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Abstract
In this paper, we consider the orbital stability of standing waves for the generalized
Choquard equation. By the variational method, we see that the ground state
solutions of the generalized Choquard equation have orbital stability.
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1 Introduction
In this paper, we consider the following generalized Choquard equation:

{
i ∂u

∂t + �u + (ω(x) ∗ |u|p)|u|p–u = , (t, x) ∈ (,∞) ×R
N ;

u(, x) = u(x), x ∈R
N ,

()

where ω(x)∗|u|p :=
∫
RN ω(x–y)|u(y)|p dy, the constant N ≥ , p satisfies N+α

N < p < N+α
N– and

 < α < N ; u(t, x) is complex-valued solution with an initial condition u(, x) = u(x) and
u(x) is a given function in R

N . In addition, we assume that ω(x) ∈ C(RN \ , (, +∞))
is positive, even, and homogeneous of degree –(N – α). That is, for each t > , ω(tx) =
t–(N–α)ω(x).

Due to its application in mathematical physics [–], the Choquard equation () has
attracted a lot of attention from different points of view. When p = , equation () can
be reduced to the well-known Hartree equation. Cazenave [], and Ginibre and Velo []
established the local well-posedness and asymptotical behavior of the solutions for the
Cauchy problem. Later, Genev and Venkov [] extended the results to the case N ≥ ,
 ≤ p < N+

N– , and α = . Recently, Feng and Yuan [] considered the general case  < α < N
and N+α

N < p < N+α
N– , they obtained the local and global well-posedness of equation (). Also,

they investigated the mass concentration for all the blow-up solutions in the L-critical
case. For more details, we refer to [, ] and the references therein.

The standing wave solution of () is of the form u(t, x) = eiatu(x), then equation () is
reduced to the following stationary equation:

–�u + au =
(
ω(x) ∗ |u|p)|u|p–u, x ∈R

N . ()

When p = , the existence of solutions for equation () was proved with variational
methods by Lieb [] and Lions []. Later, Moroz and Schaftingen [] extended their
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results to general p. Moreover, they derived the regularity and the decay asymptotic at
infinity of the ground states. For more details as regards equation (), we refer to [–].

Here, we are interested in the orbital stability of standing waves for equation (). The
meaning of ‘orbital stability’ will be given later. When p = , the orbital stability of standing
wave of equation () was first established by Cazenave and Lions [] and then investigated
by Cingolani, Secchi, and Squassina []. Later, Chen and Guo [] studied the existence
of blow-up solutions and the strong instability of standing waves. However, there are less
results for the orbital stability of standing waves for the generalized Choquard equation
(). The purpose of this paper is to investigate this problem.

This paper is divided into two parts. In Section , we list some related notations and
definitions. In Section , we give the proof of our main result.

We now give the related notations and definitions.
Define the functional

E(u) =


‖∇u‖

 –


p
D(u), ()

J(u) =


‖∇u‖

 +



a‖u‖
 –


p

D(u), ()

where D(u) =
∫
RN ×RN ω(x – y)|u(x)|p|u(y)|p dx dy, ‖ · ‖ is the standard L-norm.

Given a positive constant ρ > , we set

M =
{

u ∈ H(
R

N ,C
)

: ‖u‖
 = ρ

}
, N =

{
u ∈ H(

R
N ,C

)
: u 	= , J ′(u) = 

}
and

KM =
{

c ∈R
– : there exists u ∈ M, such that E′(u) =  and E(u) = c

}
,

KN =
{

m ∈ R : there exists ν ∈N , such that J ′(ν) =  and J(ν) = m
}

.

In order to obtain the result, we also need the following Pohozaev identity of equation ()
([, ]).

Assume u ∈ H(RN ,C) to be the solution of (), then

N – 


∫
RN

|∇u| dx +
Na


∫
RN

u dx =
N + α

p

∫
RN ×RN

ω(x – y)
∣∣u(x)

∣∣p∣∣u(y)
∣∣p dx dy. ()

Moreover, we denote by G the set of ground state solutions of (), i.e. solutions to the
minimization problem � = minu∈N J(u). According to the result of [], we get G 	= ∅. In
fact, when a = , let v be the ground state solution of equation () obtained by Moroz and
Schaftingen []. By the transformation u(x) = a

α–
(p–) v( x√

a ), we see that u is the ground
state solution of equation (), which implies that G 	= ∅.

Also, we assume the following.

Assumption A p ∈ ( N+α
N , N+α

N– ) is such that, for any initial value u ∈ H(RN ,C), problem
() has a unique global solution u ∈ C([, +∞), H(RN ,C)), the charge and the energy are
conserved in time. That is, for all t ∈ [, +∞), one has

‖u‖ = ‖u‖, E
(
u(t)

)
= E(u). ()
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Remark  As we mentioned before, our assumption is valid when p =  ([], Corol-
lary ..) and when  ≤ p <  + +α

N ([]).

In the following, we give the definition of orbital stability.

Definition . The set G of ground state solutions of () is said to be orbitally stable for
equation (), if for each ε > , there exists a δ > , such that, for all u ∈ H(RN ,C),

inf
φ∈G

‖u – φ‖H < δ

implies that

sup
t≥

inf
ψ∈G

∥∥u(t, ·) – ψ
∥∥

H < ε,

where u(t, x) is the solution of () with initial datum u.

Our main result is as follows.

Theorem  Assume that  < α < N and p satisfies Assumption A, then the set G of the
ground state solutions of equation () is orbitally stable for ().

Remark  Our result can be regarded as the extension of the result obtained in []. How-
ever, the existence of general p leads to a more complicated calculation.

2 Proof of Theorem 2
In this section, we give the proof of Theorem . First of all, considering the following two
minimization problems:

 = min
u∈M

E(u), ()

� = min
u∈N

J(u), ()

we establish the equivalence between the two minimization problems.

Lemma . When  < , () and () are equivalent. Moreover,  = �(�), where � : KN →
KM is defined by

�(m) = –
Np – N – α – 

(p – )

(
(p – )aρ

N + p – pN + α

) Np–α–p–N
Np–N–α–

m
p–

Np–N–α– , m ∈ KN .

Proof If u ∈ M is a critical point of E with E(u) = c < , then there exists a Lagrange mul-
tiplier γ ∈ R such that E′(u)(u) = –γρ . Together with E(u) = c, one has (p – )‖∇u‖

 =
pc + γρ . Since c < , one has γ > . Moreover, u satisfies

–�u + γ u =
(
ω ∗ |u|p)|u|p–u. ()

Set ν(x) = Tλu(x) := λσ u(λx) and choose λ =
√

a
γ

, σ = +α
p– , then from () we see that ν(x)

is a solution of (), which implies ν(x) ∈N .
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On the contrary, if ν(x) is a nontrivial critical point of J|N , we choose λ = ( ρ

‖ν‖


)


N–σ ,
then u = T


λ ν ∈ M and u is a critical point of E|M .

Indeed, due to the choice of λ, it is easy to see that ‖u‖
 = ρ .

Meanwhile, by the assumption of ν , one has

J ′(ν)ν = ‖∇ν‖
 + a‖ν‖

 – D(ν) = . ()

Since from σ = +α
p– , we get σ +  – N = pσ – N – α = p+N–Np+α

p– , by (), and then it
follows that with σ we get

E′(u)u = ‖∇u‖
 – D(u)

= λN–σ–‖∇ν‖
 – λN–pσ+α

D(ν)

= λN–σ–a‖ν‖


= aλN–σ–λ
ρ

N–σ =
a
λ ρ

.= γρ.

So u is a critical point of E|M . Now, we calculate the relationship of m and c.
Let m = J(ν), ν ∈N , c = E(u), u ∈ M, ν = Tλu, in which λ = ( ρ

‖ν‖


)


N–σ , σ = +α
p– , then

m =


‖∇ν‖

 +



a‖ν‖
 –


p

D(ν)

=


λσ+–N‖∇u‖

 +



aλσ–N‖u‖
 –


p

λpσ–N+α
D(u)

= λ
p+N–Np+α

p– E(u) +



aλσ–Nρ

= cλ
p+N–Np+α

p– +



aλσ–Nρ. ()

On the other hand, since ν is the critical point of J ,

D(ν) = ‖∇ν‖
 + a‖ν‖

, ()

hence

m =
(




–


p

)
‖∇ν‖

 +
(




–


p

)
a‖ν‖

. ()

By the Pohozaev identity (), one has

(
N


– 
)

‖∇ν‖
 +

Na


‖ν‖
 =

(
N
p

–
N – α

p

)
D(ν).

Then it follows from () that

(
N


–  –
N
p

+
N – α

p

)
‖∇ν‖

 +
(

N


–
N + α

p

)
a‖ν‖

 = . ()
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Thus, () and () imply that

‖ν‖
 =

N + p – pN + α

(p – )a
m,

‖∇ν‖
 =

–α + Np – N
p – 

m.
()

Substituting () into (), we have

m = c
(

(p – )aρ

(N + p – Np + α)m

) 
N–σ

p+N–Np+α
p–

+



a
(

(p – )aρ

(N + p – Np + α)m

)–

ρ

= c
(

(p – )aρ

(N + p – Np + α)m

) p+N–Np+α
Np–N–α–

+
N + p – Np + α

(p – )
m.

Hence

c =
Np – α – N – 

(p – )

(
(p – )aρ

N + p – pN + α

) Np–α–p–N
Np–N–α–

m
p–

Np–N–α–

:= Am
p–

Np–N–α– := �(m).

From the assumption of p, it is easy to see that c < . Therefore, � is a map � : R+ → R–

and m = �–(c) = ( 
A c)

Np–N–α–
p– is injective.

Next we prove that �– is surjective. Given m, a critical value for J , that is, m = J(ν), ν is
the solution of (). Consider u = T


λ ν = λ–σ ν(λ–x), where λ = ( ρ

‖ν(x)‖


)


N–σ , then u ∈ M is a

critical point of E|M and ‖∇u‖
 –D(u) + γρ =  with γ = aλ–. By using λ = ( ρ

‖ν(x)‖


)


N–σ =

( (p–)aρ

(N+p–pN+α)m )


–N+α , one has

c : =


‖∇u‖

 –


p
D(u) =



‖∇u‖

 –


p
(‖∇u‖

 + γρ
)

=
p – 
p

‖∇u‖
 –

γ

p
ρ

=
p – 
p

λ–σ–+N‖∇ν‖
 –

aλ–

p
ρ

=
–α + Np – N – 

(p – )

(
(p – )aρ

N + p – Np + α

)– 
N–σ

m


N–σ .

Hence m = �–(c). Therefore, we have

 = min
u∈M

E(u) = min
u∈M

cu = min
ν∈N

�(mν)

= – max
N +  + α – Np

(p – )

(
(p – )aρ

N + p – Np + α

) Np–α–p–N
Np–N–α–

m
p–

Np–N–α–
ν

= –
N +  + α – Np

(p – )

(
(p – )aρ

N + p – Np + α

) Np–α–p–N
Np–N–α– (

min
ν∈N

mν

) p–
Np–N–α–



Wang et al. Boundary Value Problems  (2016) 2016:190 Page 6 of 8

= –
N +  + α – Np

(p – )

(
(p – )aρ

N + p – Np + α

) Np–α–p+N
Np–N–α–

�
p–

Np–N–α–

= �(�).

If û ∈ M is a minimizer for , then ŵ = Tλû is a critical point of J with J(ŵ) = �–() = �,
so that ŵ is a minimizer for �, that is, J(ŵ) = minN J . �

Corollary . Any ground state solution of () satisfies

‖u‖
 = ρ, ρ =

N + p – pN + α

(p – )a
�,

moreover, for this precise value of the radius ρ , one has

min
u∈M

J(u) = min
u∈N

J(u),

where M = Mρ .

Proof The first conclusion is clear by the previous proof (see ()). Now we prove the
second conclusion. Indeed, Lemma . leads to

min
u∈M

J(u) = min
u∈M

E(u) +



a‖u‖
 =  +




aρ

= –
N +  + α – Np

(p – )
� +

N + p + α – Np
(p – )

�

= � = min
u∈N

J(u). �

Now we give the proof Theorem .

Proof of Theorem  By contradiction. Assume the conclusion is false, then there exist ε > ,
a sequence of times {tn} ⊂ [,∞), and initial data {un

} ⊂ H(RN ,C) such that

lim
n→∞ inf

φ∈G

∥∥un
 – φ

∥∥
H =  ()

and

inf
ψ∈G

∥∥un(tn, ·) – ψ
∥∥

H ≥ ε, ()

where un(t, ·) is the solution of () with initial value un
. By Corollary ., for any φ ∈ G,

one has

‖φ‖
 = ρ, J(φ) = min

u∈Mρ
J(u), ρ =

N + p – pN + α

(p – )a
�. ()

Hence, considering the sequence {un(tn, x)} in H(RN ,C), using the conservation of charge
and (), we get

∥∥un(tn, ·)∥∥
 =

∥∥un

∥∥

 = ρ + o(), when n → ∞.
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Then there exists a sequence {wn} ⊂ R+, wn → , as n → ∞, such that

∥∥wnun(tn, ·)∥∥
 = ρ, for all n ≥ . ()

Moreover, by the conservation of energy and the continuity of E, we get

J
(
wnun(tn, ·)) = E

(
wnun(tn, ·)) +




a
∥∥wnun(tn, ·)∥∥



= E
(
un(tn, ·)) +




a
∥∥un(tn, ·)∥∥

 + o()

= E
(
un


)

+



a
∥∥un


∥∥

 + o()

= J
(
un


)

+ o()

= min
u∈Mρ

J(u) + o(). ()

By () and (), one sees that {wnun(tn, ·)} ⊂ H(RN ,C) is a minimizing sequence for J
over Mρ . Following the arguments of [], one sees that, up to a subsequence, {wnun(tn, ·)}
converges to w in H(RN ,C), and

J(w) = min
u∈Mρ

J(u) = min
u∈N

J(u).

This implies that w ∈ G. Obviously, this is a contradiction with (), since

ε ≤ lim
n→∞ inf

ψ∈G

∥∥wnun(tn, ·) – ψ
∥∥

H ≤ lim
n→∞

∥∥wnun(tn, ·) – w
∥∥

H = .

The proof of Theorem  is complete. �
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