);R),
Pε ∈ C,(�̄ × (, Tmax,ε))

with nε >  in �̄ × (, Tmax,ε) and cε >  in �̄ × [, Tmax,ε), such that (nε , cε , uε , Pε) is a
classical solution in � × (, Tmax,ε). This solution is unique, up to addition of constants
to P. Moreover, we have

either Tmax,ε = ∞, or

lim sup
t↗Tmax,ε

(∥
∥nε(·, t)

∥
∥

L∞(�) +
∥
∥cε(·, t)

∥
∥

W ,ϑ (�) +
∥
∥Aβuε(·, t)

∥
∥

L(�)

) → ∞, or

lim inf
t↗Tmax,ε

inf
x∈�

cε(x, t) = ,

(.)

where A and β are given in (.).
By integrating the first equation in (.) over � and applying a parabolic comparison

argument to the second equation in (.), we obtain

∥
∥nε(·, t)

∥
∥

L(�) = ‖n‖L(�) for all t ∈ (, Tmax,ε) (.)

and

∥
∥cε(·, t)

∥
∥

L∞(�) ≤ ‖c‖L∞(�) for all t ∈ (, Tmax,ε). (.)

To prove this lemma, we need to verify that for any fixed ε ∈ (, ) the corresponding
maximal existence time Tmax,ε is equal to ∞. We assume Tmax,ε < ∞ and we will show that
neither the second nor the third alternative in (.) can occur. Since supp f ′

ε ⊂ [, 
ε

] by
(.), we apply the maximum principle to the first equation in (.) to show that

nε(x, t) ≤ C(ε) := max

{

‖n‖L∞(�),

ε

}

(.)

for all x ∈ � and t ∈ (, Tmax,ε). By applying (.), from [], Lemma ., we see that for
any given p ∈ (,∞) there exists a constant C >  such that

‖uε(·, t)‖Lp(�) ≤ C for all t ∈ (, Tmax,ε). (.)

Since the Stokes operator A = –P� is sectorial and generates a contraction semigroup
(e–tA)t≥ in L(�), where P represents the Helmholtz projection in L(�), for the fluid
equation in (.) we have

uε(·, t) = e–tAu +
∫ t


e–(t–s)AP

(
nε(·, s)∇φ

)
ds
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for all t ∈ (, Tmax,ε). Applying Aβ (β ∈ ( 
 , )) to the above formula, we see that there exists

some λ >  such that

∥
∥Aβuε(·, t)

∥
∥

L(�) ≤ ∥
∥Aβe–tAu

∥
∥

L(�) +
∫ t



∥
∥Aβe–(t–s)AP

(
nε(·, s)∇φ

)∥
∥

L(�) ds

≤ ∥
∥e–tAAβu

∥
∥

L(�) + C

∫ t


(t – s)–βe–λ(t–s)∥∥P

(
nε(·, s)∇φ

)∥
∥

L(�) ds

≤ C + C
∥
∥nε(·, t)

∥
∥

L∞(�)

∫ t


(t – s)–βe–λ(t–s) ds ≤ C + C (.)

for all t ∈ (, Tmax,ε), where C, . . . , C are some positive constants.
For the second equation in (.), from the variation of constant formula we can repre-

sent cε by

cε(·, t) = et�c –
∫ t


e(t–s)�(

uε · ∇cε + nεfε(cε)
)

ds for all t ∈ (, Tmax),

where (et�)t≥ denotes the Neumann heat semigroup in �. Let λ >  represent the first
nonzero eigenvalue of –� in � under Neumann boundary conditions. For each ϑ > , we
follow the Lp – Lq estimates for Neumann heat semigroup to obtain

∥
∥∇cε(·, t)

∥
∥

Lϑ (�) ≤ C‖∇c‖Lϑ (�)

+ C

∫ t


(t – s)–+ 

ϑ e–λ(t–s)∥∥uε · ∇cε + nεfε(cε)
∥
∥

L
ϑ

+ϑ (�)
ds

≤ C + C

∫ t


(t – s)–+ 

ϑ e–λ(t–s)‖uε‖Lϑ (�)‖∇cε‖L(�) ds

≤ C + C

∫ t


(t – s)–+ 

ϑ e–λ(t–s)‖∇cε‖L(�) ds (.)

with some positive constants C, C, C, and C for all t ∈ (, Tmax,ε), where we used (.)
in the last step. We now go to estimate ‖∇cε‖L(�). Multiplying the second equation in
(.) by –�cε and integrating by parts over �, we obtain




d
dt

∫

�

|∇cε| dx +
∫

�

|�cε| dx

=
∫

�

�cε∇cε · uε dx +
∫

�

fε(nε)cε�cε dx

≤ 


∫

�

|�cε| dx +
∫

�

|∇cε||uε| dx +
∫

�

f 
ε (nε)c

ε dx (.)

for all t ∈ (, Tmax,ε). According to the estimate of nε in (.) and the definition of fε(nε)
in (.) along with the boundedness of cε in (.) and then using Hölder’s inequality, we
derive that there exist some positive constants C and C and q >  such that




d
dt

∫

�

|∇cε| dx +
∫

�

|�cε| dx

≤ 


∫

�

|�cε| dx + ‖uε‖
Lq(�)‖∇cε‖

L
q

q– (�)
+ C

≤ 


∫

�

|�cε| dx + C‖∇cε‖

L
q

q– (�)
+ C (.)
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for all t ∈ (, Tmax,ε). An application of the Gagliardo-Nirenberg inequality implies that

‖∇cε‖

L
q

q– (�)
≤ C‖�cε‖


q
L(�)‖cε‖

(q–)
q

L∞(�) + C‖cε‖
L∞(�)

≤ C‖�cε‖

q
L(�) + C

≤ 
C

‖�cε‖
L(�) + C for all t ∈ (, Tmax,ε)

with some constants C > , C > , and C > . Thus, we have




d
dt

∫

�

|∇cε| dx +



∫

�

|�cε| dx ≤ C + CC for all t ∈ (, Tmax,ε).

Therefore, we obtain
∫

�
|∇cε| dx ≤ (C + CC)Tmax,ε +

∫

�
|∇c| dx. Inserting it into

(.) and using the boundedness of cε implies that

∥
∥cε(·, t)

∥
∥

W ,ϑ (�) ≤ C(Tmax,ε) for all t ∈ (, Tmax,ε). (.)

We define c̃ := {miny∈�̄ c(y)}eC(ε)t , where C(ε) is defined in (.). We can easily verify
that c̃ is a subsolution to the second equation in (.). Therefore, we obtain

cε(x, t) ≥ {
min
y∈�̄

c(y)
}

eC(ε)t for all x ∈ � and t ∈ (, Tmax,ε). (.)

Thus, (.), (.), (.), and (.) exclude the second and the third alternatives in (.)
and we complete the proof. �

Similar to [], we define

wε(x, t) := – ln

(
cε(x, t)

‖c‖L∞(�)

)

, (x, t) ∈ �̄ × [,∞), ε ∈ (, ) (.)

for convenience of the following estimates. Substituting it into (.), we see that the cor-
responding system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nεt + uε · ∇nε = �nε + ∇ · (nεf ′
ε (nε)∇wε), x ∈ �, t > ,

wεt + uε · ∇wε = �wε – |∇wε| + fε(nε), x ∈ �, t > ,
uεt = �uε + ∇Pε + nε∇φ, x ∈ �, t > ,
∇ · uε = , x ∈ �, t > ,
∂nε

∂ν
= ∂wε

∂ν
= , uε = , x ∈ ∂�, t > ,

nε(x, ) = n(x), wε(x, ) = – ln( c(x)
‖c‖L∞(�)

), uε(x, ) = u(x), x ∈ �

(.)

admits a global classical solution (nε , wε , uε) satisfying nε ≥  and wε ≥ .

2.2 Some basic ε-independent a priori estimates and compactness properties of
((nε, wε , uε))ε∈(0,1)

In this subsection, we derive some basic ε-independent a priori estimates for the solutions
(nε , wε , uε) to (.) and obtain some compactness properties.
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Lemma . Suppose that (nε , wε , uε) is a classical solution to (.). Then for all ε ∈ (, ),
we have

∫

�

wε(x, t) dx +
∫ t



∫

�

|∇wε| dx ds ≤
∫

�

w dx + mt for all t >  (.)

and
∫ t



∫

�

|∇nε|
(nε + ) dx ds ≤

∫

�

w dx + m + mt for all t >  (.)

as well as
∫ t



∫

�

|∇cε| dx ds ≤
∫

�

c
 dx for all t > , (.)

where m :=
∫

�
n dx.

Proof Integrating the second equation in (.) over �, we obtain

d
dt

∫

�

wε dx +
∫

�

|∇wε|d =
∫

�

fε(nε) dx

≤
∫

�

nε dx =
∫

�

n dx = m for all t > ,

where we used fε(nε) ≤ nε for all t >  by (.). Integrating the above inequality with re-
spect to time yields (.). Moreover, due to the nonnegativity of wε , we have

∫

�

wε(·, t) dx ≤
∫

�

w dx + mt for all t >  (.)

as well as
∫ t



∫

�

|∇wε| dx ds ≤
∫

�

w dx + mt for all t > . (.)

Multiplying the first equation in (.) by 
nε+ and integrating by parts over �, we derive

that

d
dt

∫

�

ln(nε + ) dx =
∫

�

|∇nε|
(nε + ) dx +

∫

�

nεf ′
ε (nε)∇wε · ∇nε

(nε + ) dx (.)

for all t > . By using Young’s inequality and  ≤ f ′
ε ≤  for all t > , we have

∣
∣
∣
∣

∫

�

nεf ′
ε (nε)∇wε · ∇nε

(nε + ) dx
∣
∣
∣
∣ ≤ 



∫

�

(
nε

nε + 
f ′
ε (nε)

)

|∇wε| dx +



∫

�

|∇nε|
(nε + ) dx

≤ 


∫

�

|∇wε| dx +



∫

�

|∇nε|
(nε + ) dx for all t > .

Inserting it into (.) yields

d
dt

∫

�

ln(nε + ) dx ≥ 


∫

�

|∇nε|
(nε + ) dx –




∫

�

|∇wε| dx for all t > . (.)
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Integrating (.) in time and using  ≤ ln(nε + ) ≤ nε , we obtain




∫ t



∫

�

|∇nε|
(nε + ) dx ds ≤ 



∫ t



∫

�

|∇wε| dx ds +
∫

�

{
ln(nε + ) – ln(n + )

}
dx

≤ 


∫ t



∫

�

|∇wε| dx ds +
∫

�

nε dx

≤ 


(∫

�

w dx + mt
)

+ m for all t >  (.)

according to the mass conversation property and (.). This yields (.).
Multiplying the second equation in (.) by cε and integrating by parts over �, we show

that




d
dt

∫

�

c
ε dx +

∫

�

|∇cε| dx = –
∫

�

c
ε fε(nε) dx for all t > .

Due to the nonnegativity of f (nε), we have 


d
dt

∫

�
c
ε dx +

∫

�
|∇cε| dx ≤  for all t > .

Integrating it in time shows that (.) holds. �

The following lemma is on the estimates of uε , which has been proved in [], Sec-
tion .. Meanwhile, the scholars in [–] also studied some regularity results for the
stationary Stokes system, the p-Laplacian in N space variables and the parabolic obstacle
problems, respectively. We omit the proof of the following lemma for brevity.

Lemma . ([])
(i) Let (nε , wε , uε) be a classical solution to (.). For any given p ∈ (,∞), there exists a

positive constant C = C(p, u, n,φ) such that, for any ε ∈ (, ),

∥
∥uε(·, t)

∥
∥

Lp(�) ≤ C for all t > . (.)

(ii) Let (nε , wε , uε) be a classical solution to (.). For any given r ∈ (, ), there exists a
positive constant C = C(r, u, n,φ) such that, for any ε ∈ (, ),

∥
∥uε(·, t)

∥
∥

W ,r(�) ≤ C for all t > . (.)

In order to obtain the compactness properties of nε , wε and cε , we need to derive some
regularity properties of time derivatives.

Lemma . Let (nε , wε , uε) be a classical solution to (.). Then for all T >  and each
p > , there exist constants C(T) >  and C(p, T) >  such that, for any ε ∈ (, ),

∫ T



∥
∥∂t ln

(
nε(·, t) + 

)∥
∥

(W ,(�))� dt ≤ C(T) (.)

and

∫ T



∥
∥wεt(·, t)

∥
∥

(W ,(�))� dt ≤ C(T) (.)
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as well as

∫ T



∥
∥cεt(·, t)

∥
∥

(W ,p(�))� dt ≤ C(p, T). (.)

Proof We take ψ ∈ C∞(�̄) and test the first equation in (.) by ψ

nε (x,t)+ for any fixed t > 
to obtain

∫

�

∂t ln
(
nε(x, t) + 

)
ψ dx

= –
∫

�


nε + 

∇nε · ∇ψ dx +
∫

�

|∇nε|
(nε + ) ψ dx

–
∫

�

nεf ′
ε (nε)

nε + 
∇wε · ∇ψ dx +

∫

�

nεf ′
ε (nε)

(nε + ) (∇wε · ∇nε)ψ dx

–
∫

�

(uε · ∇nε)
ψ

nε(·, t) + 
dx. (.)

Using the Cauchy-Schwarz inequality and Young’s inequality several times yields

∣
∣
∣
∣

∫

�

∂t ln
(
nε(x, t) + 

)
ψ dx

∣
∣
∣
∣

≤
{(∫

�

|∇nε|
(nε + ) dx

) 


+
∫

�

|∇nε|
(nε + ) dx +

(∫

�

|∇wε| dx
) 



+
(∫

�

|∇nε|
(nε + ) dx

) 

(∫

�

|∇wε| dx
) 



+
(∫

�

|uε| dx
) 


(∫

�

|∇nε|
(nε + ) dx

) 

}

· {‖ψ‖L∞(�) + ‖∇ψ‖L(�)
}

≤
{


∫

�

|∇nε|
(nε + ) dx +

∫

�

|∇wε| dx +



∫

�

|uε| dx + 
}

· {‖ψ‖L∞(�) + ‖∇ψ‖L(�)
}

(.)

for all ψ ∈ C∞(�̄), where we used the fact that  ≤ f ′
ε ≤  for all t > . Since W ,(�) ↪→

L∞(�), there exists a constant C >  such that ‖ψ‖L∞(�) + ‖∇ψ‖L(�) ≤ C‖ψ‖W ,(�).
Thus, we obtain

∥
∥∂t ln

(
nε(·, t) + 

)∥
∥

(W ,(�))� ≤ C

{


∫

�

|∇nε|
(nε + ) dx +

∫

�

|∇wε| dx +



∫

�

|uε| dx + 
}

for all t > . Integrating the above inequality in time and using (.), (.), and (.),
we see that there exists a constant C(T) >  such that (.) holds.

Similarly, for arbitrary ψ ∈ C∞(�̄) and fixed t > , we derive from the second equation
in (.) that

∣
∣
∣
∣

∫

�

wεt(x, t)ψ dx
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

(
�wε – uε · ∇wε – |∇wε| + fε(nε)

)
ψ dx

∣
∣
∣
∣
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=
∣
∣
∣
∣–

∫

�

∇wε · ∇ψ dx –
∫

�

uε · ∇wεψ dx –
∫

�

|∇wε|ψ dx +
∫

�

fε(nε)ψ dx
∣
∣
∣
∣

≤
{(∫

�

|∇wε| dx
) 


+

(∫

�

|uε| dx
) 


(∫

�

|∇wε| dx
) 



+
∫

�

|∇wε| dx +
∫

�

nε dx
}

· {‖ψ‖L∞(�) + ‖∇ψ‖L(�)
}

≤
{


∫

�

|∇wε| dx +



∫

�

|uε| dx +



+
∫

�

n dx
}

· {‖ψ‖L∞(�) + ‖∇ψ‖L(�)
}

≤
{


∫

�

|∇wε| dx +



∫

�

|uε| dx +



+
∫

�

n dx
}

· C‖ψ‖W ,(�). (.)

Thus, we obtain

∥
∥wεt(·, t)

∥
∥

(W ,(�))�

≤ C

{


∫

�

|∇wε| dx +



∫

�

|uε| dx +



+
∫

�

n dx
}

for all t > ,

which implies (.) holds.
Finally, we derive (.). For fixed p > , we have W ,p(�) ↪→ L∞(�). Thus for any ψ ∈

C∞(�̄), there exists a constant C >  such that ‖ψ‖L∞(�) + ‖∇ψ‖L(�) ≤ C‖ψ‖W ,p(�).
Similarly, we derive from the second equation in (.) that

∣
∣
∣
∣

∫

�

cεt(·, t)ψ dx
∣
∣
∣
∣

=
∣
∣
∣
∣–

∫

�

∇cε · ∇ψ dx –
∫

�

uε · ∇cεψ dx –
∫

�

f (nε)cεψ dx
∣
∣
∣
∣

≤
{(∫

�

|∇cε| dx
) 


+

(∫

�

|uε| dx
) 


(∫

�

|∇cε| dx
) 


+ ‖c‖L∞(�)

∫

�

nε dx
}

· {‖ψ‖L∞(�) + ‖∇ψ‖L(�)
}

≤
{(∫

�

|∇cε| dx
) 


+ C




(∫

�

|∇cε| dx
) 


+ m‖c‖L∞(�)

}

· C‖ψ‖W ,p(�) (.)

by (.), (.), (.), and (.). Thus, we have

∥
∥cεt(·, t)

∥
∥

(W ,p(�))� ≤ C


{

( + C)
∫

�

|∇cε| dx + m‖c‖
L∞(�)

}

for all t > .

Since |∇cε| ≤ |∇wε| · ‖c‖L∞(�), we infer from (.) that (.) holds. �

Based on Lemma .-Lemma . and standard compactness arguments, we can obtain
the following basic properties with regard to the solutions of (.).

Lemma . Let (nε , wε , uε) be the solutions to (.). Then there exist functions n, w and u
defined on � × (,∞) and satisfying n ≥ , w ≥  and ∇ · u =  a.e. on � × (,∞) as well
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as a sequence (εj)j∈N ⊂ (, ) such that εj ↘  as j → ∞ and such that as ε = εj ↘ ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

nε → n a.e. in � × (,∞),
ln(nε + ) ⇀ ln(n + ) in L

loc([,∞); W ,(�)),
wε → w in L

loc(�̄ × [,∞)) and a.e. in � × (,∞),
wε ⇀ w in L

loc([,∞); W ,(�)),
wε(·, t) → w(·, t) in L(�) for a.e. t > ,
uε ⇀ u in L

loc(�̄ × [,∞)) and in Lp
loc([,∞); W ,p

 (�)) for all p ∈ (, )

(.)

as well as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cε → c in L
loc(�̄ × [,∞)) and a.e. in � × (,∞),

cε

�
⇀ c in L∞(� × (,∞)),

cε ⇀ c in L
loc([,∞); W ,(�)),

cε(·, t) → c(·, t) in L(�) for a.e. t > ,
cεt ⇀ ct in L

loc([,∞); (W ,p(�))�) for all p > 

(.)

with c := ‖c‖L∞(�) · e–w. Moreover, the triple (n, c, u) has the properties (.)-(.) in Defi-
nition ..

Proof The properties (.) and (.) combined with the Aubin-Lions Lemma (see [])
warrant that there exist a sequence {εj}j∈N with εj ↘  as j → ∞ and functions n and w
such that ln(nε +) ⇀ ln(n+) in L

loc([,∞); W ,(�)) and ln(nε +) → ln(n+) in L
loc(�̄×

[,∞)) and a.e. in � × (,∞) as well as wε ⇀ w in L
loc([,∞); W ,(�)) and wε → w in

L
loc(�̄×[,∞)) and a.e. in �×(,∞) as ε = εj ↘ . In view of Lemma ., (.) and (.)

imply that (uε)ε∈(,) is relatively compact with regard to the weak topology in L
loc(�̄ ×

[,∞)) and also in Lp
loc([,∞); W ,p

 (�)) for each p ∈ (, ). Thus, we have obtained (.).
Similarly, by (.), (.) and the Aubin-Lions lemma along with a standard extraction
procedure, we can find a sequence {εj}j∈N with εj ↘  as j → ∞ and a function c such that
cε → c in L

loc(�̄ × [,∞)) and a.e. in � × (,∞) and cε(·, t) → c(·, t) in L(�) for a.e. t > 
as well as cε ⇀ c in L

loc([,∞); W ,(�)) and cεt ⇀ ct in L
loc([,∞); (W ,p(�))�) for all p > 

as ε = εj ↘ . From (.) in Lemma ., we can also obtain cε

�
⇀ c in L∞(� × (,∞)) as

ε = εj ↘ .
The property (.) is from (.), (.), the finiteness of w a.e. in � × (,∞) and

∇ ·uε ≡ , while the property (.) is straightforward from (.) and (.). The second
and the third inclusions in (.) are straightforward from (.), (.) and (.), and
the first follows from Fatou’s lemma, which along with (.) shows that

∫ T



∫

�

n dx ds ≤ lim inf
ε=εj↘

∫ T



∫

�

nε dx ds ≤ mT

for all T > . �

2.3 Strong precompactness of (nεj )j∈N in L1
loc(�̄ × [0, ∞))

Until now, the regularity of the functions n, c and u obtained in Lemma . does not meet
the requirements of the identities (.) and (.) in Definition .. Therefore, based on
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(.), we have to derive some further compactness properties of nε . Since the consid-
ered space dimension is two, we can derive the strong precompactness of the sequence
(nεj )j∈N by taking a similar argument in [], where the strong compactness is obtained by
the Moser-Trudinger inequality and the Vitali convergence theorem. We first derive from
(.) the following inequality by means of the Moser-Trudinger inequality.

Lemma . Let (nε , wε , uε) is a classical solution to (.). Then for all p > , there exists
a constant C(p) >  such that for any given ε ∈ (, ) we have

∫ t


ln

{


|�|
∫

�

(nε + )pdx
}

ds ≤ C(p) · ( + m)t + C(p) ·
{∫

�

w dx + m
}

(.)

for all t > , where m :=
∫

�
n dx.

Proof In view of the Moser-Trudinger inequality, there exist some positive constants C,
C, and C such that for all nonnegative function ϕ ∈ W ,(�) we have

∫

�

eϕ dx ≤ CeC
∫

� |∇ϕ| dx+C
∫

� ϕ dx.

Thus, for fixed p >  and t > , we obtain


|�|

∫

�

(nε + )pdx =


|�|
∫

�

ep ln(nε+) dx ≤ C

|�|eCp ∫

�
|∇nε |
(nε+)

dx+Cp
∫

� ln(nε+) dx

and
∫ t


ln

{


|�|
∫

�

(nε + )pdx
}

ds

≤ t · ln
C

|�| + Cp
∫ t



∫

�

|∇nε|
(nε + ) dx ds + Cp

∫ t



∫

�

ln(nε + ) dx ds

≤
(

ln
C

|�| + Cpm
)

t + Cp
∫ t



∫

�

|∇nε|
(nε + ) dx ds

≤
(

ln
C

|�| + Cpm
)

t + Cp
(∫

�

w dx + m + mt
)

,

where we used (.) and ln(nε + ) ≤ nε for all t > . Thus, we can find some constant
C(p) >  such that (.) holds. �

Now we derive the strong precompactness property by means of the Vitali convergence
theorem. Because the proof of the following lemma is similar to the proof of Lemma .
from [], we only sketch the main steps here.

Lemma . Let n and (εj)j∈N ⊂ (, ) be as provided by Lemma .. Then we have

nε → n in L
loc

(
�̄ × [,∞)

)
as ε = εj ↘  (.)

and
∫

�

n(x, t) dx =
∫

�

n dx for a.e. t > . (.)
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Proof We fix T >  and let C := C() · ( + m)t + C() · {∫
�

w dx + m} from Lemma .
and m :=

∫

�
n dx. For given η > , we can then choose M >  large enough and thereafter

δ >  suitably small such that

mC

ln M
|�|

<
η


and

√
MTδ <

η


. (.)

We decompose (, T) by introducing

S(ε) :=
{

t ∈ (, T)
∣
∣
∣

∫

�

n
ε(·, t) dx ≤ M

}

and

S(ε) :=
{

t ∈ (, T)
∣
∣
∣

∫

�

n
ε(·, t) dx > M

}

for all t > .

By using (.), we derive that

C ≥
∫

S(ε)
ln

{


|�|
∫

�

(
nε(x, t) + 

) dx
}

dt

≥
∫

S(ε)
ln

{


|�|
∫

�

nε(x, t) dx
}

dt

≥
∫

S(ε)
ln

M
|�| = ln

M
|�| · ∣∣S(ε)

∣
∣

and hence

∣
∣S(ε)

∣
∣ ≤ C

ln M
|�|

for all M >  and ε ∈ (, ).

Assume that E ⊂ � × (, T) is measurable with |E| < δ, and let E(t) := {x ∈ �|(x, t) ∈ E} for
all t ∈ (, T). Then for all ε ∈ (, ) we derive that

∫ ∫

E
nε dx dt ≤

∫

S(ε)

∫

E(t)
nε dx dt +

∫

S(ε)

∫

E(t)
nε dx dt

≤
∫

S(ε)

∣
∣E(t)

∣
∣




(∫

�

n
ε dx

) 


dt + m
∣
∣S(ε)

∣
∣

≤ √
M

∫

S(ε)

∣
∣E(t)

∣
∣


 dt + m

∣
∣S(ε)

∣
∣

≤ √
M

√∣
∣S(ε)

∣
∣

(∫

S(ε)

∣
∣E(t)

∣
∣dt

) 


+ m
∣
∣S(ε)

∣
∣

≤ √
MT

√|E| + m
∣
∣S(ε)

∣
∣

≤ √
MTδ +

mC

ln M
|�|

≤ η


+

η


= η.

Because we have obtained nε → n a.e. in � × (, T) as ε = εj ↘  in Lemma ., we have
nε → n in L(�× (, T)) in the light of the Vitali convergence theorem. Thus, we establish
(.). The property (.) is straightforward from (.) and (.). �
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As a consequence thereof, we can prove the limit functions c and u indeed are weak
solutions to the respective subproblems in (.) as required in Definition ..

Lemma . The limit functions n, c, and u obtained in Lemma . satisfy the identity (.)
and identity (.) in Definition . for all test functions from the class indicated there.

Proof First, we verify the validity of (.) in Definition .. For each ϕ from the class indi-
cated in (.), by using (.) and (.) along with the definition of fε we derive that

∫ ∞



∫

�

fε(nε)cεϕ dx dt →
∫ ∞



∫

�

ncϕ dx dt as ε = εj ↘ , (.)

where (εj)j∈N ⊂ (, ) is as in Lemma . (see [], Lemma ., for details). Based on (.),
(.), and (.), we obtain

∫ ∞



∫

�

cεϕt dx dt →
∫ ∞



∫

�

cϕt dx dt as ε = εj ↘ ,

∫ ∞



∫

�

∇cε · ∇ϕ dx dt →
∫ ∞



∫

�

∇c · ∇ϕ dx dt as ε = εj ↘ ,

and
∫ ∞



∫

�

cε(uε · ∇ϕ) dx dt →
∫ ∞



∫

�

c(u · ∇ϕ) dx dt as ε = εj ↘ .

Therefore, the functions n, c and u obtained in Lemma . satisfy the identity (.).
Second, we verify (.). From (.) in Lemma ., we have

uε ⇀ u in L
loc

(
[,∞); W ,

 (�)
)

as ε = εj ↘ , (.)

which in conjunction with (.) yields for all ϕ from the class indicated in (.)

∫ ∞



∫

�

uε · ϕt dx dt →
∫ ∞



∫

�

u · ϕt dx dt as ε = εj ↘ ,

∫ ∞



∫

�

∇uε · ∇ϕ dx dt →
∫ ∞



∫

�

∇u · ∇ϕ dx dt as ε = εj ↘ 

and
∫ ∞



∫

�

nε∇φ · ϕ dx dt →
∫ ∞



∫

�

n∇φ · ϕ dx dt as ε = εj ↘ .

Thus, we complete the proof. �

2.4 Strong convergence of (∇wεj )j∈N in L2
loc(�̄ × [0, ∞))

Up to now, we only obtain the weak precompactness properties of (∇ ln(nε + ))ε∈(,) and
(∇wε)ε∈(,) in L

loc(�̄×[,∞)), which do not satisfy the strong compact requirement in this
space in the cross-diffusion in (.) by passing to the limit. We can prove that the family
(∇wε)ε∈(,) is relatively compact in L

loc(�̄ × [,∞)) with regard to the strong topology by
following a similar argument in [], Section ., for the fluid-free case u ≡ .
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Lemma . Let n, c, w, and u be given by Lemma .. Then there exists a null set N ⊂
(,∞) such that

∫ t



∫

�

|∇w| dx dt ≥
∫

�

w dx –
∫

�

w(x, t) dx + mt for all t ∈ (,∞)\N , (.)

where m :=
∫

�
n dx.

Proof We fix any sequence (ηj)j∈N ⊂ (, ) satisfying ηj ↘  as j → ∞, and for each j we
can then pick a null set Nj ⊂ (,∞) such that t ∈ (,∞)\Nj is a Lebesgue point of  < t �→
∫

�
ln(c(x, t) + ηj) dx. From (.) there exists a null set N� ⊂ (,∞) such that w(x, t) ∈

L(�) for all t ∈ (,∞)\N�. Then given t ∈ (,∞)\N (N := N� ∪ ⋃
j∈N Nj), δ ∈ (, ), h ∈

(, t) and η ∈ (ηj)j∈N, we define

ϕ(x, t) := ζδ(t) · Sh

[


c + η

]

(x, t), (.)

where

ζδ(t) :=

⎧
⎪⎨

⎪⎩

 if t ≤ t,
t+δ–t

δ
if t ∈ (t, t + δ),

 if t ≥ t + δ,

and where

Sh

[


c + η

]

(x, t) :=

h

∫ t

t–h


c(x, s) + η

ds, (x, t) ∈ � × (,∞),

where we let

c(x, t) := c(x) for x ∈ � and t ≤ . (.)

We note that the regularity properties of c(x, t) in (.) ensure that ϕ(x, t) has the regu-
larity properties required in (.). Hence we take ϕ as a test function in (.), that is,

I + I :=
∫ ∞



∫

�

cϕt dx dt +
∫

�

cϕ(x, ) dx

=
∫ ∞



∫

�

∇c · ∇ϕ dx dt +
∫ ∞



∫

�

ncϕ dx dt

–
∫ ∞



∫

�

c(u · ∇ϕ) dx dt

=: I + I + I.

Thus, we have

I =
∫

�

cϕ(x, ) dx =
∫

�

c

c + η
dx (.)
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and

I =
∫ ∞



∫

�

c(x, t) ·
{

ζ ′
δ(t)Sh

[


c(x, t) + η

]

+
ζδ(t)

h

[


c(x, t) + η
–


c(x, t – h) + η

]}

dx dt

= –

δ

∫ t+δ

t

∫

�

c(x, t) · 
h

∫ t

t–h


c(x, s) + η

ds dx dt

–
∫ ∞



∫

�

c(x, t) · ζδ(t)
h

[


c(x, t – h) + η
–


c(x, t) + η

]

dx dt

=: J – J (.)

as well as

I = –
∫ ∞



∫

�

∇c(x, t) · ζδ(t)Sh

[


(c + η) ∇c
]

(x, t) dx dt, (.)

I =
∫ ∞



∫

�

n(x, t)c(x, t)ζδ(t)Sh

[


c + η

]

(x, t) dx dt (.)

and

I =
∫ ∞



∫

�

c(x, t)
{

u(x, t) · ζδ(t)Sh

[


(c + η) ∇c
]}

dx dt. (.)

According to the concavity of  < ξ �→ ln ξ , we derive that


h

∫ ∞



∫

�

ζδ(t)
[
ln

{
c(x, t) + η

}
– ln

{
c(x, t – h) + η

}]
dx dt

≤ 
h

∫ ∞



∫

�

ζδ(t)


c(x, t – h) + η

{
c(x, t) – c(x, t – h)

}
dx dt

=

h

∫ ∞



∫

�

ζδ(t)
c(x, t)

c(x, t – h) + η
dx dt –


h

∫ ∞



∫

�

ζδ(t)
c(x, t – h)

c(x, t – h) + η
dx dt

=

h

∫ ∞



∫

�

ζδ(t)
c(x, t)

c(x, t – h) + η
dx dt –


h

∫ ∞



∫

�

ζδ(t + h)
c(x, t)

c(x, t) + η
dx dt

–

h

∫ 

–h

∫

�

ζδ(t + h)
c(x, t)

c(x, t) + η
dx dt

= –
∫ ∞



∫

�

ζδ(t + h) – ζδ(t)
h

c(x, t)
c(x, t) + η

dx dt

+

h

∫ ∞



∫

�

ζδ(t)c(x, t)
[


c(x, t – h) + η

–


c(x, t) + η

]

dx dt –
∫

�

c(x)
c(x) + η

dx

= –
∫ ∞



∫

�

ζδ(t + h) – ζδ(t)
h

c(x, t)
c(x, t) + η

dx dt + J – I. (.)

For the left-hand side of (.), we have


h

∫ ∞



∫

�

ζδ(t)
[
ln

{
c(x, t) + η

}
– ln

{
c(x, t – h) + η

}]
dx dt

=

h

∫ ∞



∫

�

ζδ(t) ln
{

c(x, t) + η
}

dx dt –

h

∫ ∞



∫

�

ζδ(t + h) ln
{

c(x, t) + η
}

dx dt
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–

h

∫ 

–h

∫

�

ζδ(t + h) ln
{

c(x, t) + η
}

dx dt

= –
∫ ∞



∫

�

ζδ(t + h) – ζδ(t)
h

ln
{

c(x, t) + η
}

dx dt –
∫

�

ln
{

c(x) + h
}

dx. (.)

Inserting (.) and J – I = J – I – I – I into (.) and letting h ↘ , we obtain


δ

∫ t+δ

t

∫

�

ln
{

c(x, t) + η
}

dx dt –
∫

�

ln
{

c(x) + η
}

dx

≤
∫ ∞



∫

�

ζδ(t)
|∇c|

(c + η) dx dt –
∫ ∞



∫

�

ζδ(t)
nc

c + η
dx dt

–
∫ ∞



∫

�

ζδ(t)c
u · ∇c

(c + η) dx dt (.)

for all δ ∈ (, ). By using the monotone convergence theorem and the fact that t is a
Lebesgue point, we derive on taking δ →  that

∫

�

ln
{

c(x, t) + η
}

dx dt –
∫

�

ln
{

c(x) + η
}

dx

≤
∫ t



∫

�

|∇c|
(c + η) dx dt –

∫ t



∫

�

nc
c + η

dx dt –
∫ t



∫

�

c
u · ∇c

(c + η) dx dt. (.)

By integrating by parts, we derive that

∫ t



∫

�

cε

uε · ∇cε

(cε + η) dx dt = –
∫ t



∫

�

cεuε · ∇
(


cε + η

)

dx dt

=
∫ t



∫

�

uε · 
cε + η

∇cε dx dt

= –
∫ t



∫

�

ln(cε + η)(∇ · uε) dx dt = . (.)

In the light of Lemma . we see that if (εj)j∈N is as in Lemma . then

∫ t



∫

�

cε

uε · ∇cε

(cε + η) dx dt →
∫ t



∫

�

c
u · ∇c

(c + η) dx dt as ε = εj ↘ ,

which along with (.) implies that

∫ t



∫

�

c
u · ∇c

(c + η) dx dt = .

We continue to use the monotone convergence theorem to show on taking η = ηj ↘  that

∫

�

ln
{

c(x, t)
}

dx –
∫

�

ln c(x) dx ≤
∫ t



∫

�

|∇c|
c dx dt –

∫ t



∫

�

n dx dt. (.)

Due to t /∈ N�,
∫

�
w(x, t) dx is finite. Thus, (.) implies that (.) holds and thereby

we complete the proof, since the measure of N is zero. �
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Based on Lemma . and Lemma ., we can obtain the desired convergence property
of (∇wεj )j∈N in L

loc(�̄ × [,∞)).

Lemma . Suppose that w and (εj)j∈N are given by Lemma .. Then for each T >  we
have

∇wε → ∇w in L(� × (, T)
)

as ε = εj ↘ . (.)

Proof For given T > , we can fix t ≥ T such that
∫

�
wε(x, t) dx → ∫

�
w(x, t) dx as ε =

εj ↘  by Lemma .. From Lemmas . and ., we have

lim sup
ε=εj↘

∫ t



∫

�

|∇wε| dx dt ≤ lim sup
ε=εj↘

{∫

�

w(x) dx –
∫

�

wε(x, t) dx + mt

}

=
∫

�

w(x) dx –
∫

�

w(x, t) dx + mt

≤
∫ t



∫

�

|∇w| dx dt.

Therefore, we have

∫ t



∫

�

|∇wε| dx dt →
∫ t



∫

�

|∇w| dx dt,

which together with the fact wε ⇀ w in L([, t); W ,(�)) in Lemma . shows that
∇wε → ∇w in L(� × (, t)) and hence implies (.) holds due to t ≥ T . �

3 Proof of Theorem 1.1
Based on the above a priori estimates, we are now in the position to prove the main results.

Proof of Theorem . Since (.)-(.) have been proved in Lemmas .-., and the va-
lidity of (.) and (.) has been asserted by Lemma ., we go to verify (.). We fix an
arbitrary nonnegative function ϕ ∈ C∞

 (�̄ × [,∞)) and then multiply the first equation
in (.) by ϕ

nε+ to obtain

I(ε) :=
∫ ∞



∫

�

∣
∣∇ ln(nε + )

∣
∣

ϕ dx dt

= –
∫ ∞



∫

�

ln(nε + )ϕt dx dt –
∫

�

ln(n + )ϕ(x, ) dx

+
∫ ∞



∫

�

∇ ln(nε + ) · ∇ϕ dx dt –
∫ ∞



∫

�

nεf ′
ε (nε)

nε + 
(∇wε · ∇ ln(nε + )

)
ϕ dx dt

+
∫ ∞



∫

�

nεf ′
ε (nε)

nε + 
(∇wε · ∇ϕ) dx dt –

∫ ∞



∫

�

ln(nε + )(uε · ∇ϕ) dx dt

=: I(ε) + I(ε) + I(ε) + I(ε) + I(ε) + I(ε) (.)

for each ε ∈ (, ). Here we pick T sufficiently large such that ϕ ≡  on � × (T ,∞). From
(.), we obtain ln(nε + ) ⇀ ln(n + ) in L

loc([,∞); W ,(�)) as ε = εj ↘ , which war-
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rants that
∫ ∞



∫

�

∣
∣∇ ln(n + )

∣
∣

ϕ dx dt ≤ lim inf
ε=εj↘

I(ε) (.)

by the nonnegativity of ϕ and lower semicontinuity of the norm in L(�× (, T)), and that

I(ε) → –
∫ ∞



∫

�

ln(n + )ϕt dx dt as ε = εj ↘  (.)

and

I(ε) →
∫ ∞



∫

�

∇ ln(n + ) · ∇ϕ dx dt as ε = εj ↘ . (.)

From Lemma ., we have ∇wε → ∇w in L(� × (, T)) as ε = εj ↘ , which along with
the observation that  ≤ nε f ′

ε (nε)
nε+ ≤  for all ε ∈ (, ) and nε f ′

ε (nε )
nε+ → n

n+ a.e. in � × (, T) as
ε = εj ↘  ensures that

nεf ′
ε (nε)

nε + 
∇wε → n

n + 
∇w = –

n
n + 

∇ ln c in L(� × (, T)
)
,

ε = εj ↘ . Therefore, we obtain

I(ε) →
∫ ∞



∫

�

n
n + 

(∇ ln(n + ) · ∇ ln c
)
ϕ dx dt as ε = εj ↘  (.)

and

I(ε) → –
∫ ∞



∫

�

n
n + 

(∇ ln c · ∇ϕ) dx dt as ε = εj ↘ . (.)

From Lemma ., we have obtained nε → n in L(�̄× (, T)) as ε = εj ↘ . This fact com-
bines with the Lipschitz continuity of [,∞) � ξ �→ ln( + ξ ) to ensure that

∫ T


∫

�
ln(nε +

) dx dt → ∫ T


∫

�
ln(n + ) dx dt as ε = εj ↘ , which together with the weak convergence

property in (.) entails that

ln(nε + ) → ln(n + ) in L(�̄ × [,∞)
)

(.)

as ε = εj ↘ . Thus, (.) combined with the fact that uε ⇀ u in L(�̄× [,∞)) shows that

I(ε) → –
∫ ∞



∫

�

ln(n + )(u · ∇ϕ) dx dt (.)

as ε = εj ↘ . By collecting (.)-(.) and (.), we see that (.) results from (.) and
thereby we prove that (n, c, u) is a global generalized solution to (.). The decay (.)-(.)
of the solution component c and additional property (.) of c can be proved in the same
way as those of Theorem . in []. We omit the corresponding proof for brevity. Thus,
we complete the proof of Theorem .. �
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