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Abstract
In this paper, we study a nonlinear third-order multipoint boundary value problem by
the monotone iterative method. We then obtain the existence of monotone positive
solutions and establish iterative schemes for approximating the solutions. In addition,
we extend the considered problem to the Riemann-Liouville-type fractional
analogue. Finally, we give a numerical example for demonstrating the efficiency of
the theoretical results.
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1 Introduction
In this article, we are concerned with the existence of monotone positive solutions to the
third-order and fractional-order multipoint boundary value problems. In the first part, we
consider the following third-order multipoint boundary value problem:

u′′′(t) + q(t)f
(
t, u(t), u′(t)

)
= ,  < t < ,

u() = u′() = , u′() =
m∑

i=

αiu′(ηi),
()

where  < η < η < · · · < ηm <  (m ≥ ), αi ≥  (i = , , . . . , m), and
∑m

i= αiηi < .
Presently, the study of existence of positive solutions of third-order boundary value

problems has gained much attention [–]. For example, Zhang et al. [] obtained the
existence of single and multiple monotone positive solutions for problem () by replac-
ing q(t)f (t, u(t), u′(t)) with λa(t)f (t, u(t)), where λ is a positive parameter. By the Guo-
Krasnoselskii fixed point theorem, the authors established the intervals of the parame-
ter, which yields the existence of one, two, or infinitely many monotone positive solutions
under some suitable conditions. Zhang and Sun [] established a generalization of the
Leggett-Williams fixed point theorem and studied the existence of multiple nondecreasing
positive solutions for problem () by replacing q(t)f (t, u(t), u′(t)) with f (t, u(t), u′(t), u′′(t)).
Recently, by using the Leray-Schauder nonlinear alternative, the Banach contraction the-
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orem, and the Guo-Krasnoselskii theorem, Guezane-Lakoud and Zenkoufi [] discussed
the existence, uniqueness, and positivity of a solution in () with q(t) ≡ .

In the second part, we extend our discussion to the fractional case by considering the
boundary value problems with Riemann-Liouville fractional derivative given by

Dα
+ u(t) + q(t)f

(
t, u(t), u′(t)

)
= ,  < t < ,

u() = u′() = , u′() =
m∑

i=

αiu′(ηi),
()

where  < η < η < · · · < ηm <  (m ≥ ),  < α < , αi ≥  (i = , , . . . , m), and
∑m

i= αi ×
ηα–

i < . Presently, fractional differential equations have attracted increasing interest
in the research community [–], for example, specially introducing the fractional
dynamics into the synchronization of complex networks [, ]. Problem () with
q(t)f (t, u(t), u′(t)) = f̃ (t, u(t)) has been studied in [–]. Zhong [] studied the exis-
tence and multiplicity of positive solutions by the Krasnoselskii and Leggett-Williams
fixed point theorems. Liang and Zhang [] investigated the existence and uniqueness of
positive and nondecreasing solutions by using a fixed point theorem in partially ordered
sets and the lower and upper solution method. Cabrera et al. [] focused themselves on
the existence and uniqueness of a positive and nondecreasing solution based on a fixed
point theorem in partially ordered sets, which is different from that used in [].

2 Preliminaries
In this section, we assume that the following conditions hold:

(H)  < η < η < · · · < ηm <  (m ≥ ), αi ≥  (i = , , . . . , m), ρ :=
∑m

i= αiηi < ;
(H) q ∈ L[, ] is nonnegative, and  <

∫ 
 ( – s)q(s) ds < ∞;

(H) f ∈ C([, ] × [,∞) × [,∞), [,∞)), and f (t, , ) �≡  for t ∈ (, ).

Lemma  (see []) Let h ∈ C(, ) ∩ L[, ]. Then the boundary value problem

u′′′(t) + h(t) = ,  < t < ,

u() = u′() = , u′() =
m∑

i=

αiu′(ηi),

has a unique solution

u(t) =
∫ 


G(t, s)h(s) ds, t ∈ [, ],

where

G(t, s) = H(t, s) +
t

( – ρ)

m∑

i=

αiH(ηi, s), t, s ∈ [, ],

H(t, s) =



{
( – s)t – (t – s),  ≤ s ≤ t ≤ ,
( – s)t,  ≤ t ≤ s ≤ ,

()
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and

H(t, s) :=
∂G(t, s)

∂t
=

{
( – t)s,  ≤ s ≤ t ≤ ,
( – s)t,  ≤ t ≤ s ≤ .

In the following, we provide some properties of the functions H(t, s), H(t, s), and
G(t, s).

Lemma  For all (t, s) ∈ [, ] × [, ], we have:
(a) tH(, s) ≤ H(t, s) ≤ H(, s);
(b)  ≤ H(t, s) ≤ 

 t( – s),  ≤ H(t, s) ≤ t( – s);
(c) tG(, s) ≤ G(t, s) ≤ G(, s);
(d) G(t, s) ≤ (–s)t

(–ρ) , ∂G(t,s)
∂t ≤ (–s)t

–ρ
.

Proof For a proof of (a), see []. It is easy to check that (b) holds. Next, we prove (c). By
Lemma (a) and (),

G(t, s) = H(t, s) +
t

( – ρ)

m∑

i=

αiH(ηi, s)

≤ H(, s) +


( – ρ)

m∑

i=

αiH(ηi, s)

= G(, s).

On the other hand,

G(t, s) = H(t, s) +
t

( – ρ)

m∑

i=

αiH(ηi, s)

≥ tH(, s) +
t

( – ρ)

m∑

i=

αiH(ηi, s)

= tG(, s).

This means that (c) holds.
Finally, we prove (d). By Lemma (b) and () we have

G(t, s) = H(t, s) +
t

( – ρ)

m∑

i=

αiH(ηi, s)

≤ 


( – s)t +
t

( – ρ)

m∑

i=

αiηi( – s)

=



( – s)t +
ρ( – s)t

( – ρ)

=
( – s)t

( – ρ)
.
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For s fixed, this gives

∂G(t, s)
∂t

= H(t, s) +
t

 – ρ

m∑

i=

αiH(ηi, s)

≤ ( – s)t +
t

 – ρ

m∑

i=

αiηi( – s)

= ( – s)t +
ρ( – s)t

 – ρ

=
ρ( – s)t

 – ρ
.

This completes the proof. �

In this paper, to study (), we will use the space E = C[, ] equipped with the norm

‖u‖ :=
{

max
≤t≤

∣∣u(t)
∣∣, max

≤t≤

∣∣u′(t)
∣∣
}

.

Define the cone K ⊂ E by

K =
{

u ∈ C[, ] : u(t) ≥ , u′(t) ≥ , and u(t) ≥ t max
≤t≤

∣
∣u(t)

∣
∣, t ∈ [, ]

}
.

Introduce the integral operator T : K → E by

(Tu)(t) =
∫ 


G(t, s)q(s)f

(
s, u(s), u′(s)

)
ds, ()

where G(t, s) is defined by (). By Lemma , the problem () has a solution u ∈ K if u is a
fixed point of T defined by ().

Lemma  Let (H)-(H) hold. Then T : K → K is completely continuous.

Proof Suppose that u ∈ K . In view of Lemma (a),

 ≤ (Tu)(t) =
∫ 


G(t, s)q(s)f

(
s, u(s), u′(s)

)
ds

≤
∫ 


G(, s)q(s)f

(
s, u(s), u′(s)

)
ds, t ∈ [, ],

which implies that

max
t∈[,]

∣
∣Tu(t)

∣
∣ ≤

∫ 


G(, s)q(s)f

(
s, u(s), u′(s)

)
ds. ()

On the other hand, we have

(Tu)(t) =
∫ 


G(t, s)q(s)f

(
s, u(s), u′(s)

)
ds

≥ t
∫ 


G(, s)q(s)f

(
s, u(s), u′(s)

)
ds, t ∈ [, ]. ()



Hu et al. Boundary Value Problems  (2016) 2016:197 Page 5 of 11

Using inequalities () and () yields

(Tu)(t) ≥ t max
≤t≤

∣∣(Tu)(t)
∣∣, t ∈ [, ].

It is easy to see that (Tu)′(t) ≥  for t ∈ [, ]. Hence, the operator T maps K into itself.
In addition, a standard argument shows that T : K → K is completely continuous. This
completes the proof. �

3 Main results
The main results of this section are given as follows. For notational convenience, denote

Λ =
(


 – ρ

∫ 


( – s)q(s) ds

)–

.

Theorem  Suppose that conditions (H)-(H) hold. Let a >  and suppose that f satisfies
the following condition:

f (t, u, v) ≤ f (t, u, v) ≤ Λa for  ≤ t ≤ ,  ≤ u ≤ u ≤ a,  ≤ v ≤ v ≤ a. ()

Then problem () has two monotone positive solutions v and w, which satisfy
 < ‖v‖ ≤ a and limn→∞ vn = v, where vn = Tvn–, n = , , . . . , v(t) = , t ∈ [, ];
 < ‖w‖ ≤ a and limn→∞ wn = w, where wn = Twn–, n = , , . . . , w(t) = 

 at, t ∈ [, ].

Proof Firstly, we check that T : Ka → Ka, where Ka = {u ∈ K : ‖u‖ ≤ a}. In fact, if u ∈ Ka,
then

 ≤ u(s) ≤ max
≤s≤

u(s) ≤ ‖u‖ ≤ a,  ≤ u′(s) ≤ max
≤s≤

u′(s) ≤ ‖u‖ ≤ a, t ∈ [, ],

which, together with condition () and Lemma ()(d), implies that

 ≤ f
(
s, u(s), u′(s)

) ≤ f (s, a, a) ≤ Λa, s ∈ [, ].

Thus, by Lemma  we have

(Tu)(t) =
∫ 


G(t, s)q(s)f

(
s, u(s), u′(s)

)
ds

≤ t

( – ρ)

∫ 


( – s)q(s)f (s, a, a) ds

≤ Λa
( – ρ)

∫ 


( – s)q(s) ds

=
a


< a, t ∈ [, ], ()

and

(Tu)′(t) =
∫ 


G(t, s)q(s)f

(
s, u(s), u′(s)

)
ds

≤ t
 – ρ

∫ 


( – s)q(s)f (s, a, a) ds
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≤ Λa
 – ρ

∫ 


( – s)q(s) ds

= a, t ∈ [, ]. ()

Inequalities () and () give ‖T‖ ≤ a. Thus, T : Ka → Ka.
Now, we prove that there exist w, v ∈ Ka such that limn→∞ wn = w, limn→∞ vn = v, and w,

v are monotone positive solutions of problem ().
Indeed, in view of w, v ∈ Ka and T : Ka → Ka, we have wn, vn ∈ Ka, n = , , , . . . . Since

{wn}∞n= and {vn}∞n= are bounded and T is completely continuous, we know that the sets
{wn}∞n= and {vn}∞n= are sequentially compact sets. Since w = Tw = T( 

 at) ∈ Ka, by ()
and () we have

w(t) = (Tw)(t)

=
∫ 


G(t, s)q(s)f

(
s, w(s), w′

(s)
)

ds

=
∫ 


G(t, s)q(s)f

(
s,




as, as
)

ds

≤ t

( – ρ)

∫ 


( – s)q(s)f (s, a, a) ds

≤ 


at = w(t), t ∈ [, ],

and

w′
(t) =

∫ 



∂G(t, s)
∂t

q(s)f
(
s, w(s), w′

(s)
)

ds

≤ t
 – ρ

∫ 


( – s)q(s)f

(
s,




as, as
)

ds

≤ t
 – ρ

∫ 


( – s)q(s)f (s, a, a) ds

≤ at = w′
(t), t ∈ [, ].

Thus,

w(t) ≤ w(t), w′
(t) ≤ w′

(t), t ∈ [, ].

Further,

w(t) = (Tw)(t) ≤ (Tw)(t) = w(t), t ∈ [, ],

w′
(t) = (Tw)′(t) ≤ (Tw)′(t) = w′

(t), t ∈ [, ].

Finally, this gives

wn+(t) ≤ wn(t), w′
n+(t) ≤ w′

n(t), t ∈ [, ], n = , , , . . . .
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Hence, there exists w ∈ Ka such that limn→∞ wn = w. This, together with the continuity of
T and wn+ = Twn, implies that Tw = w. By a similar argument there exists v ∈ Ka such that
limn→∞ vn = v and v = Tv.

Thus, w and v are two nonnegative solutions of problem (). Because the zero func-
tion is not a solution of problem (), we have max≤t≤ |w(t)| >  and max≤t≤ |v(t)| > ,
and from the definition of the cone K it follows that w(t) ≥ t max≤t≤ |w(t)| > , v(t) ≥
t max≤t≤ |v(t)| > , t ∈ (, ], that is, w and v are positive solutions of problem (). The
proof is completed. �

4 An example
We consider the following four-point boundary value problem:

u′′′(t) +



[
t + u(t) + u′(t)

]
= ,  < t < ,

u() = u′() = , u′() = u′
(




)
+




u′
(




)
.

()

In this case,

m = , q(t) = , α = , α =



,

η =



, η =



, f (t, u, v) =



t +



u +



v.

It is obvious that (H)-(H) hold. By simple calculations we obtain Λ = . Let a = . Then

f (t, u, v) ≤ f (t, u, v) ≤ f (, , ) = 

= Λa,  ≤ t ≤ ,  ≤ u ≤ u ≤ ,  ≤ v ≤ v ≤ .

Then all hypotheses of Theorem  hold. Hence, problem () has two positive and nonde-
creasing solutions v and w such that  < ‖v‖ ≤ , limn→∞ vn = v, where v(t) = , t ∈ [, ],
and  < ‖w‖ ≤ , limn→∞ wn = w, where w(t) = t, t ∈ [, ].

For n = , , , . . . , the two iterative schemes are

w(t) = t, t ∈ [, ],

wn+(t) = –



∫ t


(t – s)[s + w

n(s) + w′
n(s)

]
ds +

t



(∫ 


( – s)

[
s + w

n(s) + w′
n(s)

]
ds

–
∫ 





(



– s
)[

s + w
n(s) + w′

n(s)
]

ds

–



∫ 




(



– s
)

[
s + w

n(s) + w′
n(s)

]
ds

)
, t ∈ [, ],

and

v(t) = , t ∈ [, ],

vn+(t) = –



∫ t


(t – s)[s + v

n(s) + v′
n(s)

]
ds + +

t



(∫ 


( – s)

[
s + v

n(s) + v′
n(s)

]
ds
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–
∫ 





(



– s
)[

s + v
n(s) + v′

n(s)
]

ds

–



∫ 




(



– s
)[

s + v
n(s) + v′

n(s)
]

ds
)

, t ∈ [, ].

The first, second, and third terms of these two schemes are as follows:

w(t) = t,

w(t) =
,
,

t –



t –




t,

w(t) =



t –




t +
,,,

,,,,
t –

,,,
,,,,

t

–
,,

,,
t +

,
,,

t –
,,

,,,
t +

,
,,

t

+


,,
t –


,

t +


,,
t –


,,

t,

and

v(t) = ,

v(t) =



t –




t,

v(t) =



t –




t +
,

,,
t –

,
,,

t

–


,,
t +


,

t +


,
t –


,

t.

5 Fractional case
In this section, we consider the boundary value problems with Riemann-Liouville frac-
tional derivative (). Before proceeding further, we recall some basic definitions of frac-
tional calculus [].

Definition  The Riemann-Liouville fractional derivative of order α >  of a continuous
function h : [,∞) →R is defined to be

Dα
+ h(t) =


Γ (n – α)

(
d
dt

)n ∫ t


(t – s)n–α–h(s) ds, n = [α] + ,

where Γ denotes the Euler gamma function, and [α] denotes the integer part of a number
α, provided that the right side is pointwise defined on (,∞).

Definition  The Riemann-Liouville fractional integral of order α is defined as

Iα
+ h(t) =


Γ (α)

∫ t


(t – s)α–h(s) ds, t > ,α > ,

provided that the integral exists.
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In this section, we assume that the following conditions hold:
(A)  < η < η < · · · < ηm < , αi ≥  (i = , , . . . , m), and ρ =

∑m
i= αiη

α–
i with ρ < ,

(A) q ∈ L[, ] is nonnegative, and  <
∫ 

 ( – s)α–q(s) ds < ∞,
(A) f ∈ C([, ] × [,∞) × [,∞), [,∞)), and f (t, , ) �≡  for t ∈ (, ).

Lemma  ([]) Let h ∈ C(, ) ∩ L[, ]. Then the boundary value problem

Dα
+ u(t) + h(t) = ,  < t < ,

u() = u′() = , u′() =
m∑

i=

αiu′(ηi),

has a unique solution

u(t) =
∫ 


G(t, s)h(s) ds, t ∈ [, ],

where

G(t, s) = H(t, s) +
tα–

(α – )( – ρ)

m∑

i=

αiH(ηi, s), t, s ∈ [, ],

H(t, s) =


Γ (α)

{
( – s)α–tα– – (t – s)α–,  ≤ s ≤ t ≤ ,
( – s)α–tα–,  ≤ t ≤ s ≤ ,

and

H(t, s) :=
∂H(t, s)

∂t
=


Γ (α – )

{
( – s)α–tα– – (t – s)α–,  ≤ s ≤ t ≤ ,
( – s)α–tα–,  ≤ t ≤ s ≤ .

Lemma  For all (t, s) ∈ [, ] × [, ], we have:
(a) tα–H(, s) ≤ H(t, s) ≤ H(, s);
(b)  ≤ H(t, s) ≤ tα–(–s)α–

Γ (α) ,  ≤ H(t, s) ≤ tα–(–s)α–

Γ (α–) ;
(c) tα–G(, s) ≤ G(t, s) ≤ G(, s);
(d)  ≤ G(t, s) ≤ tα–(–s)α–

Γ (α)(–ρ) ,  ≤ ∂G(t,s)
∂t ≤ tα–(–s)α–

Γ (α–)(–ρ) .

Let

Λ =
(


 – ρ

∫ 


( – s)α–q(s) ds

)–

.

Theorem  Suppose that (A)-(A) hold. Let a >  and suppose that f satisfies the follow-
ing condition:

f (t, u, v) ≤ f (t, u, v) ≤ Λa for  ≤ t ≤ ,  ≤ u ≤ u ≤ a,  ≤ v ≤ v ≤ a.

Then problem () has two monotone positive solutions v and w such that
 < ‖v‖ ≤ a and limn→∞ vn = v, where vn = Tvn–, n = , , . . . , v(t) = , t ∈ [, ];
 < ‖w‖ ≤ a and limn→∞ wn = w, where wn = Twn–, n = , , . . . , w(t) = a

Γ (α) tα–,
t ∈ [, ].

The proof is similar to that of Theorem , so we omit it.
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