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Abstract
In this paper, we consider a class of integral boundary value problems for nonlinear
third-order impulsive integro-differential equation with a monotone homomorphism
in real Banach space. By employing fixed point index theory, some sufficient criteria
are obtained to ensure the existence of positive solutions. An example is given to
demonstrate the application of our main results.
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1 Introduction
This paper deals with the existence of positive solutions for the following nonlinear third-
order impulsive integro-differential equation with monotone homomorphism and integral
boundary value conditions in real Banach space (abbreviated by BVP (.) throughout this
paper):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ϕ(–x′′(t)))′ = f (t, x(t), x′(t), (Tx)(t), (Sx)(t)), t ∈ J , t �= tk ,
�x|t=tk = –Ik(x(tk)), k = , . . . , m,
�x′|t=tk = –Ik(x(tk), x′(tk)), k = , . . . , m,
x′() = x′′() = θ , x() =

∫ 
 g(t)x(t) dt,

(.)

where I = [, ], J = (, ),  < t < t < · · · < tm < , J ′ = J\{t, t, . . . , tm}, J = (, t], Jk =
(tk , tk+] (k = , . . . , m – ), Jm = (tm, ]. E is a real Banach space with the norm ‖x‖. P is a
positive cone in E. θ is a zero element of E. f ∈ C[J × P

,P], Ik ∈ C[P,P], Ik ∈ C[P,P].
g ∈ L[, ] is nonnegative. ϕ : P → E is an increasing and positive homomorphism (see
Definition .) and ϕ(θ ) = θ . �x|t=tk = x(t+

k )–x(t–
k ), �x′|t=tk = x′(t+

k )–x′(t–
k ). x(t+

k ), x′(t+
k ) and

x(t–
k ), x′(t–

k ) represent the right-hand limits and left-hand limits of x(t) and x′(t) at t = tk ,
respectively. (Tx)(t) and (Sx)(t) are defined as

(Tx)(t) =
∫ t


K(t, s)x(s) ds, (Sx)(t) =

∫ 


F(t, s)x(s) ds, (.)

here K ∈ C[D, J], D = {(t, s) ∈ J × J : t ≥ s}, H ∈ C[J × J , J].
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It is worth noting that BVP (.) is the extension and generalization of many boundary
value problems. For example, if ϕ(x) = x, then BVP (.) changes into a boundary value
problem of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–x′′′(t) = f (t, x(t), x′(t), (Tx)(t), (Sx)(t)), t ∈ J , t �= tk ,
�x|t=tk = –Ik(x(tk)), k = , . . . , m,
�x′|t=tk = –Ik(x(tk), x′(tk)), k = , . . . , m,
x′() = x′′() = θ , x() =

∫ 
 g(t)x(t) dt.

(.)

If ϕ(x) = �p(x) := |x|p–x for some p > , then BVP (.) changes into the boundary value
problem with p-Laplacian as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�p(–x′′(t)))′ = f (t, x(t), x′(t), (Tx)(t), (Sx)(t)), t ∈ J , t �= tk ,
�x|t=tk = –Ik(x(tk)), k = , . . . , m,
�x′|t=tk = –Ik(x(tk), x′(tk)), k = , . . . , m,
x′() = x′′() = θ , x() =

∫ 
 g(t)x(t) dt.

(.)

In recent years, the boundary value problems has aroused great attention due to its im-
portant applications in the fields of science and engineering such as chemical engineer-
ing, heat conduction, thermo-elasticity, plasma physics, underground water flow, and so
on. Many scholars began with a study of the dynamics of boundary value problems by
some nonlinear analysis methods such as fixed point theorems, shooting method, itera-
tive method with upper and lower solutions, and so forth. The fixed point principle in cone
is one of the important methods by applying to investigate the existence and multiplicity
of positive solutions for boundary value problems.

In order to describe the dynamics of populations subject to abrupt changes and other
phenomena such as harvesting, diseases, and so on, some authors have used an impul-
sive differential system to describe these kinds of phenomena since the last century. Some
scholars have begun to study the boundary value problems of impulsive differential equa-
tions and obtained many good results (see [–]). The main tools of our study of the ex-
istence and multiplicity of positive solutions for this problem are the Schauder fixed point
theorem, fixed point index theory, upper and lower solutions together with the monotone
iterative technique, etc. In recent years, there have appeared some papers dealing with
impulsive integro-differential equations in Banach spaces (see [–]).

In addition, the inspiration of this paper comes from the following two systems (see [,
]). In [], Fu and Ding considered the existence of positive solutions of the boundary
value problems with integral boundary conditions in Banach spaces of the form

{
(ϕ(–x′′(t)))′ = f (t, x(t)), t ∈ J ,
x() = x′′() = θ , x() =

∫ 
 g(t)x(t) dt,

where θ is the zero element of E. g ∈ L[, ] is nonnegative. ϕ : R → R is an increasing
and positive homomorphism and ϕ() = θ, R := (–∞, +∞).

Remark . In [], the author defined the mapping ϕ : R → R being an increasing and
positive homomorphism and ϕ() = θ. It seems that this definition is incorrect since x(t)
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is an element of Banach space E but not x(t) ∈ R. So we modify it as ϕ : P → E is an
increasing and positive homomorphism (see Definition .) and ϕ(θ ) = θ .

In [], Sun considered the positive solutions of the Sturm-Liouville boundary value
problems for singular nonlinear second-order impulsive integro-differential equation in
Banach spaces of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′′ = f (t, y(t), y′(t), (Ty)(t), (Sy)(t)), t ∈ J , t �= tk ,
�y|t=tk = Ik(y(tk)), k = , . . . , m,
–�y′|t=tk = Ik(y(tk), y′(tk)), k = , . . . , m,
αy() – βy′() = , γ y() – δy′() = ,

where α,β ,γ , δ ≥ , ρ = βγ + αγ + αδ > , I = [, ], J = (, ),  < t < t < · · · < tm < ,
J ′ = J\{t, t, . . . , tm}, J = [, ], J = (, t], Jk = (tk , tk + ] (k = , . . . , m – ), Jm = (tm, ], f ∈
C[J × P

,P]. P is a positive cone in E. θ is a zero element of E. Ik ∈ C[P,P], Ik ∈ C[P,P].
To the best of our knowledge, there is less research dealing with integral BVPs for non-

linear third-order impulsive integro-differential equation with monotone homomorphism
in Banach spaces. Therefore, we will investigate the existence of positive solutions for BVP
(.) under some further conditions by making use of fixed point index theory. Our main
results in essence improve and generalize the corresponding results of [, ].

The rest of this paper is organized as follows. In Section , we present some known
results and introduce conditions to be used in the next section. We give some sufficient
conditions for the existence of positive solutions for BVP (.) in Section . Finally, one
example is also provided to illustrate the validity of our main results in Section .

2 Preliminaries and statements
In this section, we shall state some necessary definitions and preliminaries results.

Definition . Let (E,‖ · ‖) be a Banach space. A nonempty closed convex set P ⊂ E is
said to be a cone provided that the following conditions are satisfied:

(i) y ∈ P, λ ≥  implies λy ∈ P;
(ii) y ∈ P, –y ∈ P implies y = θ .

Let 
 be the partial order on E induced by the cone P in E. That is, x 
 y if and only if
y – x ∈ P. If x, y ∈ E, the notation x ≺ y means that x 
 y and x �= y. P is said to be normal if
there exists a positive constant N such that θ 
 x 
 y implies ‖x‖ ≤ N‖y‖, where θ denotes
the zero element of E, and N is called the normal constant of P (it is clear that N ≥ ).

Definition . Let E be a Banach space and P ⊂ E be a cone in E. Let C be a convex
subset in E. An operator � : C → E is said to be an increasing operator if

x, y ∈C, x 
 y ⇒ �x 
 �y.

Similarly, An operator � : C→ E is called a decreasing operator if

x, y ∈C, x 
 y ⇒ �x � �y.
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Definition . (see []) Let E be a Banach space and P ⊂ E be a positive cone in E.
A projection ϕ : P → E is called an increasing and positive homomorphism if and only if

(i) if x 
 y, then ϕ(x) 
 ϕ(y) for all x, y ∈ P;
(ii) ϕ is a continuous bijection and its inverse mapping ϕ– is also continuous;

(iii) ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ P.
It is easy to verify that ϕ– is also an increasing and positive homomorphism.

If (E,‖ · ‖) is a real Banach space and P ⊂ E is a cone in E, then the common relationship
of less than or equal to ≤ decides a partial order on E induced by the cone P in E. It is
worth noting that the partial order ≤ is used throughout the paper.

Definition . Let E be a metric space and S be a bounded subset of E. The (Kuratowski)
measure of noncompactness α(S) of S is defined by

α(S) = inf
{
δ >  : S admits a finite cover by subsets of Si ⊂ S such that diam(Si) ≤ δ

}
,

where diam(Si) denotes the diameter of the set Si.

Definition . An operator � : D → E is said to be completely continuous if it is contin-
uous and compact.

Lemma . (Fixed-point index theorem; see []) Let E be a Banach space, P ⊂ E is a
cone. For r > , define �r = {u ∈ P : ‖u‖ < r}. Assume that A : �r→P is a completely con-
tinuous operator such that Au �= u for u ∈ ∂�r = {u ∈ P : ‖u‖ = r}.

() If ‖Au‖ ≥ ‖u‖, for u ∈ ∂�r , then i(A,�r ,P) = .
() If ‖Au‖ ≤ ‖u‖, for u ∈ ∂�r , then i(A,�r ,P) = .

Let (E,‖ · ‖) be a real Banach space and denote PC[J ,E] := {x|x : J → E is continuous at
t �= tk , left continuous at t = tk and x(t+

k ) exists for k = , . . . , m} and PC[J ,P] := {x ∈ PC[J ,
E] : x(t) ≥ θ}. It is easy to verify that PC[J ,E] is a Banach space with norm ‖x‖PC =
supt∈J ‖x(t)‖. Obviously, PC[J ,P] is a cone in Banach space PC[J ,E].

Denote PC[J ,E] := {x ∈ PC[J ,E] : x′(t) is continuous at t �= tk , left continuous at t =
tk and x′(t+

k ) exists for k = , . . . , m} and PC[J ,P] := {x ∈ PC[J ,E] : x(t) ≥ θ , x′(t) ≥ θ}.
Clearly, PC[J ,E] is a Banach space equipped with the norm ‖x‖PC = max{‖x‖PC,‖x′‖PC}
and ‖x‖PC ≤ ‖x‖PC + ‖x′‖PC. PC[J ,P] is a cone in PC[J ,E].

Let C[J ′,E] := {x : J ′ → E|x′′′(t) is continuous in J ′}. A functional x ∈ PC[J ,E] ∩
C[J ′,E] is called a nonnegative solution of (.) if x(t) ≥ θ , x′(t) ≥ θ for t ∈ J and x(t)
satisfies BVP (.). A functional x ∈ PC[J ,E] ∩ C[J ′,E] is called a positive solution of
BVP (.) if x is a nonnegative solution of BVP (.) and x(t) �= θ .

Next we state the integral equation associated with BVP (.).

Lemma . Denote σ :=
∫ 

 g(s) ds. If σ �= , then x ∈ PC[J ,E] ∩ C[J ′,E] is a solution of
(.) if and only if x ∈ C[J ,E] is a solution of the impulsive integral equation of the form

x(t) =
∫ 


H(t, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds + φ(t) + ψ(t)

+


 – σ

∫ 


g(s)φ(s) ds +


 – σ

∫ 


g(s)ψ(s) ds, (.)
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where

H(t, s) = G(t, s) +


 – σ

∫ 


g(τ )G(τ , s) dτ , (.)

G(t, s) =

{
 – t,  ≤ s ≤ t ≤ ;
 – s,  ≤ t ≤ s ≤ ,

(.)

φ(t) = ( – t)
∑

<tk <t

Ik
(
x(tk), x′(tk)

)
, (.)

ψ(t) =
∑

t≤tk <

[
Ik

(
x(tk)

)
+ ( – tk)Ik

(
x(tk), x′(tk)

)]
. (.)

Proof Now we prove the necessity of Lemma .. Suppose that x ∈ PC[J ,E] ∩ C[J ′,E] is
a solution of BVP (.). Integrating both sides of the first equation of (.) from  to t, we
have

ϕ
(
–x′′(t)

)
– ϕ

(
–x′′()

)
=

∫ t


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ .

By ϕ(θ ) = θ and the boundary value condition x′′() = θ , we get

x′′(t) = –ϕ–
(∫ t


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

. (.)

By taking the integral of (.) on [, t] and noting that x′() = θ , we obtain

x′(t) = –
∫ t


ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds +
∑

<tk <t

[
x′(t+

k
)

– x′(t–
k
)]

= –
∫ t


ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

–
∑

<tk <t

Ik
(
x(tk), x′(tk)

)
. (.)

Taking the integral of (.) on [, t], we have

x(t) = x() –
∫ t


(t – s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

–
∑

<tk <t

Ik(x(tk) –
∑

<tk <t

(t – tk)Ik
(
x(tk), x′(tk)

)
. (.)

Letting t = , (.) shows that

x() = x() –
∫ 


( – s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

–
m∑

k=

Ik(x(tk) –
m∑

k=

( – tk)Ik
(
x(tk), x′(tk)

)
,
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that is,

x() = x() +
∫ 


( – s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+
m∑

k=

Ik(x(tk) +
m∑

k=

( – tk)Ik
(
x(tk), x′(tk)

)
. (.)

Substituting x() =
∫ 

 g(t)x(t) dt into (.), we obtain

x() =
∫ 


g(s)x(s) ds +

∫ 


( – s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+
m∑

k=

Ik(x(tk) +
m∑

k=

( – tk)Ik
(
x(tk), x′(tk)

)
. (.)

Substituting (.) into (.), we have

x(t) =
∫ 


g(s)x(s) ds +

∫ 


( – s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+
m∑

k=

Ik(x(tk) +
m∑

k=

( – tk)Ik
(
x(tk), x′(tk)

)

–
∫ t


(t – s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

–
∑

<tk <t

Ik(x(tk) –
∑

<tk <t

(t – tk)Ik
(
x(tk), x′(tk)

)

=
(∫ t


+

∫ 

t

)[

( – s)ϕ–
(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)]

ds

–
∫ t


(t – s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds +
∫ 


g(s)x(s) ds

+
∑

t≤tk <

Ik
(
x(tk)

)
+

∑

t≤tk <

( – tk)Ik
(
x(tk), x′(tk)

)
+ ( – t)

∑

<tk <t

Ik
(
x(tk), x′(tk)

)

=
(∫ t


( – t) +

∫ 

t
( – s)

)

ϕ–
(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+
∫ 


g(s)x(s) ds + ( – t)

∑

<tk <t

Ik
(
x(tk), x′(tk)

)
+

∑

t<tk<

[
Ik

(
x(tk)

)
+ Ik

(
x(tk), x′(tk)

)]

=
∫ 


G(t, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds +
∫ 


g(s)x(s) ds

+
∑

t≤tk <

Ik
(
x(tk)

)
+

∑

t≤tk <

( – tk)Ik
(
x(tk), x′(tk)

)

+ ( – t)
∑

<tk <t

Ik
(
x(tk), x′(tk)

)
, (.)

where G(t, s) is defined as (.).
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Integrating both sides of (.) from  to , we have

∫ 


g(s)x(s) ds

=
∫ 


g(s)

[∫ 


G(s, τ )ϕ–

(∫ τ


f
(
η, x(η), x′(η), (Tx)(η), (Sx)(η)

)
dη

)

dτ

]

ds

+
∫ 


g(s) ds ×

∫ 


g(s)x(s) ds +

∫ 


( – s)g(s)

( ∑

<tk <s

Ik
(
x(tk), x′(tk)

)
)

ds

+
∫ 


g(s)

( ∑

s≤tk <

[
Ik

(
x(tk)

)
+ ( – tk)Ik

(
x(tk), x′(tk)

)]
)

ds,

which implies that

∫ 


g(s)x(s) ds

=


 – σ

∫ 


g(s)

[∫ 


G(s, τ )ϕ–

(∫ τ


f
(
η, x(η), x′(η), (Tx)(η), (Sx)(η)

)
dη

)

dτ

+ ( – s)
∑

<tk<s

Ik
(
x(tk), x′(tk)

)

+
∑

s≤tk <

[
Ik

(
x(tk)

)
+ ( – tk)Ik

(
x(tk), x′(tk)

)]
]

ds. (.)

According to (.) and (.), we derive

x(t) =
∫ 


G(t, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+ ( – t)
∑

<tk <t

Ik
(
x(tk), x′(tk)

)
+

∑

t≤tk <

[
Ik

(
x(tk)

)
+ ( – tk)Ik

(
x(tk), x′(tk)

)]

+


 – σ

∫ 


g(s)

[∫ 


G(s, τ )ϕ–

(∫ τ


f
(
η, x(η), x′(η), (Tx)(η), (Sx)(η)

)
dη

)

dτ

+ ( – s)
∑

<tk <s

Ik
(
x(tk), x′(tk)

)
+

∑

s≤tk <

[
Ik

(
x(tk)

)
+ ( – tk)Ik

(
x(tk), x′(tk)

)]
]

ds

=
∫ 


G(t, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+


 – σ

∫ 



[∫ 


g(τ )G(τ , s) dτ

]

ϕ–
(∫ s


f
(
η, x(η), x′(η), (Tx)(η), (Sx)(η)

)
dη

)

ds

+ ( – t)
∑

<tk <t

Ik
(
x(tk), x′(tk)

)
+

∑

t≤tk <

[
Ik

(
x(tk)

)
+ ( – tk)Ik

(
x(tk), x′(tk)

)]

+


 – σ

∫ 


g(s)

[

( – s)
∑

<tk <s

Ik
(
x(tk), x′(tk)

)

+
∑

s≤tk <

[
Ik

(
x(tk)

)
+ ( – tk)Ik

(
x(tk), x′(tk)

)]
]

ds
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=
∫ 


H(t, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds + φ(t) + ψ(t)

+


 – σ

∫ 


g(s)φ(s) ds +


 – σ

∫ 


g(s)ψ(s) ds, (.)

where H(t, s), φ(s) and ψ(s) are defined as (.), (.), and (.), respectively. To sum up,
we know that x is a solution of the impulsive integral equation (.).

Next, we show the sufficiency of Lemma .. Let x ∈ C[J ,E] is a solution of impulsive
integral equation (.). Taking the derivative at both sides of (.), we have

x′(t) =
∫ 



∂G(t, s)
∂t

ϕ–
(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds + φ′(t) + ψ ′(t)

= –
∫ t


ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

–
∑

<tk <t

Ik
(
x(tk), x′(tk)

)
. (.)

Equation (.) gives x′() = θ . Taking the derivative at both sides of (.), we get

x′′(t) = –ϕ–
(∫ t


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

,

which implies that x′′() = θ and

(
ϕ
(
–x′′(t)

))′ = f
(
t, x(t), x′(t), (Tx)(t), (Sx)(t)

)
.

From (.) and noting that G(, s) = G(, s) = , we obtain

x() =
∫ 


g(t)x(t) dt.

In addition, it follows from (.) that

x
(
t–
i
)

= x(ti)

=
∫ 


H(ti, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds + φ(ti) + ψ(ti)

+


 – σ

∫ 


( – s)g(s)φ(s) ds +


 – σ

∫ 


g(s)ψ(s) ds

=
∫ 


H(ti, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+ ( – ti)
i–∑

k=

Ik
(
x(tk), x′(tk)

)
+

m∑

k=i

[
Ik

(
x(tk)

)
+ ( – tk)Ik

(
x(tk), x′(tk)

)]

+


 – σ

∫ 


( – s)g(s)φ(s) ds +


 – σ

∫ 


g(s)ψ(s) ds
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and

x
(
t+
i
)

=
∫ 


H(ti, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds + φ
(
t+
i
)

+ ψ
(
t+
i
)

+


 – σ

∫ 


( – s)g(s)φ(s) ds +


 – σ

∫ 


g(s)ψ(s) ds

=
∫ 


H(ti, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+ ( – ti)
i∑

k=

Ik
(
x(tk), x′(tk)

)
+

m∑

k=i+

[
Ik

(
x(tk)

)
+ ( – tk)Ik

(
x(tk), x′(tk)

)]

+


 – σ

∫ 


( – s)g(s)φ(s) ds +


 – σ

∫ 


g(s)ψ(s) ds.

Thus we derive

�x|t=ti = x
(
t+
i
)

– x
(
t–
i
)

= –Ik
(
x(tk)

)
, k = , . . . , m.

Similarly, by means of (.), we have

�x′|t=tk = x′(t+
i
)

– x′(t–
i
)

= –Ik
(
x(tk), x′(tk)

)
, k = , . . . , m.

From the above discussions, we know that x(t) is a solution of (.). Thus the proof of
Lemma . is complete. �

Lemma . Denote σ :=
∫ 

 g(s) ds. If  ≤ σ <  and g ∈ L[, ] is nonnegative, for any
δ ∈ (, 

 ), then the functions H(t, s) and G(t, s) defined by (.) and (.) have the following
properties:

(i)  ≤ G(t, s) ≤ G(s, s) =  – s and  ≤ H(t, s) ≤ 
–σ

G(s, s), for all t, s ∈ [, ];
(ii)  ≤ H ′

t(t, s) ≤  – s = G(s, s), for all t, s ∈ [, ];
(iii) G(t, s) ≥ δG(s, s) and H(t, s) ≥ δ

–σ
G(s, s), for all t, s ∈ [δ,  – δ] ⊂ [, ].

Proof (i) When  ≤ t ≤ s ≤ , G(t, s) = G(s, s) ≡  – s. When  ≤ s ≤ t ≤ , G′
t(t, s) = – < 

implies  ≤ G(t, s) =  – t ≤  – s = G(s, s). Thus we have  ≤ G(t, s) ≤ G(s, s) =  – s, ∀s, t ∈
[, ] and for all s, t ∈ [, ]

 ≤ H(t, s) = G(s, t) +


 – σ

∫ 


g(τ )G(τ , s) dτ

≤ G(s, s) +


 – σ

∫ 


g(τ )G(s, s) dτ

≤ G(s, s) +


 – σ

∫ 


g(τ )G(s, s) dτ =


 – σ

G(s, s).

(ii) When  ≤ s ≤ t ≤ , H ′
t(t, s) = – <  – s. When  ≤ t ≤ s ≤ , H ′

t(t, s) =  <  – s.
(iii) When  < δ ≤ t ≤ s ≤  – δ ≤ , G(t, s) ≡  – s ≥ δ( – s) = δG(s, s). When  ≤ δ ≤ s ≤

t ≤  – δ ≤ , G′
t(t, s) = – ≤  implies G(t, s) =  – t ≥  – ( – δ) = δ ≥ δ( – s) = δG(s, s).



Zhao and Wang Boundary Value Problems  (2016) 2016:204 Page 10 of 18

Thus we have G(t, s) ≥ δG(s, s), ∀s, t ∈ [δ,  – δ] ⊂ [, ] and for all s, t ∈ [δ,  – δ] ⊂ [, ]

H(t, s) = G(s, t) +


 – σ

∫ 


g(τ )G(τ , s) dτ

≥ δG(s, s) +


 – σ

∫ 


g(τ )δG(s, s) dτ =

δ

 – σ
G(s, s).

Thus the proof of Lemma . is complete. �

Denote K := {x ∈ PC[J ,P] : x ≥ δx, t ∈ [, ]},  < δ < 
 . For any  < r < +∞, let Kr := {x ∈

K : ‖x‖ < r}, ∂Kr := {x ∈ K : ‖x‖ = r}, Kr := {x ∈ K : ‖x‖ ≤ r}.
According to Lemma ., we define an operator A : K → K as

(Ax)(t) =
∫ 


H(t, s)ϕ–

(∫ s


f
(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds + φ(t) + ϕ(t)

+


 – σ

∫ 


g(s)φ(s) ds +


 – σ

∫ 


g(s)ϕ(s) ds. (.)

It is easy to derive that x is a positive solution of BVP (.) if x is a nontrivial fixed point of
operator A defined as (.).

For convenience and simplicity, we introduce some notations and assumptions as fol-
lows:

fv = lim inf
∑

i= ‖xi‖→v
min

t∈[,]

‖f (t, x, x, x, x)‖
ϕ(

∑
i= ‖xi‖)

,

f v = lim sup
∑

i= ‖xi‖→v
max
t∈[,]

‖f (t, x, x, x, x)‖
ϕ(

∑
i= ‖xi‖)

.

Here v denotes  or ∞.

(H)  ≤ σ =
∫ 

 g(s) ds <  and g ∈ L[, ] is nonnegative.
(H) For any bounded set Bi ⊂ E (i = , , , ), f (t, B, B, B, B) and Ik(B) together

with Ik(B, B) (k = , , . . . , m) are relatively compact sets, where f (t, B, B, B, B) :=
{f (t, w, w, w, w) : wi ∈ Bi, i = , , , }, Ik(B) := {Ik(w) : wi ∈ B} and Ik(B, B) :=
{Ik(w, w) : wi ∈ Bi, i = , }.

(H) For Ik ∈ C(P,P+), Ik ∈ C(P,P+) (P+ represents a positive cone in a real Banach space
E, there exist some positive constants vk , v∗

k and vk (k = , . . . , m) such that

∥
∥Ik(x)

∥
∥ ≤ vk‖x‖,

∥
∥Ik(x, x)

∥
∥ ≤ v∗

k‖x‖ + vk‖x‖, ∀t ∈ J .

Lemma . Suppose that (H)-(H) hold. A : K → K defined by (.) is completely con-
tinuous.

Proof () Now we show that A(K) ⊂ K , that is, A : K → K is well defined. Clearly, (Ax)(t) ≥
δ(Ax)(t). Hence, A(K) ⊂ K .

() We need to show that A : K → K is continuous. In fact, assume that xn, x ∈ K and
‖xn – x‖ → , ‖x′

n – x′
‖ →  (n → ∞). Since f ∈ C(J ×P

,P+), Ik ∈ C(P,P), Ik ∈ C(P,P+)
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and ϕ : P → E is an increasing and positive homomorphism, then

lim
n→∞

∥
∥f

(
t, xn, x′

n, (Txn)(t), (Sxn)(t)
)

– f
(
t, x, x′

, (Tx)(t), (Sx)(t)
)∥
∥ = ,

lim
n→∞

∥
∥ϕ–(f

(
t, xn, x′

n, (Txn)(t), (Sxn)(t)
))

– ϕ–(f
(
t, x, x′

, (Tx)(t), (Sx)(t)
))∥

∥ = ,

lim
n→∞

∥
∥Ik

(
xn(tk)

)
– Ik

(
x(tk)

)∥
∥ = , k = , . . . , m,

lim
n→∞

∥
∥Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
)∥
∥ = , k = , . . . , m.

Thus, for any t ∈ J , from the Lebesgue dominate convergence theorem and Lemma .
together with (.), we have

∥
∥(Axn)(t) – (Ax)(t)

∥
∥

PC

≤
∥
∥
∥
∥


 – σ

∫ 


G(s, s)

[

ϕ–
(∫ s


f
(
τ , xn(τ ), x′

n(τ ), (Txn)(τ ), (Sxn)(τ )
)

dτ

)

– ϕ–
(∫ s


f
(
τ , x(τ ), x′

(τ ), (Tx)(τ ), (Sx)(τ )
)

dτ

)]

ds

+ ( – t)
∑

<tk <t

[
Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
)]

+
∑

t≤tk <

[(
Ik

(
xn(tk)

)
– Ik

(
x(tk)

))
+ ( – tk)

(
Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
))]

+


 – σ

∫ 


( – s)g(s)

∑

<tk<s

[
Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
)]

ds

+


 – σ

∫ 


g(s)

∑

t≤tk <

[(
Ik

(
xn(tk)

)
– Ik

(
x(tk)

))

+ ( – tk)
(
Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
))]

ds
∥
∥
∥
∥

≤ 
 – σ

∫ 


G(s, s)

∥
∥
∥
∥ϕ–

(∫ s


f
(
τ , xn(τ ), x′

n(τ ), (Txn)(τ ), (Sxn)(τ )
)

dτ

)

– ϕ–
(∫ s


f
(
τ , x(τ ), x′

(τ ), (Tx)(τ ), (Sx)(τ )
)

dτ

)∥
∥
∥
∥ds

+ ( – t)
∑

<tk <t

∥
∥Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
)∥
∥

+
∑

t≤tk <

[∥
∥Ik

(
xn(tk)

)
– Ik

(
x(tk)

)∥
∥ + ( – tk)

∥
∥Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
)∥
∥
]

+


 – σ

∫ 


( – s)g(s)

∑

<tk<s

∥
∥Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
)∥
∥ds

+


 – σ

∫ 


g(s)

∑

t≤tk <

[∥
∥Ik

(
xn(tk)

)
– Ik

(
x(tk)

)∥
∥

+ ( – tk)
∥
∥Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
)∥
∥
]

ds → , as n → ∞
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and

∥
∥(Axn)′(t) – (Ax)′(t)

∥
∥

PC

≤
∥
∥
∥
∥


 – σ

∫ 


H ′

t(t, s)
[

ϕ–
(∫ s


f
(
τ , xn(τ ), x′

n(τ ), (Txn)(τ ), (Sxn)(τ )
)

dτ

)

– ϕ–
(∫ s


f
(
τ , x(τ ), x′

(τ ), (Tx)(τ ), (Sx)(τ )
)

dτ

)]

ds

–
∑

<tk <t

[
Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
)]

∥
∥
∥
∥

≤ 
 – σ

∫ 


G(s, s)

∥
∥
∥
∥ϕ–

(∫ s


f
(
τ , xn(τ ), x′

n(τ ), (Txn)(τ ), (Sxn)(τ )
)

dτ

)

– ϕ–
(∫ s


f
(
τ , x(τ ), x′

(τ ), (Tx)(τ ), (Sx)(τ )
)

dτ

)∥
∥
∥
∥ds

+
∑

<tk <t

∥
∥Ik

(
xn(tk), x′

n(tk)
)

– Ik
(
x(tk), x′

(tk)
)∥
∥ → , as n → ∞.

Hence, A : K → K is continuous.
() Now we are going to prove that A is compact by the Kuratowski’s measure of non-

compactness. Let � ⊂ K be any bounded subset in PC(J ,E). For any x ∈ �, t, s ∈ [, ],
there exist some constants Li >  (i = , , , ) such that

max
t,s∈[,]

∣
∣H(t, s)

∣
∣ ≤ L, max

x∈�,t∈[,]

∥
∥f

(
t, x(t), x′(t), (Sx)(t), (Tx)(t)

)∥
∥ ≤ L,

max
≤k≤m

max
x∈�

∥
∥Ik

(
x(tk)

)∥
∥ ≤ L, max

≤k≤m
max
x∈�

∥
∥Ik

(
x(tk), x′(tk)

)∥
∥ ≤ L.

Then we have

∥
∥φ(t)

∥
∥

PC ≤ | – t|
∑

<tk <t

∥
∥Ik

(
x(tk), x′(tk)

)∥
∥ ≤

m∑

k=

∥
∥Ik

(
x(tk), x′(tk)

)∥
∥ ≤ mL,

∥
∥ψ(t)

∥
∥

PC ≤
∑

t≤tk <

[∥
∥Ik

(
x(tk)

)∥
∥ + | – tk|

∥
∥Ik

(
x(tk), x′(tk)

)∥
∥
]

≤
m∑

k=

[∥
∥Ik

(
x(tk)

)∥
∥ + | – tk|

∥
∥Ik

(
x(tk), x′(tk)

)∥
∥
] ≤ m(L + L),

∥
∥(Ax)(t)

∥
∥

PC ≤
∫ 



∣
∣H(t, s)

∣
∣ϕ–

(∫ s



∥
∥f

(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)∥
∥dτ

)

ds

+
∥
∥φ(t)

∥
∥

PC +
∥
∥ψ(t)

∥
∥

PC

+


 – σ

∫ 


g(s)

∥
∥φ(s)

∥
∥ds +


 – σ

∫ 


g(s)

∥
∥ϕ(s)

∥
∥ds

≤ Lϕ
–(L) + mL + m(L + L) +

mLσ

 – σ
+

mσ (L + L)
 – σ

= Lϕ
–(L) + mL + mL +

mσ (L + L)
 – σ

:= M,
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and

∥
∥(Ax)′(t)

∥
∥

PC

≤
∫ 



∣
∣H ′

t(t, s)
∣
∣ϕ–

(∫ s



∥
∥f

(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)∥
∥dτ

)

ds +
∥
∥φ′(t)

∥
∥

≤ ϕ–(L) + mL := M.

Therefore, A(�) is uniformly bounded in PC(J ,E).
Next we verify that A : K → K is equicontinuous. In fact, since H(t, s) are continuous on

[, ] × [, ], it is uniformly continuous on [, ] × [, ]. Thus, for fixed s ∈ [, ] and for
any ε > , there exists a constant δ >  such that for any t, t ∈ [, ] with |t – t| < δ, we
have |H(t, s) – H(t, s)| < ε. Without loss of the generality, assume that t, t ∈ [, ] with
t ≤ t, then

∥
∥(Ax)(t) – (Ax)(t)

∥
∥

PC

≤
∫ 



∣
∣H(t, s) – H(t, s)

∣
∣ϕ–

(∫ s



∥
∥f

(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)∥
∥dτ

)

ds

+
∑

t≤tk <t

∥
∥Ik

(
x(tk), x′(tk)

)∥
∥ + |t – t|

∑

<tk <t

∥
∥Ik

(
x(tk), x′(tk)

)∥
∥

+
∑

t≤tk <t

[∥
∥Ik

(
x(tk)

)∥
∥ + | – tk|

∥
∥Ik

(
x(tk), x′(tk)

)∥
∥
]

≤ |t̄ – t̄|ϕ–(L) + |t̄ – t̄|L + |t̄ – t̄|mL + |t̄ – t̄|(L + L)

=
[
ϕ–(L) + L + (m + )L

]|t̄ – t̄| := N |t̄ – t̄|,

and noting that

H ′
t(t, s) =

{
–,  ≤ t ≤ s ≤ ,
,  ≤ s ≤ t ≤ ,

we have

∥
∥(Ax)′(t) – (Ax)′(t)

∥
∥

PC

≤
∫ 



∣
∣H ′

t(t, s) – H ′
t(t, s)

∣
∣ϕ–

(∫ s



∥
∥f

(
τ , x(τ ), x′(τ ), (Tx)(τ ), (Sx)(τ )

)∥
∥dτ

)

ds

+
∑

t≤tk <t

∥
∥Ik

(
x(tk), x′(tk)

)∥
∥

≤ L|t̄ – t̄|,

where N := ϕ–(L)+L +(m+)L. Take δ = min{ ε
N , ε

L
, } = ε

N . Thus, for fixed s ∈ [, ] and
for any ε > , there exists a constant δ >  such that, for any t, t ∈ [, ] with |t –t| < δ, we
have ‖(Ax)(t) – (Ax)(t)‖PC < ε, which means that A : K → K is equicontinuous. Hence,
by [], Lemma , we get

αPC
(
A(�)

)
= max

{
sup
t∈J

α
(
A(�)

)
(t), sup

t∈J
α
(
A′(�)

)
(t)

}
, (.)
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where A(�) := {(Ax)(t) : x ∈ �} and A′(�) := {(Ax)′(t) : x ∈ �}, α, αPC denote the Kura-
towski measures of noncompactness of bounded sets in E and PC(J ,E), respectively (see
[], Section .).

It follows from (.) and [], Theorem .., that

α
(
(A�)

)
(t)

≤ 
 – σ

∫ 


( – s)ϕ–

(


∫ s


α
(
f
(
τ ,�(τ ),�′(τ ), (T�)(τ ), (S�)(τ )

)
dτ

)
)

ds

+ 
∑

<tk <

[
α
(
Ik

(
�(tk)

))
+ ( – tk)α

(
Ik

(
�(tk), x′(tk)

))]

+ ( – t)
∑

<tk <

α
(
Ik

(
�(tk),�′(tk)

))

+


 – σ

∫ 


g(s)

∑

<tk <

[
α
(
Ik

(
�(tk)

))
+ ( – tk)α

(
Ik

(
�(tk), x′(tk)

))]
ds

+


 – σ

∫ 


( – s)g(s)

∑

<tk<

α
(
Ik

(
�(tk),�′(tk)

))
ds (.)

and

α
(
(A�)

)′(t) ≤ 
 – σ

∫ 


( – s)ϕ–

(


∫ s


α
(
f
(
τ ,�(τ ),�′(τ ), (T�)(τ ), (S�)(τ )

)
dτ

)
)

ds

+ 
∑

<tk <

α
(
Ik

(
�(tk),�′(tk)

))
. (.)

According to condition (H), we have

α
(
f
(
τ ,�(τ ),�′(τ ), (T�)(τ ), (S�)(τ )

)
dτ

)
= , ∀τ ∈ J , (.)

and

α
(
Ik

(
�(tk)

))
= , α

(
Ik

(
�(tk),�′(tk)

))
= , k = , , . . . , m. (.)

It follows from (.)-(.) that

αPC
(
A(�)

)
= max

{
sup
t∈J

α
(
A(�)

)
(t), sup

t∈J
α
(
A′(�)

)
(t)

}
= .

Thus the compactness of A is proved. Therefore, A : K → K defined by (.) is completely
continuous. The proof is complete. �

3 Main results
In this section, we show that there exists at least one positive solution for BVP (.).

Theorem . Assume that (H)-(H) hold. If  < f ∞ < ϕ( – σ ) and λ < 
 , then BVP (.)

has at least one positive solution, where λ = 
–σ

∑m
k=[vk + v∗

k + vk].
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Proof According to  < f ∞ < ϕ( – σ ), there exists ε >  such that f ∞ < M – ε. From
the definition of f ∞, there exists R >  such that ‖f (t, x, x, x, x)‖ ≤ f ∞ϕ(

∑
i= ‖xi‖) for

all
∑

i= ‖xi‖ ≥ R, t ∈ [, ]. Let KR := {x ∈ K : ‖x‖PC < R}, ∂KR := {x ∈ K : ‖x‖PC = R}.
Define an operator A : KR → KR by (.). By Lemma ., we know that A : KR → KR is
completely continuous. For any x ∈ ∂KR , that is, ‖x‖PC = R, it follows from (H) and (H)
that

∥
∥(Ax)(t)

∥
∥

PC

≤ 
 – σ

∫ 


G(s, s)

× ϕ–
(∫ s



(
ϕ( – σ ) – ε

)
ϕ
(‖x‖PC +

∥
∥x′∥∥

PC + ‖Tx‖PC + ‖Sx‖PC
)

dτ

)

ds

+
∑

<tk <t

[
v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]
+

∑

t<tk <

[
vk‖x‖PC + v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]

+


 – σ

∫ 


( – s)g(s)

∑

<tk<s

[
v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]
ds

+


 – σ

∫ 


g(s)

∑

s<tk<

[
vk‖x‖PC + v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]
ds

≤ 
 – σ

ϕ–(ϕ( – σ ) – ε
)
∫ 


G(s, s) ds

× ϕ–(ϕ
(‖x‖PC +

∥
∥x′∥∥

PC + ‖Tx‖PC + ‖Sx‖PC
))

+
m∑

k=

[
v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]
+

m∑

k=

[
vk‖x‖PC + v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]

+


 – σ

∫ 


( – s)g(s)

m∑

k=

[
v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]
ds

+


 – σ

∫ 


g(s)

m∑

k=

[
vk‖x‖PC + v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]
ds

≤ 
 – σ

ϕ–(ϕ( – σ )
)
∫ 


( – s) ds × ϕ–(ϕ

(‖x‖PC +
∥
∥x′∥∥

PC + ‖Tx‖PC + ‖Sx‖PC
))

+
m∑

k=

[
v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]
+

m∑

k=

[
vk‖x‖PC + v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]

+


 – σ

∫ 


( – s)g(s)

m∑

k=

[
v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]
ds

+


 – σ

∫ 


g(s)

m∑

k=

[
vk‖x‖PC + v∗

k‖x‖PC + vk
∥
∥x′∥∥

PC

]
ds

≤ 
 – σ

× ( – σ ) × 


× ‖x‖PC + ‖x‖PC

m∑

k=

[
v∗

k + vk
]

+ ‖x‖PC

m∑

k=

[
vk + v∗

k + vk
]

+
σ‖x‖PC

 – σ

m∑

k=

[
v∗

k + vk
]

+
σ‖x‖PC

 – σ

m∑

k=

[
vk + v∗

k + vk
]

≤ 

‖x‖PC + λ‖x‖PC <



‖x‖PC +



‖x‖PC = ‖x‖PC = R. (.)
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It is worth noticing that the inequality of (.) is strict. So Ax �= x for all ‖x‖PC = R. By way
of () of Lemma ., we obtain

i(A, KR ∩ K , K) = . (.)

Therefore, A has at least one positive fixed point on x ∈ KR ∩ K , namely, ‖x‖PC ≤ R and
‖Ax‖PC > δ‖A‖PC. This positive fixed point x of A is a solution of BVP (.). �

Similar to the proof of ., we have Theorem ..

Theorem . Assume that (H)-(H) hold. If  < λ <  and  < f  < ϕ( (–λ)
ρ

), for all ρ > 
–λ

,
then BVP (.) has at least one positive solution, where λ = 

–σ

∑m
k=[vk + v∗

k + vk].

Next similarly we prove some corollaries for BVP (.) and (.).

Corollary . Assume that (H′
)-(H′

) hold.

(H′
)  ≤ σ =

∫ 
 g(s) ds <  and g ∈ L[, ] is nonnegative.

(H′
) For any bounded set Bi ⊂ E (i = , , , ), f (t, B, B, B, B) and Ik(B) together

with Ik(B, B) (k = , , . . . , m) are relatively compact sets, where f (t, B, B, B, B) :=
{f (t, w, w, w, w) : wi ∈ Bi, i = , , , }, Ik(B) := {Ik(w) : wi ∈ B} and Ik(B, B) :=
{Ik(w, w) : wi ∈ Bi, i = , }.

(H′
) For Ik ∈ C(P,P+), Ik ∈ C(P,P+) (P+ represents a positive cone in a real Banach space

E, there exist some positive constants vk , v∗
k and vk (k = , . . . , m) such that

∥
∥Ik(x)

∥
∥ ≤ vk‖x‖,

∥
∥Ik(x, x)

∥
∥ ≤ v∗

k‖x‖ + vk‖x‖, ∀t ∈ J .

If  < f ∞ <  – σ and λ < 
 , then BVP (.) has at least one positive solution, where λ =


–σ

∑m
k=[vk + v∗

k + vk].

Corollary . Assume that (H′
)-(H′

) hold. If  < λ <  and  < f  < (–λ)
ρ

, for all ρ > 
–λ

,
then BVP (.) has at least one positive solution, where λ = 

–σ

∑m
k=[vk + v∗

k + vk].

Corollary . Assume that (H′′
 )-(H′′

) hold.

(H′′
 )  ≤ σ =

∫ 
 g(s) ds <  and g ∈ L[, ] is nonnegative.

(H′′
) For any bounded set Bi ⊂ E (i = , , , ), f (t, B, B, B, B) and Ik(B) together

with Ik(B, B) (k = , , . . . , m) are relatively compact sets, where f (t, B, B, B, B) �
{f (t, w, w, w, w) : wi ∈ Bi, i = , , , }, Ik(B) := {Ik(w) : wi ∈ B} and Ik(B, B) :=
{Ik(w, w) : wi ∈ Bi, i = , }.

(H′′
) For Ik ∈ C(P,P+), Ik ∈ C(P,P+) (P+ represents a positive cone in a real Banach space

E, there exist some positive constants vk , v∗
k and vk (k = , . . . , m) such that

∥
∥Ik(x)

∥
∥ ≤ vk‖x‖,

∥
∥Ik(x, x)

∥
∥ ≤ v∗

k‖x‖ + vk‖x‖, ∀t ∈ J .

If  < f ∞ < ( – σ )p– and λ < 
 , then BVP (.) has at least one positive solution, where

λ = 
–σ

∑m
k=[vk + v∗

k + vk].

Corollary . Assume that (H′′
 )-(H′′

) hold. If  < λ <  and  < f  < ( (–λ)
ρ

)p–, for all
ρ > 

–λ
, then BVP (.) has at least one positive solution, where λ = 

–σ

∑m
k=[vk +v∗

k +vk].
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4 Illustrative example
Consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ϕ(–x′′(t)))′ = f (t, x(t), x′(t), (Tx)(t), (Sx)(t)), t ∈ J , t �= 
 ,

�x|t= 


= Ik(x( 
 )), k = , . . . , m,

–�x′|t= 


= Ik(x( 
 ), x′( 

 )), k = , . . . , m,
x() = x′′() = θ , x() =

∫ 
 g(t)x(t) dt,

(.)

where m = , t = 
 , I(u) = u

 , I(u, v) = (ue–v+ve–u)
(+|uv|) , g(t) = t, K(t, s) = e–ts, F(t, s) = e–s,

f (t, x, u, v, w) = ln(+t)+(t|x|+t|u|+|v|+|w|)

+(|x|+|u|+|v|+|w|) ,

ϕ(u) =

{
u, u < ,
u, u > .

Let E = R with the norm ‖x‖ = |x| and P = {x ∈R : x ≥ }.
Choose δ = 

 ∈ (, 
 ). By a simple computation, we get  < σ =

∫ 
 g(s) ds = 

 < , |I(u)| =
|u|
 , |I(u, v)| ≤ |u|+|v|

 , v = v∗
 = v = 

 . For all t, s ∈ [, ],  < K(s, t) < ,  < F(t, s) < ,

ϕ–(u) =

{
√u, u < ,√

u, u > ,

f ∞ = lim sup
|x|+|u|+|v|+|w|→v

max
t∈[,]

|f (t, x, u, v, w)|
ϕ(|x| + |u| + |v| + |w|)

= lim sup
|x|+|u|+|v|+|w|→∞

max
t∈[,]

ln( + t) + (t|x| + t|u| + |v| + |w|)

[ + (|x| + |u| + |v| + |w|)](|x| + |u| + |v| + |w|)

=



<




= ϕ( – σ ),

λ =


 – σ

m∑

k=

[
vk + v∗

k + vk
]

=


 – σ

[
v + v∗

 + v
]

=



<




.

Thus all conditions of Theorem . are satisfied. It follows from Theorem . that for BVP
(.) there exists at least one positive solution.
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