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Abstract
A ratio-dependent diffusion predator-prey system with free boundary is investigated
to understand the impact of free boundary on spreading-vanishing dichotomy and a
long time behavior of species. The existence and uniqueness of solutions are verified
and the behavior of positive solutions is considered for this system. Moreover, the
criteria for spreading-vanishing dichotomy are also derived. The results show that if
the length of the initial occupying area is longer than a critical size for the predators
or the length of the initial occupying area is shorter than a critical size, but the moving
coefficient of free boundary is relatively big, then the spreading of predators always
happens under relatively small rate of death for the predator. On the other hand, it is
found that if the initial value of free boundary is smaller than a threshold value and
the moving coefficient of free boundary is relatively small depending on initial size of
predator or the rate of death is relatively big, the predators fail in spreading to new
environment.
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1 Introduction
In mathematical ecology, the invasion of immigration for the new species is one of the
most important topics. From a viewpoint of mathematical ecology, the various invasion
models have been recently put forward and investigated by many ecological mathemati-
cians. For instance, [–] proposed reaction-diffusion population models with free bound-
ary to understand the process of the new or invasive population. In [], the free boundary
model is proposed with a logistic diffusion equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t – duxx = u(a – bu),  < x < h(t), t > ,
ux(, t) = , u(x, t) = , x ≥ h(t), t > ,
h′(t) = –μux(h(t), t), t > ,
h() = h, u(x, ) = u(x),  ≤ x ≤ h(t),

(.)

where x = h(t) is the free boundary which will be determined, a, b, d, μ and h are pos-
itive constants, and u is a nonnegative initial function. The authors in [] have con-
sidered the uniqueness and existence of global solutions, and derived some interesting
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results for the dynamics of solution. The vanishing-spreading dichotomy of the popu-
lation is one of the most remarkable and important results, that is, the solution (u, h)
fulfills: h(t) → ∞, u(x, t) → a/b as t → ∞ or h(t) → h∞ ≤ π



√
d/a, u(x, t) →  as

t → ∞.
The following phenomena often happen in the real world. In order to control or kill

the pest population, one can put some natural enemies (predators) into a certain area
(a bounded region) by employing the biological method because this kind of preys (pest
population) first gets into a bounded area (initial habitat) at the initial state and develops
very quickly. In this initial habitat (a bounded area), there is some kind of pest population
(prey) and another kind of population (predator, the new or invasive species) enters this
region to predate at some time (initial time).

During the process of the predators being put into a new habitat, the predators have a
tendency to move from the boundary to their new habitat, i.e., they will get into a new
bounded area along the free boundary (which is an unknown curve) to predate as time
increases. It is reasonable to suppose that the predator invades a new habitat at a rate
which is proportional to the gradients of the predators there. Such kind of free boundary
conditions has been already introduced in [–]. For the more ecological backgrounds of
free boundary conditions, one can also refer to [].

Recently, in [], the authors have considered the following double free boundary
predator-prey problem R

:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t – uxx = u( – u + av), g(t) < x < h(t), t > ,
∂v
∂t – Dvxx = v(b – v – cu), x ∈R, t > ,
u = , g ′(t) = –μux, t > , x = g(t),
u = , h′(t) = –μux, t > , x = h(t),
g() = –h, h() = h,
u(, x) = u(x), x ∈ [–h, h], v(, x) = v(x), x ∈R,

(.)

where R = (–∞,∞), x = h(t) and x = g(t) stand for the right and left moving boundaries,
respectively, a, b, c, D, h and μ are positive constants. The existence and uniqueness
of global solutions of (.) and a spreading-vanishing dichotomy have been established.
Moreover, the criteria for spreading and vanishing have been obtained in this paper, that
is, a spreading critical size h = π


√

/( + ab) has been derived. Wang in [] has examined
three prey-predator models with free boundary inR

: DFB, NFB, and TFB. The spreading-
vanishing dichotomy, criteria governing spreading-vanishing, and the long time behavior
of solution have been provided. For more detailed results, one can refer to [, ]. In higher
dimension space, Zhao and Wang [] have considered a Lotka-Volterra competition sys-
tem incorporating two free boundary with sign-changing coefficients, derived some suffi-
cient conditions for species spreading success and spreading failure, and derived the long
time behavior of solutions.

In the process of spreading for the predators, some of them die of starvation, cold and
illness. We want to understand how the rate of death impacts on spreading. The behavior
of predating always changes by the change of the size of preys and many ecologists observe
that the ratio-dependent functional response is more reasonable to describe the process
of predating for some predators. Based on these facts, we consider the following ratio-
dependent reaction-diffusion predator-prey system with free boundary including a death
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term:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t – duxx = –au + ecuv

u+v ,  < x < h(t), t > ,
∂v
∂t – dvxx = ( – v)v – cuv

u+v , x > , t > ,
ux(, t) = vx(, t) = , t > ,
u(x, t) = , x ≥ h(t), t > ,
h′(t) = –μux(h(t), t), h() = h, t > ,
u(x, ) = u(x),  ≤ x ≤ h, v(x, ) = v(x), x ≥ ,

(.)

where x = h(t) represents the moving boundary to be determined; u expresses the popu-
lation density of the predator species while v stands for the population density of the prey
species. h, a, b, c, di (i = , ) and e are positive constants. For what these coefficients
stand for the detailed meaning, one can refer to []. The initial functions u(x) and v(x)
correspondingly satisfy

{
u ∈ C([, h]), v ∈ C([,∞)), v > , x ∈ [,∞),
u(x) = , x ∈ [h,∞) and u(x) > , x ∈ [, h).

(.)

In this article, we shall show that system (.) admits a unique solution and a spreading-
vanishing dichotomy holds for this system, namely, as t → ∞, either

(i) the predator u(x, t) spreads successfully to a new environment in the sense that
h(t) → ∞,

or
(ii) the predator u(x, t) fails in establishing and vanishes eventually, i.e., h∞ < ∞,

‖u(x, t)‖C[,h(t)] → , and v(x, t) → .
The criteria for spreading and vanishing are obtained as follows. If the length of the ini-

tial occupying area is longer than a critical size for the predators or the length of the initial
occupying area is shorter than a critical size, but the moving coefficient of free boundary
is relatively big, then the spreading of predators always happens under relatively small rate
of death for the predator. On the other hand, if h is smaller than a threshold value and μ

is relatively small depending on the initial size of predator or the rate of death is relatively
big, the vanishing of predator happens.

Compared with [], this work mainly has the following differences: () it is proved that
if the rate of death for the predator is relatively big, then the vanishing of predator hap-
pens (Theorem .); () new comparison principle is established and then it is used to
investigate the criteria for spreading and vanishing; () one initial occupying critical size
h̃ is found (Theorem .) and this value describes that if h > h̃, spreading always hap-
pens regardless of μ and the initial value (u, v); () when h ≤ 



√
d

ec–a , one critical value
μ = d

M (M = 
 ‖u‖∞) is found and specifically expressed (in [], the existence of this

value is proved, but not expressed specifically), and it shows that if μ < μ, then spreading
fails.

This paper is organized into four sections. In the next section, the unique existence of
solutions for system (.) is established. In Section , the spreading-vanishing dichotomy
is investigated. In the final section, we make some brief comments and draw conclu-
sions.
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2 Existence of solution
Theorem . Assume that u and v satisfies (.) for some h > . Then, for  ≤ t < T
and any α ∈ (, ), there exists a unique solution,

(u, v, h) ∈ C+α,(+α)/(DT ) × C+α,(+α)/(D∞
T

) × C+α/([, T]
)

for system (.), furthermore,

‖u‖C+α,(+α)/(DT ) + ‖v‖C+α,(+α)/(D∞
T ) + ‖h‖C+α/([,T]) ≤ C,

where DT = {(x, t) ∈ R
 : x ∈ [, h(t)], t ∈ [, T)}, D∞

T = {(x, t) ∈ R
 : x ∈ [,∞), t ∈ [, T)}, c

and T only depend on h, α, ‖u‖C[,h] and ‖v‖C([,∞)).

Proof As in [], it needs to straighten the free boundary. Assume that ζ (s) is a function
in C[,∞) fulfilling

ζ (s) =  if |s – h| <
h


, ζ (s) =  if |s – h| >

h


,

ζ (s) =  if
∣
∣ζ ′(s)

∣
∣ <


h

for all s.

Let us introduce a transformation

(x, t) → (y, t), where y = x + ζ (x)
(
h(t) – h

)
, x ∈R

,

which yields the transformation

(s, t) → (x, t) with x = s + ζ (s)
(
h(t) – h

)
,  ≤ s < ∞.

For t ≥ , if

∣
∣h(t) – h

∣
∣ ≤ h


,

the above transformation x → y is a diffeomorphism from R
 onto R

 and the induced
transformation s → x is also a diffeomorphism from [,∞) onto [,∞). Furthermore, it
transforms the free boundary x = h(t) into the line s = h. Straightforward computations
show that

∂s
∂x

=


 + ζ ′(s)(h(t) – h)
:=

√

A
(
h(t), s

)
,

∂s
∂x = –

ζ ′′(s)(h(t) – h)
[ + ζ ′(s)(h(t) – h)] := B

(
h(t), s

)
, (.)

–


h′(t)
∂s
∂t

=
ζ (s)

 + ζ ′(s)(h(t) – h)
:= C

(
h(t), s

)
.

Setting

u(x, t) = u
(
s + ζ (s)

(
h(t) – h

)
, t

)
:= ϑ(s, t),

v(x, t) = v
(
s + ζ (s)

(
h(t) – h

)
, t

)
:= �(s, t),
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then the free boundary system (.) can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϑt – Adϑss – (Bd + h′C)ϑs = –aϑ + ecϑ�

ϑ+�
, t > ,  < s < h,

�t – Ad�ss – (Bd + h′C)�s = ( – �)� – cϑ�

ϑ+�
,  < s, t > ,

ϑs(, t) = �s(, t) = , t > , ϑ(s, t) = , s ≥ h, t > ,
h′(t) = –μϑs(h, t), h() = h, t > ,
ϑ(s, ) = u(s), �(s, ) = v(s),  ≤ s ≤ h,

(.)

where A = A(h(t), s), B = B(h(t), s), C = C(h(t), s).
The rest of the proof is similar to that of Theorem . in [], which follows from the

contraction mapping theorem together with standard Lp theory and Sobolev imbedding,
so we omit it here. �

To show that the local solution can being extended to all t > , the following estimate
will be employed.

Lemma . Assume that (u, v) is a bounded solution of (.) for t ∈ (, T) and T ∈
(, +∞]. Then there exist positive constants C and C which are independent of T such
that

 < u(x, t) ≤ C for  ≤ x < h(t), t ∈ (, T),

 < v(x, t) ≤ C for  ≤ x < +∞, t ∈ (, T).

Proof Let (u, v) be solution of (.), then it follows from the strong maximum principle
that u(x, t) >  in [, h(t)) × [, T] and v(x, t) >  in [,∞) × [, T]. In addition, by using
the maximum principle, we find that there exist positive constants C and C such that
u(x, t) ≤ C in [, h(t)) × [, T] and v(x, t) ≤ C in [,∞) × [, T]. �

Lemma . Assume that (u, v) is a defined solution of (.) for t ∈ (, T) and T ∈ (, +∞].
Then there exists a positive constant C which is independent of T such that

 < h′(t) ≤ C for t ∈ (, T).

Proof By using Hopf Lemma to the equation of u, we immediately obtain

u(x, t) > , ux
(
h(t), t

)
< 

for  < t < T, and  ≤ x < h(t). It follows from the Stefan condition that h′(t) >  for t ∈
(, T).

We define

� = �A :=
{

(x, t) :  < h(t) – A– < x < h(t),  < t < T
}

as in [] and establish an auxiliary function

w(x, t) := C
[
A

(
h(t) – x

)
– A(h(t) – x

)].
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We shall show that A can be chosen so that w(x, t) ≥ u(x, t) holds over �. It is easy to
check that, for (x, t) ∈ �,

wt = ACh′(t)
(
 – A

(
h(t) – x

)) ≥ ,

–wxx = AC, –au +
ecuv
u + v

≤ ecC.

It follows that

wt – dwxx ≥ dAC – 

if A ≥ ec
d

. Next, we have

w
(
h(t) – A–, t

)
= C ≥ u

(
h(t) – A–, t

)
, w

(
h(t), t

)
=  = u

(
h(t), t

)
.

Thus, for  < t < T and x ∈ [h – A–, h], if we can take A such that u(x) ≤ w(x, ), then,
by applying the maximum principle to w – u over �, we have u(x, t) ≤ w(x, t) for (x, t) ∈ �,
which yields

ux
(
h(t), t

) ≥ wx
(
h(t), t

)
= –AC, h′(t) = –μux

(
h(t), t

) ≤ μAC.

Therefore, it is necessary to find certain A independent of T such that u(x) ≤ w(x, ) for
x ∈ [h – A–, h].

By direct calculation, we get

wx(x, ) = –AC
[
 – A(h – x)

] ≤ –AC

for x ∈ [h – (A)–, h]. Then, by choosing

A := max

{‖u‖C([,h])

C
,
√

ec
d

}

for x ∈ [h – (A)–, h], we have

wx(x, ) ≤ –AC ≤ –


‖u‖C([,h]) ≤ u′

(x).

Since w(h, ) = u(h) = , the above inequality yields w(x, ) ≥ u(x). Furthermore, for
x ∈ [h – A–, h – (A)–], one can easily find that

w(x, ) ≥ 


C, u(x) ≤ ‖u‖C([,h])A– ≤ 


A.

Therefore, u(x) ≤ w(x, ) for x ∈ [h – A–, h]. This completes the proof. �

Employing Lemma . and Lemma ., the local solution of (.) can be extended for all
t >  by the regular argument, that is, one can obtain the following results.

Theorem . There exists a unique solution of system (.) for all t > .



Li Boundary Value Problems  (2016) 2016:192 Page 7 of 15

3 The spreading-vanishing dichotomy
From Lemma . it follows that x = h(t) is monotonic increasing. Thus, limt→∞ h(t) =
h∞ ∈ (,∞]. The following result shows that the predator will not spread successfully in
the case a > ec.

Theorem . Suppose that a > ec, then limt→∞ ‖u(·, t)‖C([,h(t)]) =  and h∞ < ∞. Further-
more, limt→∞ v(r, t) =  holds uniformly in any bounded subset of [,∞).

Proof By the comparison principle, one can get v(x, t) ≤ v(t) for x ≥  and t ∈ (,∞),
where

v(t) =
et‖v‖∞

 + (et – )‖v‖∞

is the solution of the ODE problem

dv
dt

= v( – v), t > , v() = ‖v‖∞.

Since limt→∞ v(t) = , it is deduced that lim supt→∞ v(t) ≤  holds uniformly in any
bounded subset of [, ∞). From the condition a > ec it follows that there exists a small ε

such that a > ec(+ε)
u+b(K+ε) . On the other hand, for this ε, there exists T such that v(x, t) ≤  + ε

in [, +∞) × [T,∞). Then u(x, t) satisfies

⎧
⎪⎨

⎪⎩

ut – duxx ≤ (–a + ec(+ε)
u+(+ε) )u(x, t),  < x < h(t), t > T,

u(x, t) = , ux(, t) = , x = h(t), t > ,
u(x, T) > ,  ≤ x ≤ h(T).

(.)

Using comparison again, we find that limt→∞ ‖u(·, t)‖C([,h(t)]) = . This, together with the
condition u(x, t) =  for t > , x ≥ h(t), shows that there exists Tε >  such that u(x, t) < ε

for any given  < ε 
 , t > Tε and x > . Then the function v(x, t) satisfies

⎧
⎪⎨

⎪⎩

vt – dvxx ≥ v( – v – εc
ε+v ),  < r, t > Tε ,

vx(, t) = , t > ,
v(x, Tε) > ,  < x.

(.)

By using the comparison principle again, we obtain

lim inf
t→∞ v(x, t) ≥  – ε +

√
(ε – ) + ε( – c)



holds uniformly in any bounded subset of [, +∞). Since ε >  is arbitrary, it follows that
lim inft→∞ v(x, t) ≥  uniformly in any bounded subset of [,∞).

Hence, limt→∞ v(x, t) =  holds uniformly in any bounded subset of [,∞).
Next, use Lemma . of [] to system (.), one can obtain h∞ < ∞. This completes the

proof. �

The following comparison principle can be used to estimate the solution (u(x, t), v(x, t))
and free boundary x = h(t).
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Lemma . (The comparison principle) Suppose that T ∈ (,∞), h ∈ C([, T]), v ∈
C((,∞) × [, T]) ∩ C,((,∞) × (, T]), u ∈ C(D∗

T ) ∩ C,(D∗
T ) with D∗

T = {(x, t) ∈ R
 :

 < x < h(t),  < t ≤ T}, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – duxx ≥ –au + ecuv
u+v ,  < x < h(t),  < t ≤ T ,

vt – dvxx ≥ ( – v)v, x > ,  < t ≤ T ,
ux(, t) = vx(, t) = ,  < t ≤ T ,
u(x, t) = , x ≥ h(t),  < t ≤ T ,
h′(t) ≥ –μux(h(t), t), h() ≥ h,  < t ≤ T ,
u(x, ) ≥ u(x),  ≤ x ≤ h, v(x, ) ≥ v(x), x ≥ .

(.)

Then the solution (u(r, t), v(r, t), h(t)) of the free boundary problem (.) fulfills

u(x, t) ≤ u(x, t) for x ∈ (
, h(t)

)
and t ∈ [, T],

v(x, t) ≤ v(x, t), h(t) ≤ h(t) for x ∈ (,∞) and t ∈ [, T].

Proof First of all, the application of the comparison principle to the equations of v and v
yields v > v directly. Since the function uv

u+v is increasing in u for u, v ≥ , by employing
the comparison principle given by [] for the single equation to u and u, one can get u > u
directly. The regular arguments and the detailed proofs are omitted. �

It is well known that the principal eigenvalue λ(L) of the problem
{

–φxx = λφ, x ∈ (, L),
φ = , x = , x = L

(.)

is a strictly decreasing continuous function and

lim
L→+

λ(L) = ∞, lim
L→+∞λ(L) = .

Hence, there exists a unique L∗ (L∗ > ) such that

λ
(
L∗) =

ec
d

,

λ(L) < ec
d

for L > L∗ and λ(L) > ec
d

for L < L∗.

Lemma . Suppose that h < L∗. Then there exists μ >  which depends on u such that
the predator fails in spreading if μ ≤ μ.

Proof For t >  and x ∈ (,σ (t)), define

σ (t) = h

(

 + δ –
δ


e–γ t

)

, ω(x, t) = Me–γ tW
(
hx/σ (t)

)
,

where M, δ, γ are positive constants to be taken later and W (x) is the first eigenfunction
of the problem

{
–Wxx = λ(h)W , x ∈ (, h),
W = , x = , x = h,

(.)
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with W ≥  and ‖W‖∞ = . From h < L∗, it follows that

λ(h) >
ec
d

.

By (.), it is obvious that W ′() = . Therefore, it is deduced that W ′(x) <  for  < x ≤ h.
Set τ (t) =  + δ – δ

 e–γ t so that σ (t) = hτ (t). By direct calculations, it is derived
that

ωt – dωxx – ω(–a + ec)

= Me–γ t[–γ W – xτ–τ ′(t)W ′ – dτ
–W ′′ – W (–a + ec)

]

≥ Me–γ t[–γ + dλ(h) + a – ec
]
W . (.)

Hence, by λ(h) > ec, one can take γ < a such that, for t > , x ∈ [,σ (t)],

ωt – dωxx – ω(ec – a) ≥ ,

which indicates

ωt – dωxx + ω

(

a –
ecv

u + v

)

≥ 

for t > , x ∈ [,σ (t)].
Now, take M >  large enough such that

u(x) ≤ MW
(

x
 + δ/

)

= ω(x, ) for x ∈ [, h].

Note that

σ ′(t) =



hγ δe–γ t ,  +
δ


≤ τ (t) ≤  + δ,

–μωx
(
t,σ (t)

)
= μMe–γ t h

σ (t)
∣
∣Wx(h)

∣
∣

≤ μMe–γ t |Wx(h)|
 + δ/

.

Hence, by taking

μ =
δ( + δ/)γ h

M|Wx(h)| ,

we find that σ ′(t) ≥ –μωx(t,σ (t)) for any  < μ ≤ μ.
Let v be a unique positive solution of

dv
dt

= v( – v), t > , v() = ‖v‖∞,
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and thus (ω, v,σ ) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωt – dωxx ≥ –aω + ecωv/(ω + v),  < x < σ (t),  < t ≤ T ,
vt – dvxx ≥ ( – v)v,  < x,  < t ≤ T ,
ωx(, t) = , vx = ,  < t ≤ T ,
ω(x, t) = , x ≥ σ (t),  < t ≤ T ,
σ () = ( + δ/)h > h,  < t ≤ T ,
ω(x, ) ≥ u(x),  ≤ x,
v() = ‖v‖∞,  ≤ x,
σ ′(t) ≥ –μωx(t,σ (t)),  < t ≤ T .

(.)

Hence, by the comparison principle (Lemma .), one can conclude that

h(t) ≤ σ (t), u(x, t) ≤ ω(x, t) and v(x, t) ≤ v(t)

for  ≤ x ≤ h(t) and t > . It follows that

h∞ ≤ lim
t→∞σ (t) = h( + δ) < ∞.

This completes the proof. �

Theorem . Suppose that a < ec and h ≤ 


√
d

ec–a . If μ ≤ d
M , then h∞ ≤ h < ∞, where

M = 
 ‖u‖∞.

Proof First, we construct a suitable upper solution to system (.) by defining

u =

{
Me–γ tH(x/h(t)),  ≤ x ≤ h(t),
, x > h(t),

v(x, t) = M,

where M = max{‖v‖∞, }, and

h(t) = h
(
 – e–γ t), t ≥ , H(y) =  – y,  ≤ x ≤ ,

where M, γ and M are positive constants to be taken later.
Straightforward computation yields

ut – duxx + au –
ecuv
u + v

= Me–γ t[–γ H – xh–h′H ′ – dh–H ′′ + (a – ec)
]

≥ Me–γ t
(

–γ + a – ec +
d

h


)

,

vt – dvxx – v( – v) ≥ 

(.)

for all  < x < h(t) and t > . In addition, one can easily check that h′(t) = hγ e–γ t and
–μux(h(t), t) = Mμh–e–γ t . Furthermore, we note that u(x, ) = M( – x/h

) ≥ 
 M,

v(x, ) ≥ v(x) for x ∈ (, h]. Since h(t) ≤ h, we choose M = 
 ‖u‖∞ and γ = d

h


,
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μ ≤ d
M , where h ≤ 



√
d

ec–a . Then we find that (.) holds. Hence, by Lemma ., we find
that h(t) ≤ h(t) for t >  and h∞ ≤ limt→∞ h(t) = h < ∞. This completes the proof. �

Lemma . Suppose that h∞ < ∞. Then limt→∞ ‖u(·, t)‖C([,h(t))) =  and limt→∞ v(x, t) = 
hold uniformly in any bounded subset of [,∞).

Proof Suppose for contradiction that

lim sup
t→∞

∥
∥u(·, t)

∥
∥

C([,h(t)]) = σ > .

Then, for all m ∈ N, there exists a sequence (xm, tm) in [, h(t)) × (,∞) such that
u(xm, tm) ≥ σ / and tm → ∞ as m → ∞. From  ≤ xm < h(t) < h∞ < ∞ it follows that
a subsequence of {xn} converges to x ∈ [, h∞). Without loss of generality, denote this
subsequence still by {xn}.

Define um(x, t) = u(x, tm + t) and vm(x, t) = v(x, tm + t) for (x, t) ∈ (, h(tm + t)) × (–tm,∞).
By the parabolic regularity, we find that there exists a subsequence {(umi , vmi )} of {(um, vm)}
such that (umi , vmi ) → (ũ, ṽ) as i → ∞ and (ũ, ṽ) satisfies

{
ũt – dũxx = –aũ + ecũṽ

ũ+ṽ , (x, t) ∈ (, h∞) × (–∞, +∞),
ṽt – ṽxx = ṽ( – ṽ) – cũṽ

ũ+ṽ , (x, t) ∈ (, h∞) × (–∞, +∞).
(.)

From ũ(x, ) ≥ σ /, it follows that ũ >  in (, h∞)× (–∞, +∞). Since –a + ecṽ
ũ+ṽ is bounded

by R := a + ec, by using Hopf lemma to the equation ũt – dũxx ≥ –Rũ at the point (h∞, ),
one can find that ũx(h∞, ) ≤ –δ for some δ > .

As in [], we define

s =
hx
h(t)

, ϑ(s, t) = u(x, t), �(s, t) = v(x, t),

then straightforward calculations yield

ut = ϑt –
h′(t)
h(t)

sϑs, ux =
h

h(t)
ϑs, uxx =

h


h(t)
ϑss.

Therefore, ϑ(s, t) fulfils

⎧
⎪⎨

⎪⎩

ϑt – d
h


h(t)ϑss – h′(t)

h(t) sϑs = ϑ(–a + ec�
ϑ+�

),  < s < h, t > ,
ϑs(, t) = ϑ(h, t) = , t > ,
ϑ(s, ) = u(s) ≥ ,  ≤ s ≤ h.

(.)

The free boundary x = h(t) is straightened as the fixed line s = h. By Proposition A in [],
there exists a positive constant K such that

‖ϑ‖
C

+α
 ,+α ([,∞)×[,h(t)])

< K,

which shows that there exists a constant K such that

∥
∥u(·, t)

∥
∥

C([,h(t)]) < K , ∀t ≥ .
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By h′(t) = –μux(h(t), t),  < h′(t) < M and ‖ϑs(s, t)‖
C

α
 ([,∞))

< K, one can obtain

∥
∥h′∥∥

C
α
 ([,∞))

< M, (.)

where M depends on K and M. Then, by using Proposition . of [], one can directly
obtain limt→∞ ‖u‖C([,h(t)]) = . This completes the proof. �

Remark . If the predator fails in spreading, then it will be extinct finally.

Theorem . Suppose that a < ec, then h∞ = ∞ if h > h̃, where λ(h̃) = 
d

(ec – a) > .

Proof Assume, for contradiction, that h∞ < ∞. Then it follows from Lemma . that

lim
t→∞

∥
∥u(·, t)

∥
∥

C([,h(t)]) =  and lim
t→∞ v(, t) = ,

uniformly in any bounded subset [, h]. Hence, for any ε > , there exists T̃ >  such that
u(x, t) ≤ ε and v(x, t) ≥  – ε for t ≥ T̃ , x ∈ [, h(t)].

Note that u(x, t) satisfies

⎧
⎪⎨

⎪⎩

ut – duxx ≥ u[–a + ec(–ε)
ε+(–ε) ],  < x < h, t > T̃ ,

ux(, t) = , u(h, t) ≥ , t > T̃ ,
u(x, T̃) > ,  ≤ x < h.

(.)

Let u(x, t) satisfy the following problem:

⎧
⎪⎨

⎪⎩

ut – duxx = u[–a + ec( – ε)],  < x < h, t > T̃ ,
ux(, t) = , u(h, t) = , t > T̃ ,
u(x, T̃) > ,  ≤ x < h.

(.)

Then u(x, t) is a lower solution of u(x, t). Since h > h̃, one can choose ε small enough
such that

dλ(h) < –a + ec( – ε).

By the condition a < ec, it follows from the well-known result that u is unbounded in
(, h) × [T∗,∞), which contradicts that limt→∞ ‖u(·, t)‖C([,h(t)]) = . This completes the
proof. �

Remark . Since λ(h̃) = 
d

(ec – a) < ec
d

= λ(L∗), one can find that h̃ > L∗, which is
different from the result of [].

Theorem . Assume that a < ec and h ≤ 

√

d/(ec – a). Then there exists μ depending
on u(x) and v(x) such that h∞ = ∞ if μ > μ for system (.).

Proof The proof is similar to that of Lemma . in []. For convenience of the reader, it
is included here. It follows from (.) that there exists a constant σ∗ >  such that

ut – duxx = –au +
ecuv
u + v

≥ –σ∗u,  < x < h(t).
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Construct and consider the following auxiliary free boundary system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zt – dzxx = –σ∗z,  < x < r(t), t > ,
zx(, t) = , t > ,
z(x, t) = , r(t) = –μzx, t > , x = r(t),
z(x, ) = u(x),  ≤ x < h,
r() = h.

(.)

By using the comparison principle, one can find that z(x, t) ≤ u(x, t) and r(t) ≤ h(t) for all
t ≥  and  ≤ x ≤ r(t). By using similar argument to the proof of Lemma . in [], one
can find that there exists a constant μ >  such that

r() ≥ π
√

d/(ec – a)

for all μ ≥ μ. Therefore, it is derived that

h∞ = lim
t→∞ h(t) ≥ r() ≥ π

√
d/(ec – a) > h, ∀μ ≥ μ.

This, together with Theorem ., yields the desired result. �

Using a similar argument to the proof of Theorem . in [], one can prove the fol-
lowing theorem, which shows that the predator establishes itself successfully in the new
environment in the sense that h∞ = ∞ if the rate of death for the predator is relatively
small. Moreover, in this case, both predator and prey can coexist for a long time.

Theorem . Assume that a < ( – c)ec and h∞ = ∞. Then the solution (u, v, h) of system
(.) satisfies

lim
t→ u(x, t) =

ec – a
a

(

 – c +
a
e

)

,

lim
t→ v(x, t) =  – c +

a
e

,

uniformly in any compact subset of [,∞).

The proof of the theorem is similar to that of Theorem . in [], so it is omitted.

Theorem . Assume that ec > a and h < 

√

d/(ec – a). There exists μ∗ > μ∗ >  which
depends on u(x) and v(x), such that h∞ < h if μ < μ∗ and h∞ = ∞ if μ > μ∗ for sys-
tem (.).

The proof of Theorem . is essentially the same as that of Theorem . in [] and thus
is omitted.

4 Comments and conclusions
In this article, we have investigated a ratio-dependent diffusion predator-prey system with
the free boundary x = h(t), which describes the process of movement for the predator
species.
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For the successful spreading of predator to a new environment for this model, only one
result is derived, that is, the predator u(x, t) spreads successfully to a new environment in
the sense that h(t) → ∞ if a < ec and h > h̃, where λ(h̃) = 

d
(ec – a) > .

Assume one of the following three cases holds: (i) a < ec, h ≤ 


√
d

ec–a and μ ≤ d
M , then

h∞ < ∞, where M = 
 ‖u‖∞; (ii) a > ec; (iii) h < L∗ and μ ≤ μ, where μ >  depending

on u. Then the predator u(x, t) fails in establishing itself and vanishes finally, i.e., h∞ < ∞,
‖u(x, t)‖C[,h(t)] →  and v(x, t) → .

Therefore, the criteria for spreading and vanishing are as follows. If the death rate of
predator is relatively small and the length of the initial occupying area is longer than a crit-
ical size h̃, then the spreading of predator always happens. For vanishing of the predator,
there are three criteria: (i) the rate of death is bigger than a critical value ec; (ii) the length
of initial occupying area h is shorter than a threshold value L∗ and μ is smaller than the
critical value μ, depending on u; (iii) the length of the initial occupying area h is shorter
than 



√
d

ec–a and μ is smaller than d
M , depending on u.

From the above results of the dichotomy, it follows that in order to control the prey
population (pest species) one should at least put predator population (natural enemies)
into the initial habitat at the initial state in one of four ways: (i) decrease the death rate of
predator during the process of putting; (ii) extend the range of predator’s targets; (iii) ac-
celerate putting predators; (iv) choose the natural enemies which have a strong ability for
predating.
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