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Abstract
This paper is concerned with a thermoelastic suspension bridge equations with
memory effects. For the suspension bridge equations without memory, there are
many classical results. However, the suspension bridge equations with both
viscoelastic and thermal memories were not studied before. The object of the present
paper is to provide a result on the global attractor to a thermoelastic suspension
bridge equation with past history.
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1 Introduction
In recent years, several authors have been concerned with the asymptotic behavior of the
following suspension bridge equations:

utt + �u + ku+ + δut + f (u) = h(x), (.)

where u(x, t) is an unknown function, which represents the deflection of the roadbed in the
vertical plane, k >  denotes the spring constant of the ties, and δ >  is a given constant.
The force u+ = max{u, } is the positive part of u. The suspension bridge equations are
an important mathematical model in engineering. Lazer and McKenna [] investigated
the problem of nonlinear oscillation in a suspension bridge. Lately, similar models have
been considered by many authors, most of them concentrating on the existence and de-
cay estimates of solutions; see [–] and references therein. Ma and Zhong [] and Zhong
et al. [] proved the existence of global attractors of weak and strong solutions for equa-
tion (.), respectively. Park and Kang [] showed the existence of pullback attractor for a
nonautonomous suspension bridge equation with linear damping and in [] obtained the
existence of global attractors for the suspension bridge equations with nonlinear damping.
Besides, the problem of attractor of the solutions to a coupled system of suspension bridge
equations has been studied by several authors [–]. Recently, Kang [] proved the long-
time behavior to the suspension bridge equation when the unique damping mechanism
is given by the memory term. We construct some proper Lyapunov functions to show
the existence of global attractors. The asymptotic behavior of a thermoelastic system has
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been widely investigated by many authors. In particular, the stability of a thermoelastic
system with memory was proved by several authors [–]. To the best of our knowl-
edge, problem (.) was not earlier considered in a thermoelasticity point of view. Since
thermal effect is a major feature in the theory of elastic plates, we intend to investigate the
dynamical behavior of a thermoelastic version of problem (.). This paper is concerned
with long-time behavior of a solution to the following thermoelastic suspension bridge
equation with linear memory:

utt + α�u – �ut + ku+ –
∫ ∞


μ(s)�u(t – s) ds + β�θ + f (u)

= h(x) in � ×R
+, (.)

θt – �θ – β�ut –
∫ ∞


κ(s)�θ (t – s) ds =  on � ×R

+, (.)

u = , �u = , θ =  on ∂� ×R
+, (.)

u(x, t) = u(x, t), ut(x, t) = u(x, t),
(.)

θ (x, t) = θ(x, t), (x, t) ∈ � × (–∞, ],

where � is a bounded domain in R
 with sufficiently smooth or rectangular boundary ∂�,

and � denotes the Laplace operator. Here α is the flexural rigidity of the structure, and
β >  provides connection between deflection and temperature and depends on mechani-
cal and thermal properties of the material. The initial conditions u, θ : �× (–∞, ] →R

are the prescribed past histories of u and θ , respectively. It is well known that u = u(x, t)
represents the deflection of the roadbed in the vertical plane and θ = θ (x, t) is the temper-
ature difference with respect to a fixed reference temperature. Memory kernels μ(s) and
κ(s) are supposed to be smooth decreasing convex functions vanishing at infinity.

The only way to associate a process with such equations is to view the past history of
u and θ as new variables of the system, which will be ruled by a supplementary equation.
To formulate system (.)-(.) in a history space setting, as in [–], we define new
variables η and ζ by

ηt(x, s) = u(x, t) – u(x, t – s), ζ t(x, s) =
∫ s


θ (x, t – y) dy, (x, s) ∈ � ×R

+, t ≥ .

Formally, they satisfy the linear equations

ηt
t(x, s) + ηt

s(x, s) = ut(x, t), ζ t
t (x, s) + ζ t

s (x, s) = θ (x, t), (x, s) ∈ � ×R
+, t ≥ ,

and

ηt(x, ) = , ζ t(x, ) = , x ∈ �, t ≥ ,

whereas

η(x, s) = u(x, ) – u(x, –s), ζ (x, s) =
∫ s


θ(x, –y) dy, (x, s) ∈ � ×R

+.
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Assuming that μ,ν ∈ L(R+) and taking α =  +
∫ ∞

 μ(s) ds and ν(s) = –κ ′(s), problem (.)-
(.) can be transformed into the equivalent system

utt + �u – �ut + ku+ +
∫ ∞


μ(s)�ηt(s) ds + β�θ + f (u) = h(x) in � ×R

+, (.)

θt – �θ – β�ut –
∫ ∞


ν(s)�ζ t(s) ds =  on � ×R

+, (.)

ηt
t + ηt

s = ut , (x, t, s) ∈ � ×R
+ ×R

+, (.)

ζ t
t + ζ t

s = θ , (x, t, s) ∈ � ×R
+ ×R

+, (.)

with boundary conditions

u = �u = , θ =  on ∂� ×R
+,

η = �η = , ζ =  on ∂� ×R
+ ×R

+,
(.)

and initial conditions

u(x, ) = u(x), ut(x, ) = u(x), θ (x, ) = θ(x),

ηt(x, ) = , ζ t(x, ) = , η(x, s) = η(x, s), ζ (x, s) = ζ(x, s),
(.)

where
⎧⎨
⎩

u(x) = u(x, ), u(x) = ∂tu(x, t)|t=, θ(x) = θ(x, ), x ∈ �,

η(x, s) = u(x, ) – u(x, –s), ζ(x, s) =
∫ s

 θ(x, –y) dy, (x, s) ∈ � ×R
+.

Because h is independent of time, the initial-boundary value problem (.)-(.) is in fact
an autonomous dynamical system with respect to the unknown pair (u(t), ut(t), θ (t),ηt , ζ t).
In order to settle (.)-(.) in the framework of dynamical systems, we investigate mod-
ified equations (.)-(.). Indeed, it turns out that they are the same thing; to be more
precise, the modified equations are in fact a generalization of the original equations. In the
past years, the asymptotic behavior of viscoelastic equations with past history has been
studied by many authors (see [–]).

We formulate our assumptions and results with respect to these new systems. The hy-
potheses and the well-posedness for the system (.)-(.) are presented in Section .
Also, we give some notation and fundamental results of infinite-dimensional dynamical
systems. In Section , we establish our main result on the existence of a compact global
attractor.

2 Preliminaries
Now we introduce the Hilbert spaces that will be used in our analysis. Let

V = L(�), V = H
(�), V = H(�) ∩ H

(�).

As usual, (·, ·) denotes the L-inner product, and ‖ · ‖p denotes the Lp-norm. We consider
the history spaces L

μ(R+; V) and L
ν(R+; V) of measurable functions η with values in V
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or V, respectively, such that

‖η‖
μ,V =

∫ ∞


μ(s)

∥∥�η(s)
∥∥ ds < ∞

and

‖η‖
ν,V =

∫ ∞


ν(s)

∥∥∇η(s)
∥∥ ds < ∞.

The following Cartesian product of Hilbert spaces will play the role of a phase space for
the considered model:

H = V × V × V × L
μ

(
R

+; V
) × L

ν

(
R

+; V
)

with the norm

∥∥(u, v, θ ,η, ζ )
∥∥
H = ‖�u‖ + ‖v‖ + ‖θ‖ + ‖η‖

μ,V + ‖ζ‖
ν,V .

Let λ and λ be the best constants in the Poincáre inequalities

λ‖u‖ ≤ ‖∇u‖, λ‖u‖ ≤ ‖�u‖, (.)

respectively.
We assume that h ∈ L(�) and the forcing term f : R →R satisfy

f () = ,
∣∣f (u) – f (v)

∣∣ ≤ k
(
 + |u|p + |v|p)|u – v|, u, v ∈R, (.)

where k >  and p > . This implies that H(�)∩H
(�) ↪→ L(p+)(�). Besides, we assume

that, for some k ≥ ,

–k ≤ F(u) ≤ f (u)u, u ∈R, (.)

where F(z) =
∫ z

 f (s) ds.
In addition, with respect to the memory kernels μ(s),ν(s) ≥ , we assume that

μ,ν ∈ C(
R

+) ∩ L(
R

+)
,

∫ ∞


μ(s) ds = μ > ,

∫ ∞


ν(s) ds = ν > , (.)

and that there exist constants k, k >  such that

μ′(s) ≤ –kμ(s), ν ′(s) ≤ –kν(s), s ≥ . (.)

The well-posedness of problem (.)-(.) can be obtained by the Faedo-Galerkin
method (see [, , ]). For the problem involving a memory term, we follow arguments
from [, ].

Theorem . Under assumptions (.)-(.), we have
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(i) For every initial data (u, u, θ,η, ζ) ∈H, problem (.)-(.) has a weak solution

(u, ut , θ ,η, ζ ) ∈ C
(
[, T];H

)
, T > ,

satisfying

u ∈ L∞(, T ; V), ut , θ ∈ L∞(, T ; V),

η ∈ L∞(
, T ; L

μ

(
R

+; V
))

, ζ ∈ L∞(
, T ; L

ν

(
R

+; V
))

.

(ii) The weak solutions depend continuously on the initial data in H. More precisely,
given any two weak solutions z, z of problem (.)-(.), we have

∥∥z(t) – z(t)
∥∥
H ≤ ect∥∥z() – z()

∥∥
H, t ∈ [, T],

for some constant c > .

Remark . The well-posedness of problem (.)-(.) implies that the solution operator
S(t) : H →H defined by

S(t)(u, u, θ,η, ζ) =
(
u(t), ut(t), θ (t),ηt , ζ t), t ≥ , (.)

satisfies the semigroup properties and defines a nonlinear C-semigroup, which is locally
Lipschitz continuous on H. Thus, we can study (.)-(.) as a nonlinear dynamical sys-
tem (H, S(t)).

Now, we recall some fundamental results of infinite-dimensional dynamical systems (see
[–]).

Definition . Let S(t) be a C-semigroup defined in a Banach space X. A global attractor
for (X, S(t)) is a bounded closed set A⊂ X that is fully invariant and uniformly attracting,
that is, S(t)A = A for all t > , and for every bounded subset B ⊂ X,

lim
t→∞ distX

(
S(t)B,A

)
= ,

where distX(Y , Z) = supy∈Y infz∈Zd(y, z) is the Hausdorff semidistance between Y and Z
in X.

Definition . A dynamical system (X, S(t)) is dissipative if it possesses a bounded ab-
sorbing set, that is, a bounded set B ⊂ X such that, for any bounded set B ⊂ X, there
exists tB ≥  satisfying

S(t)B ⊂ B, t ≥ tB.

Definition . Let X be a Banach space, and B be a bounded subset of X. We call a func-
tion φ(·, ·) defined on X ×X a contractive function on B×B if for any sequence {xn}∞n= ⊂ B,
there is a subsequence {xnk }∞k= ⊂ {xn}∞n= such that

lim
k→∞

lim
l→∞

φ(xnk , xnl ) = .
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Theorem . ([]) Let {S(t)}t≥ be a semigroup on a Banach space (X,‖ · ‖) that has a
bounded absorbing set B. Moreover, assume that, for any ε ≥ , there exist T = T(B, ε)
and φT (·, ·) ∈ C(B) such that

∥∥S(T)x – S(T)y
∥∥ ≤ ε + φT (x, y) for all x, y ∈ B,

where C(B) is a set of all contractive functions on B×B, and φT depends on T . Then {S(t)}t≥

is asymptotically compact in X , that is, for any bounded sequence {yn}∞n= ⊂ X and any
sequence {tn} with tn → ∞, {S(tn)yn}∞n= is precompact in X.

Theorem . ([]) A dissipative dynamical system (X, S(t)) has a compact global attrac-
tor if and only if it is asymptotically compact.

The main result of this paper is the following:

Theorem . Suppose that assumptions (.)-(.) hold. For k,β >  such that




–
k
λ

–
β


> ,

the dynamical system (H, S(t)) corresponding to system (.)-(.) has a compact global
attractor A⊂H.

3 Global attractor
To show Theorem ., we apply the abstract results presented in the previous section.
Accordingly, we shall first prove that the dynamical system (H, S(t)) is dissipative. By The-
orem . we need to verify the asymptotic compactness.

We have the following lemma on the system energy defined by

E(t) =


‖ut‖ +



‖�u‖ +

k

∥∥u+∥∥ +



‖θ‖ +



∥∥ηt∥∥

μ,V
+



∥∥ζ t∥∥

ν,V

+
∫

�

(
F(u) – hu

)
dx.

Lemma . Along the solution of (.)-(.), the energy E satisfies

E′(t) = –‖∇ut‖ – ‖∇θ‖ +



∫ ∞


μ′(s)

∥∥�ηt(s)
∥∥ ds +




∫ ∞


ν ′(s)

∥∥∇ζ t(s)
∥∥ ds. (.)

Proof Multiplying equations (.) and (.) by ut and θ , respectively, and integrating over
�, we get

d
dt

(


‖ut‖ +



‖�u‖ +

k

∥∥u+∥∥ +



‖θ‖ +

∫
�

(
F(u) – hu

)
dx

)

+ ‖∇ut‖ + ‖∇θ‖ +
(
ηt , ut

)
μ,V

+
(
ζ t , θ

)
ν,V

= . (.)

From (.) and (.) we have

(
ηt , ut

)
μ,V

=
(
ηt ,ηt

t + ηt
s
)
μ,V

=



d
dt

∥∥ηt∥∥
μ,V

–



∫ ∞


μ′(s)

∥∥�ηt(s)
∥∥ ds. (.)
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Similarly, by (.) and (.) we obtain

(
ζ t , θ

)
ν,V

=
(
ζ t , ζ t

t + ζ t
s
)
ν,V

=



d
dt

∥∥ζ t∥∥
ν,V

–



∫ ∞


ν ′(s)

∥∥∇ζ t(s)
∥∥ ds. (.)

Combining (.) and (.) with (.), we get estimate (.). �

To this system, we define the Lyapunov functional

L(t) = ME(t) + εφ(t) + ψ(t)

with

φ(t) =
∫

�

ut(t)u(t) dx,

ψ(t) = –
∫

�

ut(t)
∫ ∞


μ(s)ηt(s) ds dx –

∫
�

θ (t)
∫ ∞


ν(s)ζ t(s) ds dx,

where ε >  and M >  are to be fixed later.

Lemma . For M >  sufficiently large, there exist positive constants q, q, and C such
that

qE(t) – C|�| – C‖h‖ ≤ L(t) ≤ qE(t) + C|�| + C‖h‖, t ≥ , (.)

for any  < ε ≤ .

Proof The Young inequality, (.), and (.) give that

∫
�

(
F(u) – hu

)
dx ≥ –k|�| –




‖�u‖ –

λ

‖h‖. (.)

Then by energy and (.) we have




∥∥(
u(t), ut(t), θ (t),ηt , ζ t)∥∥

H ≤ E(t) + k|�| +

λ

‖h‖. (.)

From the Young inequality, (.), (.), and (.) we conclude that

∣∣φ(t)
∣∣ ≤ 


‖ut‖ +


λ

‖�u‖ ≤  max

{
,


λ

}(
E(t) + k|�| +


λ

‖h‖
)

,

∣∣ψ(t)
∣∣ ≤ 


‖ut‖ +



‖θ‖ +

μ

λ

∥∥ηt∥∥
μ,V

+
ν

λ

∥∥ζ t∥∥
ν,V

≤  max

{
,

μ

λ
,
ν

λ

}(
E(t) + k|�| +


λ

‖h‖
)

.

Choosing C =  max{, 
λ

, μ
λ

, ν
λ

}, for some C > , we obtain

∣∣L(t) – ME(t)
∣∣ ≤ ε

∣∣φ(t)
∣∣ +

∣∣ψ(t)
∣∣ ≤ C

(
E(t) + |�| + ‖h‖),  < ε ≤ .

Then, taking M > C, we get inequality (.) with q = M – C and q = M + C. �
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Lemma . We have the inequality

φ′(t) ≤ –E(t) –
(




–
k
λ

–
β



)
‖�u‖ +



‖ut‖ +


λβ

‖∇ut‖ +


‖θ‖ +

β

λ
‖∇θ‖

+
(

μ +



)∥∥ηt∥∥
μ,V

+


∥∥ζ t∥∥

ν,V
. (.)

Proof Using (.) and (.) and subtracting and adding E(t), we obtain

φ′(t) = –‖�u‖ –
∫

�

∇ut∇u dx – k
∫

�

u+u dx –
∫ ∞


μ(s)

(∫
�

�ηt(s)�u dx
)

ds

+ β

∫
�

∇θ∇u dx –
∫

�

f (u)u dx +
∫

�

hu dx + ‖ut‖

≤ –E(t) –


‖�u‖ +



‖ut‖ +

k

∥∥u+∥∥ +



‖θ‖ +



∥∥ηt∥∥

μ,V
+



∥∥ζ t∥∥

ν,V

–
∫

�

∇ut∇u dx – k
∫

�

u+u dx –
∫ ∞


μ(s)

(∫
�

�ηt(s)�u dx
)

ds

+ β

∫
�

∇θ∇u dx. (.)

Note that

∣∣∣∣–
∫ ∞


μ(s)

(∫
�

�ηt(s)�u dx
)

ds
∣∣∣∣ ≤ 


‖�u‖ + μ

∥∥ηt∥∥
μ,V

(.)

by assumption (.). From (.), the Young inequality, and the inequality |u+| ≤ |u| we see
that

∣∣∣∣–
∫

�

∇ut∇u dx
∣∣∣∣ ≤ β


‖�u‖ +


λβ

‖∇ut‖, (.)
∣∣∣∣β

∫
�

∇θ∇u dx
∣∣∣∣ ≤ β


‖�u‖ +

β

λ
‖∇θ‖, (.)

∣∣∣∣–k
∫

�

u+u dx
∣∣∣∣ ≤ k

λ
‖�u‖. (.)

Substituting (.)-(.) into (.), we get estimate (.). �

Lemma . There exist positive constants C and C such that

ψ ′(t) ≤ –
μ


‖ut‖ –

ν


‖θ‖ +

(
δ +

δk

λ
+ δkCsC

p
E

)
‖�u‖ +

(
δ + δβ)‖∇ut‖

+
(
δ + δβ)‖∇θ‖ + C

∥∥ηt∥∥
μ,V

+ C
∥∥ζ t∥∥

ν,V
+



‖h‖

–
μ()
μλ

∫ ∞


μ′(s)

∥∥�ηt(s)
∥∥ ds –

ν()
νλ

∫ ∞


ν ′(s)

∥∥∇ζ t(s)
∥∥ ds, (.)

where C depends on μ, λ, λ, and δ, and C depends on ν and δ.
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Proof Taking the derivative of the function ψ and using equations (.)-(.), we have

ψ ′(t) =
∫

�

(
�u – �ut + ku+ +

∫ ∞


μ(s)�ηt(s) ds + β�θ + f (u) – h

)

×
∫ ∞


μ(s)ηt(s) ds dx

–
∫

�

(
�θ + β�ut +

∫ ∞


ν(s)�ζ t(s) ds

)∫ ∞


ν(s)ζ t(s) ds dx

–
∫

�

ut

∫ ∞


μ(s)

(
ut – ηt

s(s)
)

ds dx –
∫

�

θ

∫ ∞


ν(s)

(
θ – ζ t

s (s)
)

ds dx. (.)

From the Young inequality, (.), and (.) we derive that, for any δ > ,
∣∣∣∣
∫

�

�u
∫ ∞


μ(s)�ηt(s) ds dx

∣∣∣∣ ≤ δ‖�u‖ +
μ

δ

∥∥ηt∥∥
μ,V

, (.)
∣∣∣∣
∫

�

∇ut

∫ ∞


μ(s)∇ηt(s) ds dx

∣∣∣∣ ≤ δ‖∇ut‖ +
μ

δλ

∥∥ηt∥∥
μ,V

, (.)

∣∣∣∣k
∫

�

u+
∫ ∞


μ(s)ηt(s) ds dx

∣∣∣∣ ≤ δk

λ
‖�u‖ +

μ

δλ

∥∥ηt∥∥
μ,V

, (.)

∣∣∣∣
∫

�

(∫ ∞


μ(s)�ηt(s) ds

)

dx
∣∣∣∣ ≤ μ

∥∥ηt∥∥
μ,V

, (.)
∣∣∣∣–β

∫
�

∇θ

∫ ∞


μ(s)∇ηt(s) ds dx

∣∣∣∣ ≤ δβ‖∇θ‖ +
μ

δλ

∥∥ηt∥∥
μ,V

, (.)
∣∣∣∣–

∫
�

h
∫ ∞


μ(s)ηt(s) ds dx

∣∣∣∣ ≤ 

‖h‖ +

μ

λ

∥∥ηt∥∥
μ,V

. (.)

Using (.), (.), and the Sobolev embedding, since E(t) is decreasing, we obtain
∣∣∣∣
∫

�

f (u)
∫ ∞


μ(s)ηt(s) ds dx

∣∣∣∣ ≤
∫

�

k
(
 + |u|p)|u|

∣∣∣∣
∫ ∞


μ(s)ηt(s) ds

∣∣∣∣dx

≤ k
(
 + ‖u‖p

(p+)
)‖u‖(p+)

∥∥∥∥
∫ ∞


μ(s)ηt(s) ds

∥∥∥∥
≤ δkCsC

p
E‖�u‖ +

μ

δλ

∥∥ηt∥∥
μ,V

, (.)

where CE = (E() + k|�| + 
λ
‖h‖)/. Moreover, it follows that

∣∣∣∣
∫

�

ut

∫ ∞


μ(s)ηt

s(s) ds dx
∣∣∣∣ =

∣∣∣∣–
∫

�

ut

∫ ∞


μ′(s)ηt(s) ds dx

∣∣∣∣
≤ μ


‖ut‖ –

μ()
μλ

∫ ∞


μ′(s)

∥∥�ηt(s)
∥∥ ds. (.)

Similarly, we find that, for any δ > ,
∣∣∣∣
∫

�

∇θ

∫ ∞


ν(s)∇ζ t(s) ds dx

∣∣∣∣ ≤ δ‖∇θ‖ +
ν

δ

∥∥ζ t∥∥
ν,V

, (.)
∣∣∣∣β

∫
�

∇ut

∫ ∞


ν(s)∇ζ t(s) ds dx

∣∣∣∣ ≤ δβ‖∇ut‖ +
ν

δ

∥∥ζ t∥∥
ν,V

, (.)
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∣∣∣∣
∫

�

(∫ ∞


ν(s)∇ζ t(s) ds

)

dx
∣∣∣∣ ≤ ν

∥∥ζ t∥∥
ν,V

, (.)
∣∣∣∣
∫

�

θ

∫ ∞


ν(s)ζ t

s (s) ds dx
∣∣∣∣ ≤ ν


‖θ‖ –

ν()
νλ

∫ ∞


ν ′(s)

∥∥∇ζ t(s)
∥∥ ds. (.)

Inserting (.)-(.) into (.), we deduce that

ψ ′(t) ≤ –
μ


‖ut‖ –

ν


‖θ‖ +

(
δ +

δk

λ
+ δkCsC

p
E

)
‖�u‖

+
(
δ + δβ)‖∇ut‖ +

(
δ + δβ)‖∇θ‖

+
(

μ +
μ

δ
+

μ

λ
+

μ

δλ
+

μ

δλ

)∥∥ηt∥∥
μ,V

+
(

ν +
ν

δ

)∥∥ζ t∥∥
ν,V

+


‖h‖ –

μ()
μλ

∫ ∞


μ′(s)

∥∥�ηt(s)
∥∥ ds –

ν()
νλ

∫ ∞


ν ′(s)

∥∥∇ζ t(s)
∥∥ ds. �

Lemma . Suppose that conditions (.)-(.) hold. Then the dynamical system (H, S(t))
corresponding to problem (.)-(.) has a bounded absorbing set B ⊂H.

Proof From (.), (.), (.), and (.) we see that

L′(t) ≤ –εE(t) –
(

μ


–

ε



)
‖ut‖ –

(
ν


–

ε



)
‖θ‖

–
(

M –
ε

λβ
–

(
 + β)δ

)
‖∇ut‖ –

(
M –

βε

λ
–

(
 + β)δ

)
‖∇θ‖

–
[(




–
k
λ

–
β



)
ε –

(
 +

k

λ
+ kCsC

p
E

)
δ

]
‖�u‖

+
(

M


–
ε

k

(
μ +




)
–

C

k
–

μ()
μλ

)∫ ∞


μ′(s)

∥∥�ηt(s)
∥∥ ds

+
(

M


–
ε

k
–

C

k
–

ν()
νλ

)∫ ∞


ν ′(s)

∥∥∇ζ t(s)
∥∥ ds +



‖h‖.

We choose ε so small that

μ


–

ε


> ,

ν


–

ε


> .

For k, β such that 
 – k

λ
– β

 >  and fixed ε, we take δ >  small enough such that

(



–
k
λ

–
β



)
ε –

(
 +

k

λ
+ kCsC

p
E

)
δ > .

Finally, we choose M >  large enough such that

M > max

{
ε

λβ
+

(
 + β)δ,

βε

λ
+

(
 + β)δ,

ε

k
(μ + ) +

C

k
+

μ()
μλ

,
ε

k
+

C

k
+

ν()
νλ

}
.
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Then we deduce that

L′(t) ≤ –εE(t) +


‖h‖.

From (.) we get

L′(t) ≤ –
ε

q
L(t) +

εC

q

(|�| + ‖h‖) +


‖h‖,

which implies that

L(t) ≤ L()e– ε
q

t +
(

εC

q
+




)(|�| + ‖h‖)∫ t


e– ε

q
(t–s) ds

=
[

L() –
(

C +
q

ε

)(|�| + ‖h‖)]e– ε
q

t +
(

C +
q

ε

)(|�| + ‖h‖).

Using (.) again, we have

E(t) ≤ q

q
E()e– ε

q
t +

(
C

q
+

q

εq

)(|�| + ‖h‖), t ≥ .

Consequently, (.) infers that

∥∥(
u(t), ut(t), θ (t),ηt , ζ t)∥∥

H ≤ CE()e– ε
q

t + C
(|�| + ‖h‖), (.)

where C =  max{ q
q

, C
q

+ q
εq

+ 
λ

+ k} is a positive constant. Thus, taking the closed
ball B = B̄(, R) with R =

√
C(|�| + ‖h‖), we conclude from (.) that B is a bounded

absorbing set of (H, S(t)). �

Lemma . Under the hypotheses of Theorem ., given a bounded set B ⊂ H, let z =
(u, ut , θ ,η, ζ ) and z = (ũ, ũt , θ̃ , η̃, ζ̃ ) be two weak solutions of system (.)-(.) with corre-
sponding initial conditions z() = (u, u, θ,η, ζ) and z() = (ũ, ũ, θ̃, η̃, ζ̃) ∈ B. Then
there exist positive constants γ , C̃, and C̃ depending on B such that

∥∥z(t) – z(t)
∥∥
H ≤ C̃e–γ t∥∥z() – z()

∥∥
H

+ C̃

∫ t


e–γ (t–s)∥∥u(s) – ũ(s)

∥∥
(p+) ds, t ≥ . (.)

Proof We set w = u – ũ, ϑ = θ – θ̃ , ξ = η – η̃, and τ = ζ – ζ̃ . Then (w, wt ,ϑ , ξ , τ ) is a weak
solution of

wtt + �w – �wt + ku+ – kũ+ +
∫ ∞


μ(s)�ξ t(s) ds + β�ϑ + f (u) – f (ũ) = , (.)

ϑt – �ϑ – β�wt –
∫ ∞


ν(s)�τ t(s) ds = , (.)

ξt = –ξs + wt , (.)

τt = –τs + ϑ , (.)
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with initial conditions

w() = u – ũ, wt() = u – ũ, ϑ() = θ – θ̃,

ξ = η – η̃, τ  = ζ – ζ̃.

Now we consider the energy functional

G(t) =


∥∥�w(t)

∥∥ +


∥∥wt(t)

∥∥

+


∥∥ϑ(t)

∥∥ +


∥∥ξ t∥∥

μ,V
+



∥∥τ t∥∥

ν,V
, t ≥ . (.)

Step . There exists a constant C >  such that

G′(t) ≤ –‖∇wt‖ – ‖∇ϑ‖ +
δ


‖wt‖ + C‖w‖

(p+)

+



∫ ∞


μ′(s)

∥∥�ξ t(s)
∥∥ ds +




∫ ∞


ν ′(s)

∥∥∇τ t(s)
∥∥ ds, (.)

where C depends on k, k, δ, c, and CB.
To show this, we multiply (.) by wt and (.) by ϑ , respectively. Integrating and using

(.) and (.), we obtain

G′(t) = –‖∇wt‖ – ‖∇ϑ‖ – k
∫

�

(
u+ – ũ+)

wt dx –
∫

�

(
f (u) – f (ũ)

)
wt dx

+



∫ ∞


μ′(s)

∥∥�ξ t(s)
∥∥ ds +




∫ ∞


ν ′(s)

∥∥∇τ t(s)
∥∥ ds. (.)

By the Young inequality we get

∣∣∣∣–k
∫

�

(
u+ – ũ+)

wt dx
∣∣∣∣ ≤ k

δ

∥∥u+ – ũ+∥∥ +
δ


‖wt‖

≤ kc

δ
‖w‖

(p+) +
δ


‖wt‖, (.)

where we have used the facts that |u+ – ũ+| ≤ |u – ũ| and that c >  is an embedding
constant for L(p+)(�) ↪→ L(�). In addition, from (.) and (.), by the generalized
Hölder inequality with p

(p+) + 
(p+) + 

 =  and the Young inequality we have

∣∣∣∣–
∫

�

(
f (u) – f (ũ)

)
wt dx

∣∣∣∣ ≤ k

∫
�

(
 + |u|p + |ũ|p)|w||wt|dx

≤ k
(|�| p

(p+) + ‖u‖p
(p+) + ‖ũ‖p

(p+)
)‖w‖(p+)‖wt‖

≤ k
CB

δ
‖w‖

(p+) +
δ


‖wt‖, (.)

where CB is a constant depending on B. Combining (.) and (.) with (.) we see
that (.) holds.
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Step . Let us define the functional

�(t) =
∫

�

wt(t)w(t) dx.

Then there exists a constant C >  such that

�′(t) ≤ –G(t) –
(




–
k
λ

–
β



)
‖�w‖ +



‖wt‖ +


λβ

‖∇wt‖ +


‖ϑ‖

+
β

λ
‖∇ϑ‖ +

(
μ +




)∥∥ξ t∥∥
μ,V

+


∥∥τ t∥∥

ν,V
+ C‖w‖

(p+), (.)

where C depends on k, λ, and CB.
Indeed, differentiating the function �, using (.), and adding and subtracting G(t), we

obtain

�′(t) = –G(t) –


‖�w‖ +



‖wt‖ +



‖ϑ‖ +



∥∥ξ t∥∥

μ,V
+



∥∥τ t∥∥

ν,V

– k
∫

�

(
u+ – ũ+)

w dx +
∫

�

�wtw dx –
∫

�

∫ ∞


μ(s)�ξ t(s) ds�w dx

– β

∫
�

�ϑw dx –
∫

�

(
f (u) – f (ũ)

)
w dx. (.)

By a similar procedure used in Step , from (.), (.), (.), and the Young inequality we
derive the following estimates:

∣∣∣∣–k
∫

�

(
u+ – ũ+)

w dx
∣∣∣∣ ≤ k‖w‖ ≤ k

λ
‖�w‖, (.)

∣∣∣∣–
∫

�

∫ ∞


μ(s)�ξ t(s) ds�w dx

∣∣∣∣ ≤ 

‖�w‖ + μ

∥∥ξ t∥∥
μ,V

, (.)

∣∣∣∣–
∫

�

(
f (u) – f (ũ)

)
w dx

∣∣∣∣ ≤ 

‖�w‖ +

k
CB

λ
‖w‖

(p+), (.)
∣∣∣∣–

∫
�

∇wt∇w dx
∣∣∣∣ ≤ β


‖�w‖ +


λβ

‖∇wt‖, (.)
∣∣∣∣β

∫
�

∇ϑ∇w dx
∣∣∣∣ ≤ β


‖�w‖ +

β

λ
‖∇ϑ‖. (.)

Substituting (.)-(.) into (.), we get

�′(t) ≤ –G(t) –
(




–
k
λ

–
β



)
‖�w‖ +



‖wt‖ +


λβ

‖∇wt‖ +


‖ϑ‖

+
β

λ
‖∇ϑ‖ +

(
μ +




)∥∥ξ t∥∥
μ,V

+


∥∥τ t∥∥

ν,V
+

k
CB

λ
‖w‖

(p+). (.)

Step . Let us define the functional

�(t) = –
∫

�

wt(t)
∫ ∞


μ(s)ξ t(s) ds dx –

∫
�

ϑ(t)
∫ ∞


ν(s)τ t(s) ds dx.
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Then there exist constants C, C, and C >  such that

� ′(t) ≤ –
μ


‖wt‖ –

ν


‖ϑ‖ +

(
δ +

δk

λ

)
‖�w‖ +

(
δ + δβ

)‖∇wt‖

+
(
δ + δβ

)‖∇ϑ‖ + C‖w‖
(p+) + C

∥∥ξ t∥∥
μ,V

+ C
∥∥τ t∥∥

ν,V

–
μ()
μλ

∫ ∞


μ′(s)

∥∥�ξ t(s)
∥∥ ds –

ν()
νλ

∫ ∞


ν ′(s)

∥∥∇τ t(s)
∥∥ ds, (.)

where C, C, and C depend on δ, μ, ν, λ, λ, and CB. To prove this, we observe that,
by (.) and (.),

� ′(t) =
∫

�

(
�w – �wt + ku+ – kũ+ +

∫ ∞


μ(s)�ξ t(s) ds + β�ϑ

)

×
∫ ∞


μ(s)ξ t(s) ds dx

+
∫

�

(
f (u) – f (ũ)

)∫ ∞


μ(s)ξ t(s) ds dx –

∫
�

wt

∫ ∞


μ(s)ξ t

t (s) ds dx

–
∫

�

(
�ϑ + β�wt +

∫ ∞


ν(s)�τ t(s) ds

)∫ ∞


ν(s)τ t(s) ds dx

–
∫

�

ϑ

∫ ∞


ν(s)τ t

t (s) ds dx.

Integrating with respect to s and using (.), (.), (.), (.), and the Young inequality,
we find that

–
∫

�

wt

∫ ∞


μ(s)ξ t

t (s) ds dx = –μ‖wt‖ –
∫

�

wt

∫ ∞


μ′(s)ξ t(s) ds dx

≤ –
μ


‖wt‖ –

μ()
μλ

∫ ∞


μ′(s)

∥∥�ξ t(s)
∥∥ ds

and

–
∫

�

ϑ

∫ ∞


ν(s)τ t

t (s) ds dx ≤ –
ν


‖ϑ‖ –

ν()
νλ

∫ ∞


ν ′(s)

∥∥∇τ t(s)
∥∥ ds.

In addition, from (.), (.), and the Young inequality we have the following estimates for
any δ > :

∣∣∣∣
∫

�

�w
∫ ∞


μ(s)�ξ t(s) ds dx

∣∣∣∣ ≤ δ‖�w‖ +
μ

δ

∥∥ξ t∥∥
μ,V

,
∣∣∣∣
∫

�

∇wt

∫ ∞


μ(s)∇ξ t(s) ds dx

∣∣∣∣ ≤ δ‖∇wt‖ +
μ

δλ

∥∥ξ t∥∥
μ,V

,

∣∣∣∣k
∫

�

(
u+ – ũ+)∫ ∞


μ(s)ξ t(s) ds dx

∣∣∣∣ ≤ δk

λ
‖�w‖ +

μ

δλ

∥∥ξ t∥∥
μ,V

,

∣∣∣∣
∫

�

(∫ ∞


μ(s)�ξ t(s) ds

)

dx
∣∣∣∣ ≤ μ

∥∥ξ t∥∥
μ,V

,
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∣∣∣∣–β

∫
�

∇ϑ

∫ ∞


μ(s)∇ξ t(s) ds dx

∣∣∣∣ ≤ δβ
‖∇ϑ‖ +

μ

δλ

∥∥ξ t∥∥
μ,V

,

∣∣∣∣
∫

�

(
f (u) – f (ũ)

)∫ ∞


μ(s)ξ t(s) ds dx

∣∣∣∣ ≤ δk
CB‖w‖

(p+) +
μ

δλ

∥∥ξ t∥∥
μ,V

.

Moreover, we obtain that, for any δ > ,

∣∣∣∣
∫

�

∇ϑ

∫ ∞


ν(s)∇τ t(s) ds dx

∣∣∣∣ ≤ δ‖∇ϑ‖ +
ν

δ

∥∥τ t∥∥
ν,V

,

∣∣∣∣β
∫

�

∇wt

∫ ∞


ν(s)∇τ t(s) ds dx

∣∣∣∣ ≤ δβ
‖∇wt‖ +

ν

δ

∥∥τ t∥∥
ν,V

,

∣∣∣∣
∫

�

(∫ ∞


ν(s)∇τ t(s) ds

)

dx
∣∣∣∣ ≤ ν

∥∥τ t∥∥
ν,V

.

Therefore, we conclude that

� ′(t) ≤ –
μ


‖wt‖ –

ν


‖ϑ‖ +

(
δ +

δk

λ

)
‖�w‖ +

(
δ + δβ

)‖∇wt‖

+
(
δ + δβ

)‖∇ϑ‖ +
(

μ +
μ

δ
+

μ

δλ
+

μ

δλ

)∥∥ξ t∥∥
μ,V

+
(

ν +
ν

δ

)∥∥τ t∥∥
ν,V

+ δk
CB‖w‖

(p+)

–
μ()
μλ

∫ ∞


μ′(s)

∥∥�ξ t(s)
∥∥ ds –

ν()
νλ

∫ ∞


ν ′(s)

∥∥∇τ t(s)
∥∥ ds.

Step . We consider the functional

G(t) = NG(t) + ε� + � ,

where ε ∈ (, ) and N >  are to be fixed later. Then there exists a constant n >  such
that, for N > n,

nG(t) ≤ G(t) ≤ nG(t), t ≥ , (.)

where n = N – n and n = N + n. Indeed, it is easy to see that

∣∣�(t)
∣∣ ≤ 


‖wt‖ +


λ

‖�w‖,

∣∣�(t)
∣∣ ≤ 


‖wt‖ +



‖ϑ‖ +

μ

λ

∥∥ξ t∥∥
μ,V

+
ν

λ

∥∥τ t∥∥
ν,V

.

Therefore, choosing n large enough, we get

∣∣G(t) – NG(t)
∣∣ ≤ ε

∣∣�(t)
∣∣ +

∣∣�(t)
∣∣ ≤ nG(t),

and hence (.) holds.
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Step . From (.), (.), (.), and (.) we have

G ′(t) ≤ –εG(t) –
(

μ


–

ε


–

δN


)
‖wt‖ –

(
ν


–

ε



)
‖ϑ‖

–
(

N –
ε

λβ
–

(
 + β)δ

)
‖∇wt‖ –

(
N –

βε

λ
–

(
 + β)δ

)
‖∇ϑ‖

–
[(




–
k
λ

–
β



)
ε –

(
 +

k

λ

)
δ

]
‖�w‖ + (CN + Cε + C)‖w‖

(p+)

+
(

N


–
(

μ +



)
ε

k
–

C

k
–

μ()
μλ

)∫ ∞


μ′(s)

∥∥�ξ t(s)
∥∥ ds

+
(

N


–
ε

k
–

C

k
–

ν()
νλ

)∫ ∞


ν ′(s)

∥∥∇τ t(s)
∥∥ ds.

We first take ε >  so small that

μ


–

ε


> ,

ν


–

ε


> .

For fixed ε, we choose δ >  so small that

(



–
k
λ

–
β



)
ε –

(
 +

k

λ

)
δ > .

Next, for fixed δ and ε, we take N so large that

N > max

{
ε

λβ
+

(
 + β)δ,

βε

λ
+

(
 + β)δ,

(μ + )
ε

k
+

C

k
+

μ()
μλ

,
ε

k
+

C

k
+

ν()
νλ

}
.

Finally, choosing δ >  small enough, we get that there exist constants ε, C >  such
that

G ′(t) ≤ –εG(t) + C‖w‖
(p+), t ≥ . (.)

Combining (.) with (.), we obtain

G ′(t) ≤ –
ε

n
G(t) + C‖w‖

(p+),

and so

G(t) ≤ G()e– ε
n

t + C

∫ t


e– ε

n
(t–s)∥∥w(s)

∥∥
(p+) ds, t ≥ .

Using (.) again, we see that

G(t) ≤ n

n
G()e– ε

n
t +

C

n

∫ t


e– ε

n
(t–s)∥∥w(s)

∥∥
(p+) ds, t ≥ .

Since G(t) = ‖z(t) – z(t)‖
H, we get (.) with C̃ = n

n
, γ = ε

n
, and C̃ = C

n
. �



Kang Boundary Value Problems  (2016) 2016:206 Page 17 of 18

Using the ideas presented in [, ], we easily get the following lemma.

Lemma . Under the assumptions of Theorem ., the dynamical system (H(t), S(t)) cor-
responding to problem (.)-(.) is asymptotically smooth.

Proof Let B be a bounded subset of H positively invariant with respect to S(t). De-
note by CB several positive constants that depend on B but not on t. For z

 , z
 ∈ B,

S(t)z
 = (u(t), ut(t), θ (t),ηt , ζ t) and S(t)z

 = (ũ(t), ũt(t), θ̃ (t), η̃t , ζ̃ t) are the solutions of (.)-
(.). Then, given ε > , by inequality (.) we can choose T >  such that

∥∥S(T)z
 – S(T)z


∥∥
H ≤ ε + CB

(∫ T



∥∥u(s) – ũ(s)
∥∥

(p+) ds
) 


, (.)

where CB >  is a constant depending only on the size of B. The condition p >  implies that
 < (p + ) < ∞. Taking α = p

(p+) and applying the Gagliardo-Nirenberg interpolation
inequality, we have

∥∥u(t) – ũ(t)
∥∥

(p+) ≤ C
∥∥�

(
u(t) – ũ(t)

)∥∥α∥∥u(t) – ũ(t)
∥∥–α ≤ CB

∥∥u(t) – ũ(t)
∥∥–α .

Since ‖u(t)‖ and ‖ũ(t)‖ are uniformly bounded, there exists a constant CB >  such that

∥∥u(t) – ũ(t)
∥∥

(p+) ≤ CB
∥∥u(t) – ũ(t)

∥∥(–α). (.)

Therefore, from (.) and (.) we obtain

∥∥S(T)z
 – S(T)z


∥∥
H ≤ ε + �T

(
z

 , z

)

with

�T
(
z

 , z

)

= CB

(∫ T



∥∥u(s) – ũ(s)
∥∥(–α) ds

) 


.

Thus, by Theorem . it remains to prove that φT is a contractive function on B × B.
Indeed, given a sequence (z

n) = (u
n, u

n, θ
n ,η

n , ζ 
n ) ∈ B, let us write S(t)(z

n) = (un(t), un,t(t),
θn(t),ηt

n, ζ t
n). Because B is positively invariant by S(t), t ≥ , it follows that the sequence

(un(t), un,t(t), θn(t),ηt
n, ζ t

n) is uniformly bounded in H. On the other hand,

(un, un,t) is bounded in C
(
[, T], V × V

)
, T > .

By the compact embedding V ⊂ V the Aubin lemma implies that there exists a subse-
quence (unk ) that converges strongly in C([, T], V). Hence, we see that

lim
k→∞

lim
l→∞

∫ T



∥∥unk (s) – unl (s)
∥∥(–α) ds = .

This completes the proof of Lemma .. �

Proof of Theorem . From Lemmas . and . we conclude that (H, S(t)) is a dissipa-
tive dynamical system, which is asymptotically smooth. Therefore, by Theorem . it has
compact global attractor in H. �
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