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Abstract
In this paper, we study the global nonexistence of solutions to a nonlinear wave
equation with critical potential V(x) on a Riemannian manifold, the form of which is
more general than those in (Todorova and Yordanov in C. R. Acad. Sci., Sér. 1 Math.
300:557-562, 2000). The way we follow is motivated by the work of Qi S. Zhang (C. R.
Acad. Sci., Sér. 1 Math. 333:109-114, 2001). We also prove the local existence and
uniqueness result.
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1 Introduction and main results
In this paper, we study the global nonexistence of solutions to the following nonlinear wave
equation with a damping term:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u(x, t) + W (x)|u|p(x, t) – ut(x, t) – utt(x, t) =  in M
n × (,∞),

u(x, ) = u(x) in M
n,

ut(x, ) = u(x) in M
n,

(.)

where M
n (n ≥ ) is a non-compact complete Riemannian manifold, � is the Laplace-

Beltrami operator, and
∫

u(x) dx,
∫

u(x) dx > , while the constant p > .
In [], Todorova and Yordanov proved the following result for (.) when M

n = R
n and

W (x) ≡ :
Let  < p <  + 

n . If we assume that u(x), u(x) is compactly supported and
∫

u(x) dx,
∫

u(x) dx > , then the global solution of (.) does not exist.
However, whether or not the critical case p =  + 

n belongs to the blow-up case was left
open. In [], Qi S. Zhang showed p =  + 

n belongs to the blow-up case.
The investigation of nonexistence and existence of global solutions to evolution equa-

tions has a long history, We refer the reader to the surveys [–]. There are more recent
contributions to the discussion of the test function method; we refer to [–] for a survey
of the literature on this problem.
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In this paper, we study the global nonexistence of solutions to a nonlinear wave equation
with critical potential V (x) on a Riemannian manifold, the form of which is more general
than those in []. The way we follow is motivated by the work of Qi S. Zhang []. We also
prove the local existence and uniqueness result.

Throughout the paper, for a fixed x ∈M
n, we make the following assumptions (see []):

(i) ∂ log g



∂r ≤ C
r , when r = d(x, x) is smooth; here g 

 is the volume density of the
manifold;

(ii) there are positive constants α >  and m > –, such that
• C–rα ≤ |Br(x)| ≤ Crα , when r is large and for all x ∈M

n;
• W (x) are non-negative L∞

loc functions. For large r = d(x, x),
C–rm ≤ W (x) ≤ Crm.

Lemma  (see []) Under assumptions (i) and (ii), there exist positive constants C and
R, for R ≥ R and 

p + 
q = , such that

∫

BR(x)
W – q

p (x) dx ≤ C ln R + CR– qm
p +α .

Our result is as follows.

Theorem . Under assumptions (i) and (ii), let p ∈ (,  + +m
α

]. If we assume that u(x),
u(x) is compactly supported and

∫
u(x) dx,

∫
u(x) dx > , then the global solution of (.)

does not exist.

Remark Clearly R
n satisfies assumptions (i) and (ii), so if Mn = R

n and W (x) ≡ (m = ),
from the proof of Theorem ., it is in accordance with (a).

Theorem . (Local existence and uniqueness) Let Mn be an n-dimensional smooth com-
pact manifold, and u be a smooth hypersurface immersion of Mn into R

n+. Then there
exists a constant T >  such that the initial value problem

⎧
⎪⎪⎨

⎪⎪⎩

�u(x, t) + W (x)|u|p(x, t) – ut(x, t) – utt(x, t) =  in M
n × (,∞),

u(x, ) = u(x) in M
n,

ut(x, ) = u(x) in M
n,

(.)

has a unique smooth solution u(x, t) on M
n × [, T), where u(x) is a smooth vector-valued

function on M
n.

Theorem . is proved in Section ; Theorem . is proved in Section .
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2 Global nonexistence of solutions

Proof of Theorem . From now on, C is always a constant that may change from line to
line. Throughout the section, we let ϕ,η ∈ C∞[,∞) be two functions satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(r) ∈ [, ], if r ∈ [,∞),

ϕ(r) = , if r ∈ [, 
 ],

ϕ(r) = , if r ∈ [,∞];

η(t) ∈ [, ], if t ∈ [,∞),

η(t) = , if t ∈ [, 
 ],

η(t) = , if t ∈ [,∞];
|∇ϕ|

ϕ
≤ C, if r ∈ [, ];

η
t
η

≤ C, if t ∈ [, ];

–C ≤ ϕ(r)′ ≤ ; |ϕ(r)′′| ≤ C; –C ≤ η(t)′ ≤ ; |η(t)′′| ≤ C.

(.)

For R > , we define QR = BR(x) × [, R]. We also need a cut-off function

ψR = ϕR
[
d(x, x)

]
ηR(t), (.)

where ϕR(r) = ϕ( r
R ) and ηR(t) = η( t

R ). Clearly,

∂ϕR

∂r
∈

[

–
C
R

, 
]

;
∂ϕR

∂r ∈
[

–
C
R ,

C
R

]

;
∂ηR

∂t
∈

[

–
C
R , 

]

;

|∇ϕR|
ϕR

≤ C
R ;

(∂tηR)

ηR
≤ C

R .
(.)

We use the method of contradiction. Suppose that u(x, t) is a global positive solution of
(.). For R > , we set

IR
	=

∫

QR

W (x)|u|p(x, t)ψq
R(x, t) dx dt, (.)

where 
p + 

q = .
Since u(x, t) is a solution of (.), we have

IR =
∫

QR

[
ut(x, t) – �u(x, t) + utt(x, t)

]
ψ

q
R(x, t) dx dt = J + J, (.)

where

J
	=

∫

QR

[
ut(x, t) – �u(x, t)

]
ψ

q
R(x, t) dx dt, J

	=
∫

QR

utt(x, t)ψq
R(x, t) dx dt. (.)

We will estimate J and J separately.
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By the Stokes formula and noting that ψR =  on ∂BR(x), we have

J =
∫

QR

ut(x, t)ψq
R(x, t) dx dt –

∫ R



∫

∂BR(x)

∂u(x, t)
∂n

ψ
q
R(x, t) dSx dt

+
∫

QR

∇u(x, t)∇ψ
q
R(x, t) dx dt

=
∫

QR

ut(x, t)ψq
R(x, t) dx dt +

∫

QR

∇u(x, t)∇ψ
q
R(x, t) dx dt, (.)

which implies, via integration by parts,

J =
∫

BR(x)
u
(
x, R)ψ

q
R
(
x, R)dx –

∫

BR(x)
u(x, )ψq

R(x, ) dx

– q
∫

QR

u(x, t)ϕq
R(x)ηq–

R (t)η′
R(t) dx dt +

∫ R



∫

∂BR(x)
u(x, t)

∂ϕ
q
R

∂n
η

q
R(t) dSx dt

–
∫

QR

u(x, t)�ϕ
q
R(x)ηq

R(t) dx dt. (.)

We observe that ψ
q
R(x, R) = ;

∫
u(x) dx > , ∂ϕ

q
R

∂n = qϕ
q–
R ϕ′

R( ∂r
∂n ) =  on ∂BR(x), so we

obtain

J ≤ –q
∫

QR

u(x, t)ϕq
R(x)ηq–

R (t)η′
R(t) dx dt –

∫

QR

u(x, t)�ϕ
q
R(x)ηq

R(t) dx dt. (.)

Since �ϕ
q
R(x) = qϕ

q–
R (x)�ϕR(x) + q(q – )ϕq–

R (x)|∇ϕR(x)|, (.) yields

J ≤ –q
∫

QR

u(x, t)ϕq
R(x)ηq–

R (t)η′
R(t) dx dt – q

∫

QR

u(x, t)ϕq–
R (x)�ϕR(x)ηq

R(t) dx dt

– q(q – )
∫

QR

u(x, t)ϕq–
R (x)

∣
∣∇ϕR(x)

∣
∣

η
q
R(t) dx dt. (.)

Recalling the supports of ϕR(x) and ηR(t), that is,

⎧
⎨

⎩

ηR(t) = , η′
R(t) = , if t ∈ [, R

 ],

ϕR(x) = , �ϕR(x) = , if r ∈ [, R
 ],

(.)

we can reduce (.) to

J ≤ –q
∫ R

R


∫

BR(x)
u(x, t)ϕq

R(x)ηq–
R (t)η′

R(t) dx dt

– q
∫ R



∫

BR(x)\B R


(x)
u(x, t)ϕq–

R (x)�ϕR(x)ηq
R(t) dx dt

– q(q – )
∫ R



∫

BR(x)\B R


(x)
u(x, t)ϕq–

R (x)
∣
∣∇ϕR(x)

∣
∣

η
q
R(t) dx dt. (.)
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Since ϕR is radial, we have

�ϕR = ϕ′′
R +

[
n – 

r
+

∂ log g 


∂r

]

ϕ′
R. (.)

Taking R sufficiently large, by assumption (i), that is, ∂ log g



∂r ≤ C
r , we obtain

�ϕR ≥ –
C
R , (.)

when x ∈ BR(x)\B R


(x). Merging (.), (.), and (.), we know

J ≤ Cq
R

∫ R

R


∫

BR(x)
u(x, t)ϕq

R(x)ηq–
R (t) dx dt

+
Cq
R

∫ R



∫

BR(x)\B R


(x)
u(x, t)ϕq–

R (x)ηq
R(t) dx dt

– q(q – )
∫ R



∫

BR(x)\B R


(x)
u(x, t)ϕq–

R (x)
∣
∣∇ϕR(x)

∣
∣

η
q
R(t) dx dt. (.)

By (.), we have

ϕ
q–
R (x)

∣
∣∇ϕR(x)

∣
∣ = ϕ

q–
R

|∇ϕR(x)|
ϕR

≥ –
C
R ϕ

q–
R , (.)

which yields

J ≤ Cq
R

∫ R

R


∫

BR(x)
u(x, t)ϕq

R(x)ηq–
R (t) dx dt

+
Cq
R

∫ R



∫

BR(x)\B R


(x)
u(x, t)ϕq–

R (x)ηq
R(t) dx dt

+
Cq(q + )

R

∫ R



∫

BR(x)\B R


(x)
u(x, t)ϕq–

R (x)ηq
R(t) dx dt

≤ Cq
R

∫ R

R


∫

BR(x)
u(x, t)ϕq

R(x)ηq–
R (t) dx dt

+
Cq
R

∫ R



∫

BR(x)\B R


(x)
u(x, t)ϕq–

R (x)ηq
R(t) dx dt. (.)

Therefore, as ϕR,ηR ≤ ,

J ≤ Cq
R

∫ R

R


∫

BR(x)
u(x, t)ψq–

R (x, t) dx dt

+
Cq
R

∫ R



∫

BR(x)\B R


(x)
u(x, t)ψq–

R (x, t) dx dt



Ru Boundary Value Problems  (2016) 2016:198 Page 6 of 10

≤ Cq
R

∫ R

R


∫

BR(x)
W


p (x)

∣
∣u(x, t)

∣
∣ψ

q–
R (x, t)W – 

p (x) dx dt

+
Cq
R

∫ R



∫

BR(x)\B R


(x)
W


p (x)

∣
∣u(x, t)

∣
∣ψ

q–
R (x, t)W – 

p (x) dx dt. (.)

By the Hölder inequality and noticing 
p + 

q = , we have

J ≤ Cq
R

[∫ R

R


∫

BR(x)
W (x)|u|p(x, t)ψq

R(x, t) dx dt
] 

p
×

[∫ R

R


∫

BR(x)
W – q

p (x) dx dt
] 

q

+
Cq
R

[∫ R



∫

BR(x)\B R


(x)
W (x)|u|p(x, t)ψq

R(x, t) dx dt
] 

p

×
[∫ R



∫

BR(x)\B R


(x)
W – q

p (x) dx dt
] 

q

≤ Cq
R [IR]


p ×

[∫ R

R


∫

BR(x)
W – q

p (x) dx dt
] 

q

+
Cq
R [IR]


p ×

[∫ R



∫

BR(x)\B R


(x)
W – q

p (x) dx dt
] 

q
. (.)

By Lemma , we obtain

[∫ R

R


∫

BR(x)
W – q

p (x) dx dt
] 

q
≤

{∫ R

R


[
C ln R + CR– qm

p +α]
dt

} 
q

≤ CR

q ln R + CR– m

p + +α
q . (.)

Hence,

J ≤ Cq
R [IR]


p × [

CR

q ln R + CR– m

p + +α
q

]
+

Cq
R [IR]


p × [

CR– m
p + +α

q
]

≤ Cq
R [IR]


p × [

CR

q ln R + CR– m

p + +α
q

]

= C[IR]

p × [

CR

q – ln R + CR– m

p + +α
q –]. (.)

Now let us estimate J. Using integration by parts, we obtain

J =
∫

QR

utt(x, t)ψq
R(x, t) dx dt

=
∫

BR(x)
ut(x, t)ψq

R(x, t)
∣
∣
∣
∣

R


dx – q

∫

BR(x)
uϕ

q
R(x)ηq–

R (t)∂tηR

∣
∣
∣
∣

R


dx

+ q
∫

QR

u(x, t)ϕq
R(x)ηq–

R (t)∂
t ηR(t) dx dt

+ q(q – )
∫

QR

u(x, t)ϕq
R(x)ηq–

R (t)
(
∂tηR(t)

) dx dt. (.)
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We observe that ψ
q
R(x, R) = ηR(R) = ;

∫
u(x) dx,

∫
u(x) dx >  and (.), The above im-

plies

J ≤ q
∫ R

R


∫

BR(x)
|u|ϕq

Rη
q–
R

∣
∣∂

t ηR
∣
∣dx dt

+ q(q – )
∫ R

R


∫

BR(x)
|u|ϕq

Rη
q–
R

(∂tηR)

ηR
dx dt. (.)

Again by (.) and the Hölder inequality, we have

J ≤ C
R

∫ R

R


∫

BR(x)
|u|ϕq

Rη
q–
R dx dt

≤ C
R

[∫ R

R


∫

BR(x)
W (x)|u|p(x, t)ψq

R(x, t) dx dt
] 

p

×
[∫ R

R


∫

BR(x)
W – q

p (x) dx dt
] 

q
. (.)

By (.), (.) yields

J ≤ C
R [IR]


p × [

CR

q ln R + CR– m

p + +α
q

]
. (.)

Combining (.), (.), and (.), we obtain, for large R,

IR = J + J

≤ C
R [IR]


p × [

CR

q ln R + CR– m

p + +α
q

]
+

C
R [IR]


p × [

CR

q ln R + CR– m

p + +α
q

]

≤ C[IR]

p × [

CR

q – ln R + CR– m

p + +α
q –], (.)

which yields

I

q

R ≤ CR

q – ln R + CR– m

p + +α
q –. (.)

If p ∈ (,  + +m
α

), then – m
p + +α

q –  < . Let R → ∞, we have

∫ ∞



∫

Mn
W (x)|u|p(x, t) dx dt = . (.)

Hence, (.) is a contradiction when R is large. This is because the left-hand side of (.)
is positive and non-decreasing while R −→ ∞.

If p =  + +m
α

, then – m
p + +α

q –  = . Therefore, when R is large, (.) becomes

IR ≤ C
[
CR


q – ln R + C

]q ≤ C. (.)

This shows
∫ ∞



∫

Mn
W (x)up(x, t) dx dt = lim

R→∞ IR < ∞. (.)
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Hence

lim
R→∞

∫ R

R


∫

BR(x)
W (x)up(x, t) dx dt =  (.)

and

lim
R→∞

∫ R



∫

BR(x)\B R


(x)
W (x)up(x, t) dx dt = . (.)

Using the last two equalities, (.) and (.) again, we obtain

∫ ∞



∫

Mn
W (x)|u|p(x, t) dx dt = lim

R→∞ IR = . (.)

This is a contradiction.
Thus, the proof of Theorem . is completed. �

3 Local existence and uniqueness

Proof of Theorem . Let u(·, t) : Mn −→ R
n+ be a one-parameter family of smooth hyper-

surface immersions in R
n+ and g = {gij} be the induced metric on M in a local coordinate

system {xi} ( ≤ i ≤ n).
Noting

�u = �gu = gij∇i∇ju = gij
(

∂u
∂xi ∂xj – �k

ij
∂u
∂xk

)

, (.)

the wave equation (.) can be equivalently rewritten as

utt(x, t) = gij
(

∂u
∂xi ∂xj – �k

ij
∂u
∂xk

)

+ W (x)|u|p(x, t) – ut(x, t). (.)

Since

�k
ij = gkl

(
∂u

∂xi ∂xj ,
∂u
∂xl

)

, (.)

it follows that

utt(x, t) = gij ∂u
∂xi ∂xj – gijgkl

(
∂u

∂xi ∂xj ,
∂u
∂xl

)
∂u
∂xk + W (x)|u|p(x, t) – ut(x, t). (.)

We note that equation (.) is not strictly hyperbolic. Therefore, in order to consider equa-
tion (.), we need to follow a trick of DeTurck [] by modifying the flow through a dif-
feomorphism of Mn, under which (.) turns out to be strictly hyperbolic, so that we can
apply the standard theory of hyperbolic equations.

Suppose û(x, t) is a solution of equation (.) and φt : Mn −→ M
n is a family of diffeo-

morphisms of Mn. Let

u(x, t) = φ∗
t û(x, t), (.)
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where φ∗
t is the pull-back operator of φt . We now want to find the evolution equation for

the metric u(x, t).
Denote

y(x, t) = φt(x) =
{

y(x, t)y(x, t)y(x, t) · · · yn(x, t)
}

, (.)

in local coordinates, and define y(x, t) = φt(x) by the following initial value problem:
⎧
⎨

⎩

∂yα

∂t = ∂yα

∂xk gjl(�k
jl – �̂k

jl),

yα(x, ) = xα , yα
t (x, ) = ,

(.)

where �̂k
jl is the connection corresponding to the initial metric ĝij(x). Since

�k
jl =

∂yα

∂xj
∂yβ

∂xl
∂xk

∂yγ
�̂

γ

αβ +
∂xk

∂yα

∂yα

∂xj ∂xl , (.)

the initial value problem (.) can be rewritten as
⎧
⎨

⎩

∂yα

∂t = gjl( ∂yα

∂xj ∂xl + ∂yβ

∂xj
∂yγ

∂xl �̂
α
βγ – ∂yα

∂xk �̂k
jl),

yα(x, ) = xα , yα
t (x, ) = .

(.)

Obviously, (.) is an initial value problem for a strictly hyperbolic system. On the other
hand, we note that

�ĝ û = ĝαβ∇α∇βu = ĝαβ

(
∂û

∂yα ∂yβ
– �̂

γ

αβ

∂û
∂yγ

)

= gkl ∂yα

∂xk
∂yβ

∂xl

{
∂

∂yα

(
∂u
∂xi

∂xi

∂yβ

)

–
∂u
∂xi

∂xi

∂yγ
�̂

γ

αβ

}

= gkl ∂u
∂xk ∂xl + gkl ∂yα

∂xk
∂yβ

∂xl
∂u
∂xi

∂xi

∂yα ∂yβ
– gkl ∂u

∂xi

(

�i
kl –

∂xi

∂yγ

∂uyγ

∂xk ∂xl

)

= gij∇i∇ju = �gu. (.)

We have

∂u
∂t

=
∂û
∂t

+
∂û
∂yk

∂yk

∂t
, (.)

utt =
∂û

∂yα ∂yβ

∂yα

∂t
∂yβ

∂t
+ 

∂û
∂t ∂yβ

∂yβ

∂t
+

∂û
∂t +

∂û
∂yα

∂yα

∂t

=
∂û

∂yα∂yβ

∂yα

∂t
∂yβ

∂t
+ 

∂û
∂t ∂yβ

∂yβ

∂t
+ �ĝ û +

∂u
∂xk

∂xk

∂yα

∂yα

∂t

= �gu +
∂u
∂xk gij(�k

ij – �̂i
kl
)

+
∂û

∂yα ∂yβ

∂yα

∂t
∂yβ

∂t
+ 

∂û
∂t ∂yβ

∂yβ

∂t

= gij
(

∂u
∂xi ∂xj – �k

ij
∂u
∂xk

)

+
∂u
∂xk gij(�k

ij – �̂i
kl
)

+
∂û

∂yα∂yβ

∂yα

∂t
∂yβ

∂t
+ 

∂û
∂t ∂yβ

∂yβ

∂t

= gij ∂u
∂xi ∂xj –

∂u
∂xk gij�̂i

kl +
∂û

∂yα ∂yβ

∂yα

∂t
∂yβ

∂t
+ 

∂û
∂t ∂yβ

∂yβ

∂t
. (.)
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By the standard theory of hyperbolic equations (see []), we obtain a local existence and
uniqueness result. Thus, the proof of Theorem . is completed. �
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