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Abstract
In this article, an elliptic equation, which type degenerates (either weakly or strongly)
at the axis of a 3-dimensional cylinder, is considered. The statement of a Dirichlet type
problem in the class of smooth functions is given and, subject to the type of
degeneracy, the exact classical solutions are obtained. The uniqueness of the
solutions is proved and the continuity of the solutions on the line of degeneracy is
discussed.
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1 Introduction and statement of the problem
We consider the equation

uzz + rα�u – cu = , α > , ()

in the cylinder Q = {x + y < R,  < z < H}. Here r =
√

x + y, � = ∂

∂x + ∂

∂y is Laplace’s
operator, c ≥  is a real constant.

Evidently, equation () is elliptic outside of the line r =  and its type degenerates at
this line, i.e., at the axis of cylinder Q. Since the parameter α >  is undetermined, the
degeneracy can be either regular (α ≤ ) or irregular (α > ). The Dirichlet type problems
for the elliptic systems, which are irregularly degenerate at the inner point of a considered
domain, are developed, e.g., in [–]. It is advisable to mention the work [–] related with
the subject of this article, too.

In comparison with the degeneracy of elliptic equations at an inner point, the main dif-
ficulty in the consideration of the Dirichlet problem to equation () is related with the
formulation of the boundary value conditions on the bases of cylinder Q, to be precise,
with the behavior of boundary functions at the points P(, , ) and PH (, , H) in which
the line of degeneracy crosses the bases of cylinder Q. The Dirichlet problem to some par-
ticular cases of equation () are considered in [] (the cases when α =  and /) and in [].
However, here is discussed only the case of boundary value conditions when the boundary
functions are zero valued on the two bases of cylinder Q. In this paper, we consider the
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Dirichlet type problem to equation () with non-zero boundary value conditions on these
bases.

It is convenient to introduce the cylindrical coordinates r, ϕ, z (|ϕ| ≤ π ) in which equa-
tion () takes the shape

uzz + L(u) = , ()

where

L(u) := rα

(
∂u
∂r +


r
∂u
∂r

+

r

∂u
∂ϕ

)
– cu.

(Here we denote a solution v(r,ϕ, z) = u(r cosϕ, r sinϕ, z) of equation () by u(r,ϕ, z) again.)
Let us to introduce the following notations: Qδ is a cylindric ring Q\{ ≤ r ≤ δ < R,  <

z < H}, S = {|ϕ| ≤ π ,  < z < H}, D is the disc {r < R, |ϕ| ≤ π}, Dδ is the ring D\{ ≤ r ≤ δ <
R}, K is the circle {r = R, |ϕ| ≤ π}, � is the closure of any domain �. Routinely, we denote
by N the set of natural numbers and by N the set of non-negative integer numbers, and
by Cl(�) the class of functions of which the derivatives are continuous up to order l in any
domain �.

Problem D Find the solution u(r,ϕ, z) of equation () in the class of functions C(Q) ∩
C(Q\{r = }) (or, maybe, in the class C(Q) ∩ C(Q)) which is bounded in Q and satisfies
the boundary value conditions

u(R,ϕ, z) = , (ϕ, z) ∈ S, ()

u
(
r,ϕ, (i – )H

)
= fi(r,ϕ), i = , , ()

for (r,ϕ) ∈ D ∪ K (or, maybe, for (r,ϕ) ∈ D), where fi are given continuous functions such
that

fi(R,ϕ) = . ()

(Besides, we assume that fi(r,ϕ), i = , , are π-periodic in the ϕ functions.)
The aim of the present paper is to discuss the well-posedness of the functions fi, i = , ,

in the vicinity of the points P and PH , and to obtain the exact solutions of Problem D
subject to the type of degeneracy of equation ().

The Dirichlet problem

u(R,ϕ, z) = f (ϕ, z), u
(
r,ϕ, (i – )H

)
= , i = , , ()

to equation () is treated in the class of functions C(Q) ∩ C(Q) in []. Assuming that
function f is twice differentiable, here the representations of exact solutions of this prob-
lem are given in all cases of the degeneracy of equation ().

2 The spectrum properties of the operator L
We consider the following eigenvalues problem.
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EV -problem Find the solutions w(r,ϕ;λ) of equation

L(w) + λw = , λ ∈R, ()

in the class of functions C(D) ∩ C(D\{r = }) (or, maybe, in the class C(D) ∩ C(D))
satisfying the conditions

w(R,ϕ;λ) = , |w| < ∞ in D. ()

Using the method of separate variables, we obtain the following partial solutions of equa-
tion ():

Pm(r;λ) ×
{

cos mϕ, m ∈N,
sin mϕ, m ∈N,

where Pm(r;λ) is the solution of the Sturm-Liouville problem (in the following we call it
the SL-problem),

rP′′ + rP′ +
[
(λ – c)r(–α) – m]P = , ()

P(R) = ,
∣∣P(r)

∣∣ < ∞ on (, R]. ()

Assume that α < . If λ > c, then equation () has only one bounded solution,

Pm(r;λ) = J m
–α

(√
λ – c

 – α
r–α

)

with the accuracy of a constant multiplier, whereas all other linear independent solutions
are unbounded at the point r = . (Here Jν is the Bessel function of the first kind [].) Let
γmn be the roots of the Bessel function J m

–α
, i.e. J m

–α
(γmn) = , n ∈ N. Choose the values

of parameter λ by the definition

λ = λmn := c + γ 
mn( – α)R(α–). ()

Then the corresponding solutions

Pmn(r) := Pm(r;λmn) = J m
–α

(
γmn

(
r
R

)–α)
, n ∈N, ()

of equation () are such that Pmn(R) = , obviously. Further, it follows from the properties
of the Bessel functions [, ], that

Pn() = ,

Pmn(r) =
(

γmn



) m
–α

(
r
R

)m(
 + O

(
r–α

)) →  as r → , m ∈N.
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Hence, Pmn(r) are continuous on the interval [, R] eigenfunctions of SL-problem (), ()
corresponding to their eigenvalues λmn, n ∈N, defined by (). Then

J m
–α

(
γmn

(
r
R

)–α)
×

{
cos mϕ, m ∈N,
sin mϕ, m ∈N,

()

are the eigenfunctions of EV -problem (), () corresponding to eigenvalues λmn, n ∈ N.
In the case when α > , there exist two linearly independent solutions,

P()
m (r;λ) = J m

α–

(√
λ – c

α – 
r–α

)
, P()

m (r;λ) = N m
–α

(√
λ – c

α – 
r–α

)
()

of equation (), which are bounded at the point r =  under condition λ > c. (Here Nν is
Bessel function of second kind or so called Neumann function [].) Specifically, we have
the following asymptotic expansions []:

P()
m (r;λ) = pmλr

α–
 cos

(√
λ – c

α – 
r–α –

πm
(α – )

–
π



)(
 + O

(
rα–)),

P()
m (r;λ) = pmλr

α–
 sin

(√
λ – c

α – 
r–α –

πm
(α – )

–
π



)(
 + O

(
rα–))

as r → , where non-zero constant pmλ can be determine exactly. Thus, if α >  and λ > c,
then the functions

Pm(r;λ) = P()
m (R;λ)P()

m (r;λ) – P()
m (R;λ)P()

m (r;λ) ()

represent the eigenfunctions of SL-problem (), (), and, consequently,

Pm(r;λ) ×
{

cos mϕ, m ∈N,
sin mϕ, m ∈N,

()

are continuous in D eigenfunctions of EV -problem (), () for each λ ∈ (c, +∞). Thus, the
spectrum of this problem is non-discrete.

If α = , then one can readily see that the eigenfunctions of SL-problem (), () are of
the shape

sin

(√
λ – c – m ln

R
r

)
, λ > c + m.

In this case, we obtain the following set of eigenfunctions of EV -problem (), ():

sin

(√
λ – c – m ln

R
r

)
×

{
cos mϕ, m ∈N,
sin mϕ, m ∈N,

λ ∈ (
c + m, +∞)

. ()

Thus, we have also continuous spectrum of EV -problem (), ().
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3 Expansion of functions by the eigenfunctions of EV-problem
We shall deal with the conditions under which a continuous function g(r,ϕ), having pe-
riod π with respect to ϕ, can be expressed in the eigenfunctions (), () or () of EV -
problem (), ().

Let g and ∂g
∂ϕ

∈ C(D). Then one can expand the function g(r,ϕ) by uniformly and abso-
lutely convergence in the D Fourier series []

g(r,ϕ) =



a(r) +
∞∑

m=

(
am(r) cos mϕ + bm(r) sin mϕ

)
, ()

where

am(r)
bm(r)

}

=

π

∫ π

–π

g(r,ϕ)

{
cos mϕ

sin mϕ

}

dϕ,
m ∈ N,
m ∈ N.

()

Note that, if we want have the expansion of the function g(r,ϕ) by eigenfunctions of EV -
problem, it is sufficient to expand the coefficients am(r) and bm(r) of the series () in the
eigenfunctions of SL-problem (), ().

Lemma  Let α < . Assume that

g and
∂g
∂ϕ

∈ C(D),
∂g
∂r

∈ C(D ∪ K), g(R,ϕ) =  ∀ϕ ∈ [–π ,π ], ()

and
∫ R



∣∣∣∣
∂g(r,ϕ)

∂r

∣∣∣∣dr < ∞ ∀ϕ ∈ [–π ,π ]. (a)

Then the functions am(r) and bm(r) can be expanded by the Fourier-Bessel series:

am(r)
bm(r)

}

=
∞∑

n=

{
amn

bmn

}

J m
–α

(
γmn

(
r
R

)–α)
,

m ∈N,
m ∈N,

()

where

amn

bmn

}

=
( – α)R(α–)

π J
m

–α +(γmn)

×
∫ R


J m

–α

(
γmn

(
r
R

)–α)
r–α dr

∫ π

–π

g(r,ϕ)

{
cos mϕ

sin mϕ

}

dϕ. ()

These series converge uniformly and absolutely on each interval [δ, R],  < δ < R.
If, besides (),

g(,ϕ) =  ∀ϕ ∈ [–π ,π ],
∂g
∂r ∈ C(D ∪ K) ()

and, in addition,

∂g(r,ϕ)
∂r

= O
(
r–α

)
,

∂g(r,ϕ)
∂r = O

(
r–α

)
as r →  (a)
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uniformly with respect to ϕ, then the series () converges uniformly and absolutely on the
interval [, R].

Proof We prove representation () for the function am(r). (This presentation for function
bm(r) can be proved analogously.)

By the change of variables t = ( r
R )–α , we introduce the function

ãm(t) := am
(
Rt


–α

)
.

Then, by virtue of (),

ãm(t) =

π

∫ π

–π

g
(
Rt


–α ,ϕ

)
cos mϕ dϕ =


π

∫ π

–π

g(r,ϕ) cos mϕ dϕ;

consequently,

dãm(t)
dt

=
R–α

π ( – α)
rα

∫ π

–π

∂g(r,ϕ)
∂r

cos mϕ dϕ.

Note that ãm() =  and the function ãm(t) is continuous on the interval [, ] (because
of ()), and

∫ 



∣∣∣∣
dãm(t)

dt

∣∣∣∣dt =

π

∫ R



∣∣∣∣

∫ π

–π

∂g(r,ϕ)
∂r

cos mϕ dϕ

∣∣∣∣dr

≤ 
π

∫ π

–π

dϕ

∫ R



∣∣∣∣
∂g(r,ϕ)

∂r

∣∣∣∣dr < ∞

(by virtue of (a)). These properties of the function ãm(t) are sufficient in order to expand
it on the each interval (δ̃, ],  < δ̃ < , into a uniformly converging Fourier-Bessel series (see
[], p., or [], p., Theorem ):

ãm(t) =
∞∑

n=

amnJ m
–α

(γmnt), m ∈N, ()

where

amn =


J
m

–α +(γmn)

∫ 


ãm(t)J m

–α
(γmnt)t dt

=


π J
m

–α +(γmn)

∫ 


J m

–α
(γmnt)t dt

∫ π

–π

g
(
Rt


–α ,ϕ

)
cos mϕ dϕ. ()

Substituting into the obtained expressions t = ( r
R )–α , by straightforward calculations, we

get under conditions (), (a) the representation of the function am(r) in the Fourier-
Bessel series () uniformly and absolutely converging on the interval (δ, R], δ = Rδ̃


–α .

Let, in addition to (), conditions () and (a) hold. (Note that the first of conditions
(a) implies (a).) Then

ãm() = ,
dãm(t)

dt
= O(t) as t → ,
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dãm(t)
dt =

R(–α)

( – α) rα

∫ π

–π

∂g(r,ϕ)
∂r cos mϕ dϕ

+
αR(–α)

( – α) rα–
∫ π

–π

∂g(r,ϕ)
∂r

cos mϕ dϕ = O() as t → ,

i.e.,

ãm() = ,
dãm(t)

dt

∣∣∣∣
t=

= ,
∣∣∣∣
dãm(t)

dt

∣∣∣∣ < ∞,  < t ≤ .

These additional conditions yield the uniformly and absolutely convergence of the series
() on the interval [, ] (see [], p., Theorem ). Consequently, the series () of the
function am(r) converges uniformly and absolutely on the interval [, R]. �

Lemma  Let α > . Assume that conditions (), (a) of Lemma  are satisfied and

∫ R


r

–α
 dr

∫ π

–π

∣∣g(r,ϕ)
∣∣dϕ < ∞. ()

Then the functions am(r) and bm(r) can be represented on the interval [, R] by the following
uniformly convergent integrals:

am(r)
bm(r)

}

=
∫ ∞

c

{
Am(λ)
Bm(λ)

}

Pm(r;λ) dλ,
m ∈N,
m ∈N,

()

where

Am(λ)
Bm(λ)

}

=



∫ ∞

c


π (α – )(P()

m (R;λ)) + (P()
m (R;λ))

×
∫ R


Pm(r;λ)r–α dr

∫ π

–π

{
cos mϕ

sin mϕ

}

g(r,ϕ) dϕ,
m ∈N,
m ∈N.

()

(Here functions P()
m , P()

m and Pm are defined by () and ().)

Proof Likewise as in Lemma , we prove representation () only for the function am(r).
Denote

t =
r–α

α – 
, tR =

R–α

α – 
,

and introduce the function a∗
m(t) := am(((α – )t) 

–α ). Then

a∗
m(t) =


π

∫ π

–π

g
((

t
α – 

) 
–α

,ϕ
)

cos mϕ dϕ, tR ≤ t < +∞,

dãm(t)
dt

= –

π

rα

∫ π

–π

∂g(r,ϕ)
∂r

cos mϕ dϕ,

and
∫ ∞

tR

∣∣∣∣
da∗

m(t)
dt

∣∣∣∣dt =

π

∫ R



∣∣∣∣

∫ π

–π

∂g(r,ϕ)
∂r

cos mϕ dϕ

∣∣∣∣dr ≤ 
π

∫ π

–π

dϕ

∫ R



∣∣∣∣
∂g(r,ϕ)

∂r

∣∣∣∣dr < ∞
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due to the condition of (a). Since a∗
m(tR) = am(R) =  (because of g(R,ϕ) = ),

∫ ∞

tR

√
t
∣∣a∗

m(t)
∣∣dt =

√
α – 

∫ R


r

–α


∣∣am(r)
∣∣dr

=


π
√

α – 

∫ R


r

–α


∣∣∣∣

∫ π

–π

g(r,ϕ) cos mϕ dϕ

∣∣∣∣dr

≤ 
π

∫ R


r

–α
 dr

∫ π

–π

∣∣g(r,ϕ)
∣∣dϕ < ∞

(by virtue of condition of ()), the function a∗
m(t) can be expanded on the interval [tR,∞)

by a uniformly convergent Weber-Orr integral (see [], p.),

a∗
m(t) =

∫ ∞


A∗

m(μ)
(
N m

α–
(μtR)J m

α–
(μt) – J m

α–
(μtR)N m

α–
(μt)

)
μdμ,

where

A∗
m(μ) =


π (α – )(J

m
α–

(μtR) + N
m

α–
(μtR))

×
∫ ∞

tR

a∗
m(t)

(
N m

α–
(μtR)J m

α–
(μt) – J m

α–
(μtR)N m

α–
(μt)

)
t dt.

Therefore, substituting μ =
√

λ – c, λ ∈ (c, +∞), in the expressions of the functions a∗
m(t)

and A∗
m(μ) obtained above, whereupon denoting

Am(λ) =



A∗
m(

√
λ – c)

and taking into account both definitions () and (), we obtain

am(r) =
∫ ∞

c
Am(λ)Pm(r;λ) dλ, r ∈ [, R],

where

Am(λ) =


π (α – )(P()
m (R;λ)) + (P()

m (R;λ))

×
∫ R


am(r)Pm(r;λ)r–α dr, m ∈N.

Putting equation () of the functions am(r) into the last equality we get equation ().
Presentation () for the function bm(r) is obtained analogously. �

Lemma  Let α =  and let the assumptions of Lemma  hold. Then functions am(r) and
bm(r) integrals uniformly convergent on the each interval [δ, R],  < δ < R can be represented
by the following:

am(r)
bm(r)

}

=
∫ ∞

c+m

{
αm(λ)
βm(λ)

}

sin

(√
λ – c – m ln

R
r

)
dλ,

m ∈N,
m ∈N,

()
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αm(λ)
βm(λ)

}

=


π
√

λ – c – m

∫ R


sin

(√
λ – c – m ln

R
r

)
dr
r

∫ π

–π

g(r,ϕ)

{
cos mϕ

sin mϕ

}

dϕ.

Proof By the change of variable t = ln r
R , we introduce the functions âm(t) := am(Ret). It is

easily seen that âm() = am(R) = . Further, just repeating the reasoning of Lemma , we
show that

∫ ∞



∣∣âm(t)
∣∣dt < ∞,

∫ ∞



∣∣∣∣
dâm(t)

dt

∣∣∣∣dt < ∞.

Hence, we have the Fourier sine-expansion (see [], p., or [], p.)

âm(t) =
∫ ∞


Âm(μ) sinμt dμ, t ∈ [, +∞),

where

Âm(μ) =

π

∫ ∞


âm(t) sinμt dt.

Then, by the substitution

μ = γm(λ) :=
√

λ – c – m, λ ∈ (
c + m, +∞)

,

we obtain

am(r) = âm

(
ln

R
r

)
=




∫ ∞

c+m

Âm(γm(λ))
γm(λ)

sin

(
γm(λ) ln

r
R

)
dλ, r ∈ (, R],

Âm
(
γm(λ)

)
=


π

∫ R


am(r) sin

(
γm(λ) ln

r
R

)
dr
r

.

Thus, taking into account equalities () and denoting

αm(λ) =
Ãm(γm(λ))
πγm(λ)

we get expression ().
Presentation () for function bm(r) is obtained analogously. �

4 Solutions of Problem D1
Let Z(z;λ) be any solution of the differential equation

Z′′ – λZ = , λ ∈R, ()

and let W (r,ϕ;λ) be any solution of the EV -problem. Then U(r,ϕ, z;λ) = W (r,ϕ;λ)Z(z;λ)
is the partial solution of equation (), which is bounded in Q such that U(R,ϕ, z;λ) = .
We shall get the presentation of the solution of Problem D as some composition of those
partial solutions.
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Lemma  The bounded in Q solutions of equation () can attain either a positive maxi-
mum or a negative minimum only on the boundary ∂Q of cylinder Q.

Proof Due to the ellipticity of equation () in Q and in view of condition c ≥ , the so-
lutions of this equation cannot attain in Q neither a positive maximum nor a negative
minimum [, ]. Hence, it suffices to prove that bounded solutions cannot attain an ex-
tremum on the line of degeneracy r = ,  < z < H .

Let u be the solution of equation () bounded on the line r =  and let v(ε) be its positive
maximum on the surface {r = ε,  < z < H}. Denote this maximum point by Mε . Note that
v(ε) monotonically decreases with respect to ε. Since uzz and vϕϕ are non-positive at the
maximum point, we get from equation ()

∂u
∂r

(rur) ≥  ()

and, due to the Zaremba-Giraud [] principle, ur <  at the point Mε .
Denote ω(ε) = εur(Mε). It follows from () that ω(ε) is a negative monotonically in-

creasing function. Thus, there exists a constant k <  such that ω(ε) ≤ k for small enough ε.
Note that the function v(ε) is continuously differentiable on the interval (, R) because of
the ellipticity of equation () in Q. Therefore v′(ε) = ur(Mε) = ε–ω(ε), and we obtain

v′(ε) ≤ kε–,

if ε is small enough. The integration of this inequality on the interval (ε, r), where r is
small enough, yields the estimate

v(ε) ≥ const + k ln ε.

Hence, v(ε) → ∞, as ε → , i.e. the solution u is not bounded on the line r = , but that is
in contradiction with the postulate of the lemma.

One can prove, analogously, that u cannot attain any negative minimum on the line r = ,
 < z < H . �

Let the functions fi(r,ϕ), i = , , from () be such that ∂fi
∂ϕ

∈ C(D). Then, as is mentioned
above, these functions can be expanded by uniformly and absolutely converging in the D
Fourier series,

fi(r,ϕ) =



a(i)
 (r) +

∞∑

m=

(
a(i)

m (r) cos mϕ + b(i)
m (r) sin mϕ

)
, ()

where

a(i)
m (r)

b(i)
m (r)

}

=

π

∫ π

–π

fi(r,ϕ)

{
cos mϕ

sin mϕ

}

dϕ,
m ∈ N,
m ∈ N.

I. Let α < . Assume that both functions fi satisfy conditions (), (a) of Lemma .
Then, according to this lemma, the coefficients a(i)

m (r) and b(i)
m (r) of the series () can be
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expanded by uniformly converging in each ring Dδ ,  < δ < R, the Fourier-Bessel series of
shape (), i.e., the representations

fi(r,ϕ) =



∞∑

n=

a(i)
nJ

(
γn

(
r
R

)–α)

+
∞∑

m=

∞∑

n=

J m
–α

(
γmn

(
r
R

)–α)(
a(i)

mn cos mϕ + b(i)
mn sin mϕ

)
, i = , , ()

with the coefficients a(i)
mn, b(i)

mn defined analogously to () hold.
Choose the values λmn of parameter λ in equation () by equation (). Let Z(i)

mn(z),
i = , , be the solutions of the equation

Z′′ – λmnZ = , m, n ∈N,

satisfying the boundary value conditions

Z()
mn() = a()

mn, Z()
mn(H) = a()

mn; Z()
mn() = b()

mn, Z()
mn(H) = b()

mn.

It is easily seen that those solutions are as follows:

Z()
mn(z) = sinh–

√
λmnH

(
a()

mn sinh
√

λmn(H – z) + a()
mn sinh

√
λmnz

)
,

Z()
mn(z) = sinh–

√
λmnH

(
b()

mn sinh
√

λmn(H – z) + b()
mn sinh

√
λmnz

)
.

So we obtain the sequence

J m
–α

(
γmn

(
r
R

)–α)
×

{
Z()

mn(z) cos mϕ,
Z()

mn(z) sin mϕ,
m, n ∈ N,

of partial solutions of equation (), which are continuous in Q.
Let us compose the series

u(r,ϕ, z) =



∞∑

n=

J

(
γn

(
r
R

)–α)
Z()

n(z)

+
∞∑

m=

∞∑

n=

J m
–α

(
γmn

(
r
R

)–α)(
Z()

mn(z) cos mϕ + Z()
mn(z) sin mϕ

)
. ()

If z =  and z = H , then this series coincides with the series () of functions f and f,
obviously:

u
(
r,ϕ, (i – )H

)
= fi(r,ϕ) ∀(r,ϕ) ∈ Dδ , i = , .

Therefore, the series () converges uniformly on the two bases of cylinder Q except,
maybe, the points (r = , z = (i – )H), i = , , and also on the lateral surface of this cylin-
der (by virtue of J m

–α
(γmn) = , m, n ∈N). Since equation () is elliptic in domain Q, this

jointly with Lemma  yields the uniform convergence of this series everywhere in each
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domain Qδ ,  < δ < R, because of the maximum principle for elliptic equations. Moreover,
the sum u(r,ϕ, z) of the series () represents the solution of equation () from the class
C(Q) ∩ C(Q\{r = }) and satisfies the boundary value conditions (), ().

If functions fi, i = , , satisfy not only condition () but also conditions (), (a), then,
according to Lemma , the series () converges uniformly and absolutely in the disk D.
Then it follows from () that

u(,ϕ, z) =



∞∑

n=

Z()
n(z) =




∞∑

n=

a()
n sinh

√
λn(H – z) + a()

n sinh
√

λnz
sinh

√
λnH

;

consequently,

∣∣u(,ϕ, z)
∣∣ ≤ 



∞∑

n=

(∣∣a()
n

∣∣ +
∣∣a()

n
∣∣) < ∞,  ≤ z ≤ H ,

because of the absolute convergence of the series () in D. Thus, the series () converges
uniformly everywhere in D (including the line of degeneracy r = ), i.e., u is the solution
of Problem D from the class C(Q) ∩ C(Q).

Besides, due to Lemma  and to the ellipticity of equation (), solution u of Problem D
can attain the positive maximum or negative minimum only on the bases of cylinder Q.
This yields the estimate

∣∣u(r,ϕ, z)
∣∣ < max

{
max

D

∣∣f(r,ϕ)
∣∣, max

D

∣∣f(r,ϕ)
∣∣
}

, (r,ϕ, z) ∈ Q, ()

which implies the uniqueness of the solution Problem D.
Thus, the following theorem holds.

Theorem  Let α < . If fi and ∂fi
∂ϕ

∈ C(D), ∂fi
∂r ∈ C(D ∪ K), fi(R,ϕ) =  ∀ϕ ∈ [–π ,π ] and

∫ R



∣∣∣∣
∂fi(r,ϕ)

∂r

∣∣∣∣dr < ∞ ∀ϕ ∈ [–π ,π ], i = , ,

then Problem D has the unique solution u ∈ C(Q) ∩ C(Q\{r = }), which can be repre-
sented by ().

If, in addition, ∂fi
∂r ∈ C(D ∪ K), fi(,ϕ) = , ∀ϕ ∈ [–π ,π ], and

∂fi(r,ϕ)
∂r

= O
(
r–α

)
,

∂fi(r,ϕ)
∂r = O

(
r–α

)
, i = , 

as r → , uniformly with respect to ϕ, then the series () represents the solution of Prob-
lem D from the class C(Q) ∩ C(Q).

II. Assume that α > . Let the assumptions of Lemma  be satisfied. According to this
lemma, the functions can be presented on the interval [, R] by the series () with the
coefficients a(i)

m (r) and b(i)
m (r) of shape ():

a(i)
m (r)

b(i)
m (r)

}

=
∫ ∞

c

{
A(i)

m (λ)
B(i)

m (λ)

}

Pm(r;λ) dλ,
m ∈N,
m ∈N,

()
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where functions A(i)
m (λ) and B(i)

m (λ) are defined by equation () applying it to the functions
fi, i = , , respectively.

Introduce the solutions

Z()
m (z;λ) = sinh–

√
λH

(
A()

m (λ) sinh
√

λ(H – z) + A()
m (λ) sinh

√
λz

)
,

Z()
m (z;λ) = sinh–

√
λH

(
B()

m (λ) sinh
√

λ(H – z) + B()
m (λ) sinh

√
λz

)
,

of equation (), which satisfy the obvious conditions:

Z()
m (;λ) = A()

m (λ), Z()
m (H ;λ) = A()

m (λ),

Z()
m (;λ) = B()

m (λ), Z()
m (H ;λ) = B()

m (λ).
()

So we obtain the set

Pm(r;λ) ×
{

Z()
m (z;λ) cos mϕ, m ∈N,

Z()
m (z;λ) sin mϕ, m ∈N,

λ ∈ (c, +∞),

of the partial solutions of equation (), which are continuous in Q.
Let us consider the integrals

I(i)
m (r, z) =

∫ ∞

c
Z(i)

m (z;λ)Pm(r;λ) dλ, (r, z) ∈ S, i = , . ()

We shall prove the uniform convergence of these integrals in the domain S. We confine
oneself to the case i = . Introduce the function

Ã()
m (r, z; l) =

∫ l

c
Z()

m (z;λ)Pm(r;λ) dλ,

where l ∈ (c, +∞). One can check by direct calculation that the function Ã()
m (r, z; l) satisfy

the equation

Wzz + rα

(
Wrr +


r

Wr

)
–

(
mr(α–) + c

)
W = . ()

According to the maximum principle, the solutions of this equation can attain a positive
maximum or negative minimum only on the boundary of domain S. Since

Ã()
m (R,ϕ, z; l) = Ã()

m (,ϕ, z; l) = 

(in view of Pm(R;λ) = Pm(;λ) = ) and

Ã()
m

(
r, (i – )H ; l

)
=

∫ l

c
A(i)

m (λ)Pm(r;λ) dλ, i = , 

(due to ()), we have the estimate

∣∣Ã()
m (r, z; l)

∣∣ ≤ max
{∣∣Ã()

m (r, ; l)
∣∣,

∣∣Ã()
m (r, H ; l)

∣∣} ()
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everywhere in S. Observe that (see ())

lim
l→∞

Ã()
m

(
r, (i – )H ; l

)
=

∫ ∞

c
A(i)

m (λ)Pm(r;λ) dλ = a(i)
m (r), i = , .

Thus, passing to the limit as l → ∞ in (), we obtain

lim
l→∞

∣∣Ã()
m (r, z; l)

∣∣ =
∣∣∣∣

∫ ∞

c
Z()

m (z;λ)Pm(r;λ) dλ

∣∣∣∣ ≤ max
{∣∣a()

m (r)
∣∣,

∣∣a()
m (r)

∣∣}

in S, i.e. the integral I()
m (r, z) converges uniformly in S.

The uniform convergence of the integral I()
m (r, z) one can prove analogously.

Note that both functions I(i)
m (r, z), i = , , which can be interpreted as the limit of corre-

sponding functions Ã(i)
m (r, z; l) as l → ∞, satisfy equation () in S because of the ellipticity

of this equation in S and because of the maximum principle.
Let us compose the series,

u(r,ϕ, z) =



I()
 (r, z) +

∞∑

m=

(
I()

m (r, z) cos mϕ + I()
m (r, z) sin mϕ

)
, ()

where the functions I(i)
m (r, z), i = , , are defined by (). Observe that

v
(
r,ϕ, (i – )H

)
= gi(r,ϕ), i = , ,

because of

I()
m (r, ) = a()

m (r), I()
m (r, ) = b()

m (r),

I()
m (r, H) = a()

m (r), I()
m (r, H) = b()

m (r),

and u(R,ϕ, z) = u(,ϕ, z) =  (in view of I(i)
m (R;λ) = I(i)

m (;λ) = , m = , , . . .). Thus, the
series () converges uniformly (and absolutely) on the boundary ∂Q of cylinder Q. Due
to the maximum principle this series converges uniformly in Q and its sum u(r,ϕ, z)
represents the solution of Problem D from the class C(Q) ∩ C(Q). Furthermore, jointly
with Lemma , the maximum principle yields for the solution u the same estimate ()
as for the solution u. This implies the uniqueness of the solution u.

The theorem follows from the above reasoning.

Theorem  Let α > . If fi and ∂fi
∂ϕ

∈ C(D), ∂fi
∂r ∈ C(D ∪K), fi(R,ϕ) =  ∀ϕ ∈ [–π ,π ], i = , ,

and the conditions

∫ R


r

–α
 dr

∫ π

–π

∣∣fi(r,ϕ)
∣∣dϕ < ∞,

∫ R



∣∣∣∣
∂fi(r,ϕ)

∂r

∣∣∣∣dr < ∞ ∀ϕ ∈ [–π ,π ] ()

are fulfilled, then Problem D has the unique solution u ∈ C(Q) ∩ C(Q), which can be
represented by ().

III. Let α = . Assume that functions fi, i = , , satisfy the conditions of Theorem . In
this case, according to Lemma , the coefficients a(i)

m (r) and b(i)
m (r) of the series () can be
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presented on the interval (, R] in the form of integrals of shape ():

a(i)
m (r)

b(i)
m (r)

}

=
∫ ∞

c+m

{
α

(i)
m (λ)

β
(i)
m (λ)

}

sin

(√
λ – c – m ln

R
r

)
dλ,

m ∈N,
m ∈N,

()

where functions α
(i)
m (λ) and β

(i)
m (λ) are defined analogously to the functions αm(λ) and

βm(λ) in (). Then the series () with the coefficients of shape () converge uniformly
in the each desk Dδ ,  < δ < R.

Let us determine the solutions

Z̃()
m (z;λ) = sinh–

√
λH

(
α()

m (λ) sinh
√

λ(H – z) + α()
m (λ) sinh

√
λz

)
,

Z̃()
m (z;λ) = sinh–

√
λH

(
β ()

m (λ) sinh
√

λ(H – z) + β ()
m (λ) sinh

√
λz

)
,

of equation () which satisfy the boundary value conditions

Z̃()
m (;λ) = α()

m (λ), Z̃()
m (H ;λ) = α()

m (λ),

Z̃()
m (;λ) = β ()

m (λ), Z̃()
m (H ;λ) = β ()

m (λ),

evidently. Then we get the set

sin

(√
λ – c – m ln

R
r

)
×

{
Z̃()

m (z;λ) cos mϕ, m ∈N,
Z̃()

m (z;λ) sin mϕ, m ∈N,

λ ∈ (c+m, +∞), of partial solutions of equation () which are continuous in each cylindric
ring Qδ , are bounded in Q, and are equal to zero for r = R.

Introduce the integrals

J (i)
m (r, z) =

∫ ∞

c+m
Z̃(i)

m (z;λ) sin

(√
λ – c – m ln

R
r

)
dλ, i = , , ()

and compose the series

u(r,ϕ, z) =



J ()
 (r, z) +

∞∑

m=

(
J ()
m (r, z) cos mϕ + J ()

m (r, z) sin mϕ
)
. ()

The uniform convergence of integrals () and possibility of their twice differentiation
in S can be proved in the same way as the proof of integrals (). The difference is only
this: since the solutions of problem (), () are non-continuous at the point r =  as α = ,
the integrals () are not defined if r = . (However, these integrals are bounded in S.)

It follows from () and () that

J ()
m (r, ) = a()

m (r), J ()
m (r, H) = a()

m (r), m ∈N,

J ()
m (r, ) = b()

m (r), J ()
m (r, H) = b()

m (r), m ∈N;

consequently,

u
(
r,ϕ, (i – )H

)
= fi(r,ϕ) ∀(r,ϕ) ∈ Dδ , i = , .
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Moreover, u(R,ϕ, z) =  because of J (i)
m (R, z) ≡ . Hence the series () converges uni-

formly on ∂Q\{r = }. According to Lemma  the partial solutions

J ()
m (r, z) cos mϕ, m ∈N,

and

J ()
m (r, z) sin mϕ, m ∈N,

of equation () cannot attain any extremum on the line of degeneracy r = ; therefore,
the series () converges uniformly in Q and its sum u(r,ϕ, z) represents the solution of
equation () from the class C(Q) ∩ C(Q\{r = }), i.e., u(r,ϕ, z) is the solution of Prob-
lem D. In view of Lemma , we have the same estimate () for solution u as for solution
u and u. This implies the uniqueness of the solution u of Problem D.

Thus the following theorem holds.

Theorem  Let α = . Assume that conditions of Theorem  hold. Then Problem D has
the unique solution u ∈ C(Q) ∩ C(Q\{r = }) which can be represented by ().

So we obtain all exact solutions of Problem D subject to the type of degeneracy of equa-
tion ().

5 Conclusions concerning Problem D1
It follows from the above that:

. To the end of well-posedness of Problem D, the behavior of boundary functions in
the vicinity of the points P and PH , in which the line of degeneracy crosses the bases
of cylinder Q, must be coordinating with the type of degeneracy.

. The structure of the solutions of Problem D and their continuity on the
degeneration line depends on the type of degeneracy of equation ().

. In the case of the weak degeneracy (α < ), the solution of Problem D is continuous
on the line of degeneracy if only the boundary function is equal to zero at the points
P and PH .
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