

# RESEARCH Open Access



# Multiplicity results for a fractional Kirchhoff equation involving sign-changing weight function

Chuanzhi Bai\*

\*Correspondence: czbai8@sohu.com Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, P.R. China

# **Abstract**

In this paper, we prove the existence and multiplicity of solutions for a fractional Kirchhoff equation involving a sign-changing weight function which generalizes the corresponding result of Tsung-fang Wu (Rocky Mt. J. Math. 39:995-1011, 2009). Our main results are based on the method of a Nehari manifold.

MSC: 35J50; 35J60; 47G20

**Keywords:** fractional *p*-Laplacian; Kirchhoff type problem; sign-changing weight; Nehari manifold

# 1 Introduction

In this paper, we consider the following fractional elliptic equation with sign-changing weight functions:

$$\begin{cases}
M(\int_{\mathbb{R}^{2N}} \frac{|u(x)-u(y)|^p}{|x-y|^{N+sp}} dx dy)(-\Delta)_p^s u = \lambda f(x) u^q + g(x) u^r, & x \in \Omega, \\
u = 0, & x \in \mathbb{R}^N \setminus \Omega,
\end{cases}$$
(1.1)

where  $\Omega$  is a smooth bounded domain in  $\mathbb{R}^N$ , N > 2s, 0 < s < 1,  $0 \le q < 1 < r < p_s^* - 1$   $(p_s^* = \frac{p^N}{N-ps})$ ;  $\lambda > 0$ ,  $M(t) = a + bt^{p-1}$ ,  $(-\Delta)_p^s$  is the fractional p-Laplacian operator defined as

$$(-\Delta)_{p}^{s}u(x) = 2\lim_{\varepsilon \searrow 0} \int_{B_{n}(x)^{\varepsilon}} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{N+sp}} \, dy, \quad x \in \mathbb{R}^{N}.$$

We may assume that the weight functions f(x) and g(x) are as follows:

(H1)  $f^+ = \max\{f,0\} \not\equiv 0$ , and  $f \in L^{\mu_q}(\Omega)$  where  $\mu_q = \frac{\mu}{\mu - (q+1)}$  for some  $\mu \in (q+1,p_s^*)$ , with in addition  $f(x) \geq 0$  a.e. in  $\Omega$  in the case q=0;

(H2) 
$$g^+ = \max\{g, 0\} \not\equiv 0$$
, and  $g \in L^{\nu_r}(\Omega)$  where  $\nu_r = \frac{\nu}{\nu - (r+1)}$  for some  $\nu \in (r+1, p_s^*)$ .

The fractional Kirchhoff type problems have been studied by many authors in recent years; see [2–6] and references therein. In the subcritical case, Pucci and Saldi in [5] stud-



ied the following Kirchhoff type problem in  $\mathbb{R}^N$ :

$$\begin{cases} M(\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} dx dy)(-\Delta)_p^s u + V(x)|u|^{p - 2} u \\ = \lambda w(x)|u|^{q - 2} u - h(x)|u|^{r - 2} u, & x \in \Omega, \\ u = 0, & x \in \mathbb{R}^N \setminus \Omega, \end{cases}$$

with n > ps,  $s \in (0,1)$ , and they established the existence and multiplicity of entire solutions using variational methods and topological degree theory for the above problem with a real parameter  $\lambda$  under the suitable integrability assumptions of the weights V, w, and h. In [7], Mishra and Sreenadh have studied the following Kirchhoff problem with sign-changing weights:

$$\begin{cases} M(\int_{\mathbb{R}^{2N}} \frac{|u(x)-u(y)|^p}{|x-y|^{N+sp}} dx dy)(-\Delta)_p^s u = \lambda f(x)|u|^{q-2}u + |u|^{\alpha-2}u, & x \in \Omega, \\ u = 0, & x \in \mathbb{R}^N \setminus \Omega, \end{cases}$$

and they obtained the multiplicity of non-negative solutions in the subcritical case  $\alpha < p_s^*$  by minimizing the energy functional over non-empty decompositions of Nehari manifold.

When p = 2, s = 1, a = 1 and b = 0, problem (1.1) is reduced to the following semilinear elliptic equation:

$$\begin{cases}
-\Delta u = \lambda f(x)u^{q} + g(x)u^{r}, & x \in \Omega, \\
u = 0, & x \in \partial\Omega.
\end{cases}$$
(1.2)

In [1], Wu proved that equation (1.2) involving a sign-changing weight function has at least two solutions by using the Nehari manifold.

Motivated by the above work, in this paper, we investigate the existence and multiplicity of solutions for a fractional Kirchhoff equation (1.1) and extend the main results of Wu [1].

This article is organized as follows. In Section 2, we give some notations and preliminaries. Section 3 is devoted to the proof that problem (1.1) has at least two solutions for  $\lambda$  sufficiently small.

# 2 Preliminaries

For any  $s \in (0,1)$ , 1 , we define

$$X = \left\{ u | u : \mathbb{R}^N \to \mathbb{R} \text{ is measurable, } u|_{\Omega} \in L^p(\Omega), \text{ and } \int_O \frac{|u(x) - u(y)|^p}{|x - y|^{n + ps}} \, dx \, dy < \infty \right\},$$

where  $Q = \mathbb{R}^{2N} \setminus (\mathcal{C}\Omega \times \mathcal{C}\Omega)$  with  $\mathcal{C}\Omega = \mathbb{R}^N \setminus \Omega$ . The space X is endowed with the norm defined by

$$||u||_X = ||u||_{L^p(\Omega)} + \left(\int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{n+ps}} dx dy\right)^{1/p}.$$

The functional space  $X_0$  denotes the closure of  $C_0^{\infty}(\Omega)$  in X. By [8], the space  $X_0$  is a Hilbert space with scalar product

$$\langle u, v \rangle_{X_0} = \int_Q \frac{|u(x) - u(y)|^{p-1} (v(x) - v(y))}{|x - y|^{n+ps}} \, dx \, dy, \quad \forall u, v \in X_0,$$

and the norm

$$||u||_{X_0} = \left(\int_O \frac{|u(x) - u(y)|^p}{|x - y|^{n + ps}} \, dx \, dy\right)^{1/p}.$$

For further details on X and  $X_0$  and also for their properties, we refer to [8] and the references therein.

Throughout this section, we denote the best Sobolev constant by  $S_l$  for the embedding of  $X_0$  into  $L^l(\Omega)$ , which is defined as

$$S_{l} = \inf_{X_{0} \setminus \{0\}} \frac{\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^{p}}{|x - y|^{N + sp}} dx dy}{\left(\int_{\mathbb{D}^{N}} |u|^{l} dx\right)^{\frac{p}{l}}} > 0,$$

where  $l \in [p, p_s^*]$ .

A function  $u \in X_0$  is a weak solution of problem (1.1) if

$$M\left(\int_{Q} \frac{|u(x) - u(y)|^{p}}{|x - y|^{N + sp}} dx dy\right) \int_{Q} \frac{|u(x) - u(y)|^{p - 2} (u(x) - u(y))(v(x) - v(y))}{|x - y|^{N + sp}} dx dy$$

$$= \lambda \int_{\Omega} f(x)|u|^{q - 1} uv dx + \int_{\Omega} g(x)|u|^{r - 1} uv dx, \quad \forall v \in X_{0}.$$

Associated with equation (1.1), we consider the energy functional  $\mathcal{J}_{\lambda,M}$  in  $X_0$ 

$$\mathcal{J}_{\lambda,M}(u) = \frac{1}{p} \hat{M} \left( \left\| u \right\|_{X_0}^p \right) - \frac{\lambda}{q+1} \int_{\Omega} f \left| u \right|^{q+1} dx - \frac{1}{r+1} \int_{\Omega} g \left| u \right|^{r+1} dx,$$

where  $\hat{M}(t) = \int_0^t M(\mu) d\mu$ .

It is easy to see that the solutions of equation (1.1) are the critical points of the energy functional  $\mathcal{J}_{\lambda,M}$ .

The Nehari manifold for  $\mathcal{J}_{\lambda,M}$  is defined as

$$\mathcal{N}_{\lambda,M}(\Omega) = \left\{ u \in X_0 \setminus \{0\} : \left\langle \mathcal{J}'_{\lambda,M}(u), u \right\rangle = 0 \right\} \\
= \left\{ u \in X_0 \setminus \{0\} | M(\|u\|_{X_0}^p) \|u\|_{X_0}^p - \lambda \int_{\Omega} f|u|^{q+1} dx - \int_{\Omega} g|u|^{r+1} dx = 0 \right\}.$$

The Nehari manifold  $\mathcal{N}_{\lambda,M}(\Omega)$  is closely linked to the behavior of functions of the form  $h_{\lambda,M}: t \to \mathcal{J}_{\lambda,M}(tu)$  for t > 0, named fibering maps [9]. If  $u \in X_0$ , we have

$$h_{\lambda,M}(t) = \frac{1}{p} \hat{M}(t^p ||u||_{X_0}^p) - \lambda \frac{t^{q+1}}{q+1} \int_{\Omega} f|u|^{q+1} dx - \frac{t^{r+1}}{r+1} \int_{\Omega} g|u|^{r+1} dx,$$

$$h'_{\lambda,M}(t) = t^{p-1} M(t^p ||u||_{X_0}^p) ||u||_{X_0}^p - \lambda t^q \int_{\Omega} f|u|^{q+1} dx - t^r \int_{\Omega} g|u|^{r+1} dx,$$

$$\begin{split} h_{\lambda,M}''(t) &= (p-1)t^{p-2}M\big(t^p\|u\|_{X_0}^p\big)\|u\|_{X_0}^p + pt^{2p-2}M'\big(t^p\|u\|_{X_0}^p\big)\|u\|_{X_0}^{2p} \\ &- q\lambda t^{q-1}\int_{\Omega}f|u|^{q+1}\,dx - rt^{r-1}\int_{\Omega}g|u|^{r+1}\,dx. \end{split}$$

Obviously,

$$th'_{\lambda,M}(t) = M(t^p ||u||_{X_0}^p) ||tu||_{X_0}^p - \lambda \int_{\Omega} f|tu|^{q+1} dx - \int_{\Omega} g|tu|^{r+1} dx$$
$$= \langle \mathcal{J}_{\lambda,M}(tu), tu \rangle,$$

which implies that for  $u \in X_0 \setminus \{0\}$  and t > 0,  $h_{\lambda,M}(t) = 0$  if and only if  $tu \in \mathcal{N}_{\lambda,M}(\Omega)$ , *i.e.*, positive critical points of  $h_{\lambda,M}$  correspond to points on the Nehari manifold. In particular,  $h_{\lambda,M}(1) = 0$  if and only if  $u \in \mathcal{N}_{\lambda,M}(\Omega)$ . Hence, we define

$$\mathcal{N}_{\lambda,M}^{+}(\Omega) = \left\{ u \in \mathcal{N}_{\lambda,M}(\Omega) : h_{u,M}''(1) > 0 \right\},$$

$$\mathcal{N}_{\lambda,M}^{0}(\Omega) = \left\{ u \in \mathcal{N}_{\lambda,M}(\Omega) : h_{u,M}''(1) = 0 \right\},$$

$$\mathcal{N}_{\lambda,M}^{-}(\Omega) = \left\{ u \in \mathcal{N}_{\lambda,M}(\Omega) : h_{u,M}''(1) < 0 \right\}.$$

For each  $u \in \mathcal{N}_{\lambda,M}(\Omega)$ , we have

$$h_{\lambda,M}''(1) = (p-1)M(\|u\|_{X_0}^p)\|u\|_{X_0}^p + pM'(\|u\|_{X_0}^p)\|u\|_{X_0}^{2p}$$

$$-q\lambda \int_{\Omega} f|u|^{q+1} dx - r \int_{\Omega} g|u|^{r+1} dx$$

$$= (p-r-1)M(\|u\|_{X_0}^p)\|u\|_{X_0}^p + pM'(\|u\|_{X_0}^p)\|u\|_{X_0}^{2p} - \lambda(q-r) \int_{\Omega} f|u|^{q+1} dx \quad (2.1)$$

$$= (p-q-1)M(\|u\|_{X_0}^p)\|u\|_{X_0}^p + pM'(\|u\|_{X_0}^p)\|u\|_{X_0}^{2p} - (r-q) \int_{\Omega} g|u|^{r+1} dx. \quad (2.2)$$

Let  $M(t) = a + bt^{p-1}$ , where a > 0,  $b \ge 0$  and p > 1. If  $u \in \mathcal{N}_{\lambda,M}^0(\Omega)$ , then  $h''_{\lambda,M}(1) = 0$ , and we have by (2.1) and (2.2)

$$a(p-r-1)\|u\|_{X_0}^p + b(p^2-r-1)\|u\|_{X_0}^{p^2} - \lambda(q-r)\int_{\Omega} f|u|^{q+1} dx = 0,$$
 (2.3)

$$a(p-q-1)\|u\|_{X_0}^p + b(p^2-q-1)\|u\|_{X_0}^{p^2} - (r-q)\int_{\Omega} g|u|^{r+1} dx = 0.$$
 (2.4)

For convenience, we let

(H3) 
$$0 < q < 1, p > 1 + q \text{ and } p_s^* - 1 > r \begin{cases} > p^2 - 1, & b \neq 0, \\ > p - 1, & b = 0. \end{cases}$$

**Lemma 2.1** *If* (H1) *and* (H3) *hold, then the energy functional*  $\mathcal{J}_{\lambda,M}$  *is coercive and bounded below on*  $\mathcal{N}_{\lambda,M}(\Omega)$ .

*Proof* For  $u \in \mathcal{N}_{\lambda,M}(\Omega)$ , we have by the Hölder and Sobolev inequalities

$$\begin{split} \mathcal{J}_{\lambda,M}(u) &= a \bigg(\frac{1}{p} - \frac{1}{r+1}\bigg) \|u\|_{X_0}^p + b \bigg(\frac{1}{p^2} - \frac{1}{r+1}\bigg) \|u\|_{X_0}^{p^2} \\ &- \lambda \bigg(\frac{1}{q+1} - \frac{1}{r+1}\bigg) \int_{\Omega} f |u|^{q+1} dx \\ &= a \bigg(\frac{1}{p} - \frac{1}{r+1}\bigg) \|u\|_{X_0}^p + b \bigg(\frac{1}{p^2} - \frac{1}{r+1}\bigg) \|u\|_{X_0}^{p^2} \end{split}$$

$$\begin{split} &-\lambda \frac{r-q}{(q+1)(r+1)} \int_{\Omega} f |u|^{q+1} \, dx \\ &\geq a \bigg( \frac{1}{p} - \frac{1}{r+1} \bigg) \|u\|_{X_0}^p + b \bigg( \frac{1}{p^2} - \frac{1}{r+1} \bigg) \|u\|_{X_0}^{p^2} \\ &- \lambda \frac{r-q}{(q+1)(r+1)} \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \|u\|_{X_0}^{q+1}, \end{split}$$

where  $\mu_q = \frac{\mu}{\mu - (q+1)}$ ,  $\mu \in (q+1,p_s^*)$ . Thus  $\mathcal{J}_{\lambda,M}$  is coercive and bounded below on  $\mathcal{N}_{\lambda,M}(\Omega)$ .

**Lemma 2.2** Let (H1)-(H3) hold. There exists  $\lambda_1 > 0$  such that for any  $\lambda \in (0, \lambda_1)$ , we have  $\mathcal{N}^0_{\lambda,M}(\Omega) = \emptyset$ .

*Proof* If not, that is,  $\mathcal{N}^0_{\lambda,\mathcal{M}}(\Omega) \neq \emptyset$  for each  $\lambda > 0$ , then by (2.3) and the Hölder and Sobolev inequalities, we have for  $u_0 \in \mathcal{N}^0_{\lambda,\mathcal{M}}(\Omega)$ 

$$||a(r-p+1)||u_0||_{X_0}^p \le a(r-p+1)||u_0||_{X_0}^p + b(r-p^2+1)||u_0||_{X_0}^{p^2}$$

$$= \lambda(r-q) \int_{\Omega} f|u_0|^{q+1} dx,$$

which implies that

$$\|u_0\|_{X_0}^p \le \frac{\lambda(r-q)}{a(r-p+1)} \int_{\Omega} f|u_0|^{q+1} dx$$

$$\le \frac{\lambda(r-q)}{a(r-p+1)} \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \|u_0\|_{X_0}^{q+1}$$

and so

$$\|u_0\|_{X_0} \le \left(\frac{\lambda(r-q)}{a(r-p+1)} \|f\|_{L^{\mu_q}} S_{\mu}^{q+1}\right)^{\frac{1}{p-q-1}}.$$
 (2.5)

Similarly, we obtain by (2.4) and the Hölder and Sobolev inequalities

$$\|u_0\|_{X_0}^p \leq \frac{r-q}{a(p-q+1)} \|g\|_{L^{\nu_r}} S_{\nu}^{r+1} \|u_0\|_{X_0}^{r+1},$$

which implies that

$$\|u_0\|_{X_0} \ge \left(\frac{a(p-q+1)}{r-q} \|g\|_{L^{\nu_r}}^{-1} S_{\nu}^{-(r+1)}\right)^{\frac{1}{r-p+1}}.$$
(2.6)

But (2.5) contradicts (2.6) if  $\lambda$  is sufficiently small. Hence, we conclude that there exists  $\lambda_1 > 0$  such that  $\mathcal{N}^0_{\lambda,M}(\Omega) = \emptyset$  for  $\lambda \in (0,\lambda_1)$ .

Let

$$c_{\lambda} = \inf_{u \in \mathcal{N}_{\lambda,M}(\Omega)} \mathcal{J}_{\lambda,M}(u).$$

From Lemma 2.2, for  $\lambda \in (0, \lambda_1)$ , we write  $\mathcal{N}_{\lambda,M}(\Omega) = \mathcal{N}_{\lambda,M}^+(\Omega) \cup \mathcal{N}_{\lambda,M}^-(\Omega)$  and define

$$c_{\lambda}^+ = \inf_{u \in \mathcal{N}_{\lambda,M}^+(\Omega)} \mathcal{J}_{\lambda,M}(u)$$
 and  $c_{\lambda}^- = \inf_{u \in \mathcal{N}_{\lambda,M}^-(\Omega)} \mathcal{J}_{\lambda,M}(u)$ .

**Lemma 2.3** (i) If  $u \in \mathcal{N}_{\lambda,M}^+(\Omega)$ , then  $\int_{\Omega} f|u|^{q+1} dx > 0$ . (ii) If  $u \in \mathcal{N}_{\lambda,M}^-(\Omega)$ , then  $\int_{\Omega} g|u|^{r+1} dx > 0$ .

The proof is immediate from (2.3) and (2.4).

Define the function  $k_{\mu} : \mathbb{R}^+ \to \mathbb{R}$  as follows:

$$k_{u}(t) = t^{p-q-1} M(t^{p} \|u\|_{X_{0}}^{p}) \|u\|_{X_{0}}^{p} - t^{r-q} \int_{\Omega} g|u|^{r+1} dx \quad t > 0.$$
 (2.7)

Obviously,  $tu \in \mathcal{N}_{\lambda,M}(\Omega)$  if and only if  $k_u(t) = \lambda \int_{\Omega} f|u|^{q+1} dx$ . Moreover,

$$k'_{u}(t) = (p - q - 1)t^{p - q - 2}M(t^{p}||u||_{X_{0}}^{p})||u||_{X_{0}}^{p} + pt^{2p - q - 2}M'(t^{p}||u||_{X_{0}}^{p})||u||_{X_{0}}^{2p}$$
$$- (r - q)t^{r - q - 1}\int_{\Omega}g|u|^{r + 1}dx,$$
 (2.8)

which implies that  $t^q k'_u(t) = h''_{\lambda,M}(t)$  for  $tu \in \mathcal{N}_{\lambda,M}(\Omega)$ . That is,  $u \in \mathcal{N}^+_{\lambda,M}(\Omega)$  (or  $\mathcal{N}^-_{\lambda,M}(\Omega)$ ) if and only if  $k'_u(t) > 0$  (or < 0).

Set

$$A = \frac{a(r-p+1)}{r-q} \left( \frac{a(p-q-1)}{(r-q)\|g\|_{L^{\nu_r}} S_{\nu}^{r+1}} \right)^{\frac{p-q-1}{r-p+1}} + \frac{b(r-p^2+1)}{r-q} \left( \frac{a(p-q-1)}{(r-q)\|g\|_{L^{\nu_r}} S_{\nu}^{r+1}} \right)^{\frac{p^2-q-1}{r-p+1}}.$$
(2.9)

**Lemma 2.4** Assume that (H1)-(H3) hold. Let  $\lambda_2 = \frac{A}{\|f\|_L \mu_q S_\mu^{q+1}}$ . Then, for each  $u \in X_0 \setminus \{0\}$  and  $\lambda \in (0, \lambda_2)$ , we have:

(1) If  $\int_{\Omega} f|u|^{q+1} dx \leq 0$ , then there exists a unique  $t^- = t^-(u) > t_{\max}(u)$  such that  $t^-u \in \mathcal{N}_{\lambda,M}^-(\Omega)$  and

$$\mathcal{J}_{\lambda,M}(t^-u) = \sup_{t>0} \mathcal{J}_{\lambda,M}(tu) > 0. \tag{2.10}$$

(2) If  $\int_{\Omega} f|u|^{q+1} dx > 0$ , then there exists a unique  $0 < t^+ = t^+(u) < t_{\max}(u) < t^-$  such that  $t^+ u \in \mathcal{N}^+_{\lambda,M}(\Omega)$ ,  $t^- u \in \mathcal{N}^-_{\lambda,M}(\Omega)$  and

$$\mathcal{J}_{\lambda,M}(t^+u) = \inf_{0 \le t \le t_{\max}(u)} \mathcal{J}_{\lambda,M}(tu), \qquad \mathcal{J}_{\lambda,M}(t^-u) = \sup_{t > 0} \mathcal{J}_{\lambda,M}(tu). \tag{2.11}$$

Proof From (2.7) and (2.8), we have

$$k_u(t) = at^{p-q-1} \|u\|_{X_0}^p + bt^{p^2-q-1} \|u\|_{X_0}^{p^2} - t^{r-q} \int_{\Omega} g|u|^{r+1} dx \quad t \ge 0,$$

$$k'_{u}(t) = t^{-q-1} \left[ a(p-q-1)t^{p-1} \|u\|_{X_{0}}^{p} + b(p^{2}-q-1)t^{p^{2}-1} \|u\|_{X_{0}}^{p^{2}} - (r-q)t^{r} \int_{\Omega} g|u|^{r+1} dx \right],$$

which implies that  $k_u(0) = 0$ ,  $k_u(t) \to -\infty$  as  $t \to \infty$ ,  $\lim_{t \to 0^+} k_u'(t) > 0$  and  $\lim_{t \to \infty} k_u'(t) < 0$ . Thus there exists a unique  $t_{\max}(u) := t_{\max} > 0$  such that  $k_u(t)$  is increasing on  $(0, t_{\max})$ , decreasing on  $(t_{\max}, \infty)$  and  $k_u'(t_{\max}) = 0$ . Moreover,  $t_{\max}$  is the root of

$$a(p-q-1)t_{\max}^{p-1}\|u\|_{X_0}^p + b(p^2-q-1)t_{\max}^{p^2-1}\|u\|_{X_0}^{p^2} - (r-q)t_{\max}^r \int_{\Omega} g|u|^{r+1} dx = 0.$$
 (2.12)

From (2.12), we obtain

$$t_{\max} \ge \left(\frac{a(p-q-1)\|u\|_{X_0}^p}{(r-q)\int_{\Omega} g|u|^{r+1} dx}\right)^{\frac{1}{r-p+1}} \ge \frac{1}{\|u\|_{X_0}} \left(\frac{a(p-q-1)}{(r-q)\|g\|_{L^{\nu_r}} S_v^{r+1}}\right)^{\frac{1}{r-p+1}} := t_*. \tag{2.13}$$

Hence, we have by (2.12), (2.13), and the Hölder and Sobolev inequalities

$$k_{u}(t_{\max}) = t_{\max}^{p-q-1} \left[ a \| u \|_{X_{0}}^{p} + b t_{\max}^{p(p-1)} \| u \|_{X_{0}}^{p^{2}} - t_{\max}^{r-p+1} \int_{\Omega} g |u|^{r+1} dx \right]$$

$$= \frac{a(r-p+1)}{r-q} t_{\max}^{p-q-1} \| u \|_{X_{0}}^{p} + \frac{b(r-p^{2}+1)}{r-q} t_{\max}^{p^{2}-q-1} \| u \|_{X_{0}}^{p^{2}}$$

$$\geq \frac{a(r-p+1)}{r-q} t_{*}^{p-q-1} \| u \|_{X_{0}}^{p} + \frac{b(r-p^{2}+1)}{r-q} t_{*}^{p^{2}-q-1} \| u \|_{X_{0}}^{p^{2}}$$

$$\geq \frac{a(r-p+1)}{r-q} \left( \frac{a(p-q-1)}{(r-q) \| g \|_{L^{\nu_{r}}} S_{\nu}^{r+1}} \right)^{\frac{p-q-1}{r-p+1}} \| u \|_{X_{0}}^{q+1}$$

$$+ \frac{b(r-p^{2}+1)}{r-q} \left( \frac{a(p-q-1)}{(r-q) \| g \|_{L^{\nu_{r}}} S_{\nu}^{r+1}} \right)^{\frac{p^{2}-q-1}{r-p+1}} \| u \|_{X_{0}}^{q+1}$$

$$= A \| u \|_{X_{0}}^{q+1}. \tag{2.14}$$

Case (1):  $\int_{\Omega} f|u|^{q+1} dx \le 0$ . Then  $k_u(t) = \lambda \int_{\Omega} f|u|^{q+1} dx$  has unique solution  $t^- > t_{\max}$  and  $k'_u(t^-) < 0$ . On the other hand, we have

$$\begin{split} a(p-q-1) & \left\| t^{-}u \right\|_{X_{0}}^{p} + b(p^{2}-q-1) \left\| t^{-}u \right\|_{X_{0}}^{p^{2}} - (r-q) \int_{\Omega} g \left| t^{-}u \right|^{r+1} dx \\ & = \left( t^{-} \right)^{2+q} \left[ a(p-q-1) \left( t^{-} \right)^{p-q-2} \left\| u \right\|_{X_{0}}^{p} + b \left( p^{2}-q-1 \right) \left( t^{-} \right)^{p^{2}-q-2} \left\| u \right\|_{X_{0}}^{p^{2}} \right. \\ & \left. - (r-q) \left( t^{-} \right)^{r-q-1} \int_{\Omega} g \left| u \right|^{r+1} dx \right] \\ & = \left( t^{-} \right)^{2+q} k'_{u}(t^{-}) < 0 \end{split}$$

$$\begin{split} & \left\langle \mathcal{J}_{\lambda,M}'(t^{-}u), t^{-}u \right\rangle \\ & = a(t^{-})^{p} \|u\|_{X_{0}}^{p} + b(t^{-})^{p^{2}} \|u\|_{X_{0}}^{p^{2}} - \lambda(t^{-})^{q+1} \int_{\Omega} f|u|^{q+1} dx - (t^{-})^{r+1} \int_{\Omega} g|u|^{r+1} dx \\ & = (t^{-})^{q+1} \left[ k_{u}(t^{-}) - \lambda \int_{\Omega} f|u|^{q+1} dx \right] = 0. \end{split}$$

Hence,  $t^-u \in \mathcal{N}^-_{\lambda,M}(\Omega)$  or  $t^-=1$ . For  $t>t_{\max}$ , we obtain

$$\begin{split} &a(p-q-1)\|tu\|_{X_0}^p + b(p^2-q-1)\|tu\|_{X_0}^{p^2} - (r-q)\int_{\Omega}g|tu|^{r+1}\,dx < 0,\\ &\frac{d^2}{dt^2}\mathcal{J}_{\lambda,M}(tu) < 0,\\ &\frac{d}{dt}\mathcal{J}_{\lambda,M}(tu) = at^{p-1}\|u\|_{X_0}^p + bt^{p^2-1}\|u\|_{X_0}^{p^2} - \lambda t^q \int_{\Omega}f|u|^{q+1}\,dx - t^r \int_{\Omega}g|u|^{r+1}\,dx = 0, \end{split}$$

for  $t = t^-$ . Thus,  $\mathcal{J}_{\lambda,M}(u) = \sup_{t \ge 0} \mathcal{J}_{\lambda,M}(tu)$ . Furthermore, we have

$$\mathcal{J}_{\lambda,M}(u) \geq \mathcal{J}_{\lambda,M}(tu) \geq \frac{a}{p} t^{p} \|u\|_{X_{0}}^{p} + \frac{b}{p^{2}} t^{p^{2}} \|u\|_{X_{0}}^{p^{2}} - \frac{1}{r+1} t^{r+1} \int_{\Omega} g|u|^{r+1} dx, \quad t \geq 0.$$

Let

$$h_{u}(t) = \frac{a}{p} t^{p} \|u\|_{X_{0}}^{p} + \frac{b}{p^{2}} t^{p^{2}} \|u\|_{X_{0}}^{p^{2}} - \frac{1}{r+1} t^{r+1} \int_{\Omega} g |u|^{r+1} dx, \quad t \geq 0.$$

Similar to the argument in the function  $k_u(t)$ , we see that  $h_u(t)$  achieves its maximum at  $t_m \ge (\frac{a\|u\|_{X_0}^p}{\int_{\Omega} g|u|^{r+1} dx})^{\frac{1}{r-p+1}}$ . Thus, we have

$$\mathcal{J}_{\lambda,M}(u) \ge h_u(t_m) \ge \frac{ap(r+1-p) + b(r+1-p^2)}{p^2(r+1)} \left(\frac{a\|u\|_{X_0}^{r+1}}{\int_{\Omega} g|u|^{r+1} dx}\right)^{\frac{p}{r-p+1}} > 0.$$

Case (2):  $\int_{\Omega} f|u|^{q+1} dx > 0$ . By (2.14) and

$$\begin{split} k_u(0) &= 0 < \lambda \int_{\Omega} f|u|^{q+1} \, dx \leq \lambda \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \|u\|_{X_0}^{q+1} \\ &< \lambda_2 \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \|u\|_{X_0}^{q+1} = A \|u\|_{X_0}^{q+1} \leq k_u(t_{\text{max}}), \quad \text{for } \lambda \in (0,\lambda_2). \end{split}$$

Then there exist  $t^+$  and  $t^-$  such that  $0 < t^+ < t_{\text{max}} < t^-$ ,

$$k_u(t^+) = \lambda \int_{\Omega} f|u|^{q+1} dx = k_u(t^-).$$

Moreover, we have  $k'_u(t^+) > 0$  and  $k'_u(t^-) < 0$ . Thus, there are two multiples of u lying in  $\mathcal{N}_{\lambda,M}(\Omega)$ , that is,  $t^+u \in \mathcal{N}^+_{\lambda,M}(\Omega)$  and  $t^-u \in \mathcal{N}^-_{\lambda,M}(\Omega)$ , and  $\mathcal{J}_{\lambda,M}(t^-u) \geq \mathcal{J}_{\lambda,M}(tu) \geq \mathcal{J}_{\lambda,M}(t^+u)$  for each  $t \in [t^+, t^-]$  and  $\mathcal{J}_{\lambda,M}(t^+u) \leq \mathcal{J}_{\lambda,M}(tu)$  for each  $t \in [0, t^+]$ . Hence,  $t^- = 1$  and

$$\mathcal{J}_{\lambda,M}(u) = \sup_{t \geq 0} \mathcal{J}_{\lambda,M}(tu), \qquad \mathcal{J}_{\lambda,M}(t^+u) = \inf_{0 \leq t \leq t_{\max}} \mathcal{J}_{\lambda,M}(tu).$$

**Lemma 2.5** *If* (H3) *holds, then we have*  $c_{\lambda} \leq c_{\lambda}^{+} < 0$ .

*Proof* For  $u \in \mathcal{N}_{\lambda,M}^+$ , we get

$$(r-q)\lambda \int_{\Omega} f|u|^{q+1} dx > a(r-p+1)\|u\|_{X_0}^p + b(r-p^2+1)\|u\|_{X_0}^{p^2}$$

Thus, we have

$$J_{\lambda,M}(u) = \frac{a(r-p+1)}{p(r+1)} \|u\|_{X_0}^p + \frac{b(r-p^2+1)}{p^2(r+1)} \|u\|_{X_0}^{p^2} - \frac{\lambda(r-q)}{(q+1)(r+1)} \int_{\Omega} f|u|^{q+1} dx$$

$$< \frac{a(r-p+1)}{r+1} \left[ \frac{1}{p} - \frac{1}{q+1} \right] \|u\|_{X_0}^p + \frac{b(r-p^2+1)}{r+1} \left[ \frac{1}{p^2} - \frac{1}{q+1} \right] \|u\|_{X_0}^{p^2} < 0,$$

which implies that  $c_{\lambda} \leq c_{\lambda}^+ < 0$ .

# 3 Main results

Using the idea of Ni-Takagi [10], we have the following.

**Lemma 3.1** For each  $u \in \mathcal{N}_{\lambda,M}(\Omega)$ , there exist  $\epsilon > 0$  and a differentiable function  $\xi : B(0;\epsilon) \subset X_0 \to \mathbb{R}^+$  such that  $\xi(0) = 1$ , the function  $\xi(v)(u-v) \in \mathcal{N}_{\lambda,M}(\Omega)$  and

$$\langle \xi'(0), \nu \rangle = \frac{W}{a(p-q-1)\|u\|_{X_0}^p + b(p^2-q-1)\|u\|_{X_0}^{p^2} - (r-q)\int_{\Omega} g|u|^{r+1} dx},$$
(3.1)

*for all*  $v \in X_0$ *, where* 

$$W = ap \int_{Q} \frac{|u(x) - u(y)|^{p-2} (u(x) - u(y)) (v(x) - v(y))}{|x - y|^{N+sp}} dx dy$$

$$+ bp^{2} \int_{Q} \frac{|u(x) - u(y)|^{p^{2}-2} (u(x) - u(y)) (v(x) - v(y))}{|x - y|^{N+sp^{2}}} dx dy$$

$$- (q+1)\lambda \int_{Q} f|u|^{q-1} uv dx - (r+1) \int_{Q} g|u|^{r-1} uv dx.$$
(3.2)

*Proof* For  $u \in \mathcal{N}_{\lambda,M}(\Omega)$ , we define a function  $\mathcal{F} : \mathbb{R} \times X_0 \to \mathbb{R}$  by

$$\mathcal{F}_{u}(\xi, w) = \langle \mathcal{J}'_{\lambda, M}(\xi(u - w)), \xi(u - w) \rangle$$

$$= \xi^{p} M(\xi^{p} \| u - w \|_{X_{0}}^{p}) \| u - w \|_{X_{0}}^{p}$$

$$- \xi^{q+1} \lambda \int_{\Omega} f |u - w|^{q+1} dx - \xi^{r+1} \int_{\Omega} g |u - w|^{r+1} dx$$

$$= a \xi^{p} \| u - w \|_{X_{0}}^{p} + b \xi^{p^{2}} \| u - w \|_{X_{0}}^{p^{2}}$$

$$- \xi^{q+1} \lambda \int_{\Omega} f |u - w|^{q+1} dx - \xi^{r+1} \int_{\Omega} g |u - w|^{r+1} dx.$$

Then  $\mathcal{F}_u(1,0) = \langle \mathcal{J}'_{\lambda,M}(u), u \rangle = 0$  and

$$\begin{split} \frac{d}{d\xi}\mathcal{F}_{u}(1,0) &= ap\|u\|_{X_{0}}^{p} + bp^{2}\|u\|_{X_{0}}^{p^{2}} - (q+1)\lambda\int_{\Omega}f|u|^{q+1}\,dx - (r+1)\int_{\Omega}g|u|^{r+1}\,dx \\ &= a(p-q-1)\|u\|_{X_{0}}^{p} + b\big(p^{2}-q-1\big)\|u\|_{X_{0}}^{p^{2}} - (r-q)\int_{\Omega}g|u|^{r+1}\,dx \neq 0. \end{split}$$

From the implicit function theorem, we know that there exist  $\epsilon > 0$  and a differentiable function  $\xi : B(0; \epsilon) \subset X_0 \to \mathbb{R}$  such that  $\xi(0) = 1$ ,

$$\left\langle \xi'(0), \nu \right\rangle = \frac{W}{a(p-q-1)\|u\|_{X_0}^p + b(p^2-q-1)\|u\|_{X_0}^{p^2} - (r-q)\int_{\Omega} g|u|^{r+1} dx},$$

where W is as in (3.2), and

$$\mathcal{F}_u(\xi(v), v) = 0$$
 for all  $v \in B(0; \epsilon)$ 

which is equivalent to

$$\langle \mathcal{J}'_{\lambda M}(\xi(\nu)(u-\nu)), \xi(\nu)(u-\nu) \rangle = 0$$
 for all  $\nu \in B(0; \epsilon)$ ,

which implies that  $\xi(\nu)(u-\nu) \in \mathcal{N}_{\lambda,M}(\Omega)$ .

Similar to the argument in Lemma 3.1, we can obtain the following lemma.

**Lemma 3.2** For each  $u \in \mathcal{N}_{\lambda,M}^-(\Omega)$ , there exist  $\epsilon > 0$  and a differentiable function  $\xi^-$ :  $B(0;\epsilon) \subset X_0 \to \mathbb{R}^+$  such that  $\xi^-(0) = 1$ , the function  $\xi^-(v)(u-v) \in \mathcal{N}_{\lambda,M}^-(\Omega)$  and

$$\left\langle \left(\xi^{-}\right)'(0),\nu\right\rangle =\frac{W}{a(p-q-1)\|u\|_{X_{0}}^{p}+b(p^{2}-q-1)\|u\|_{X_{0}}^{p^{2}}-(r-q)\int_{\Omega}g|u|^{r+1}dx},$$

for all  $v \in X_0$ , where W is as in (3.2).

Let

(H4) 
$$p < 2 + \frac{(r-1)q}{r}$$
.

Moreover, we let

$$p^* = \frac{(p-2)r}{r-1} - q$$

and

$$\begin{split} \lambda_3 &= \left(\frac{a(p-q-1)(r-p^2+1)}{(r-q)(p^2-q-1)}\right) \left(\frac{a(p-q-1)}{r-q}\right)^{\frac{(p-q-1)}{(p-q-1-p^*)(r-1)}} \\ &\times \left(\frac{1}{\|f\|_{L^{\mu_q}} S_{\mu}^{q+1}}\right) \left(\frac{1}{\|g\|_{L^{\nu_r}} S_{\nu}^{r+1}}\right)^{\frac{(p-q-1)}{(r-1)(p-q-1-p^*)}}. \end{split}$$

**Remark 3.1** By (H4) we know that  $p^* < 0$ .

**Lemma 3.3** Assume that (H1)-(H4) hold. Let  $\Gamma_0 = \min\{\lambda_1, \lambda_2, \lambda_3\}$ , then for  $\lambda \in (0, \Gamma_0)$ : (i) There exists a minimizing sequence  $\{u_n\} \subset \mathcal{N}_{\lambda,M}(\Omega)$  such that

$$\mathcal{J}_{\lambda,M}(u_n) = c_{\lambda} + o(1), \qquad \mathcal{J}'_{\lambda,M}(u_n) = o(1) \quad in \ (X_0)^*.$$

(ii) There exists a minimizing sequence  $\{u_n\}\subset \mathcal{N}_{\lambda,M}^-(\Omega)$  such that

$$\mathcal{J}_{\lambda,M}(u_n) = c_{\lambda}^- + o(1), \qquad \mathcal{J}'_{\lambda,M}(u_n) = o(1) \quad in (X_0)^*.$$

*Proof* By the Ekeland variational principle [11] and Lemma 2.2, there exists a minimizing sequence  $\{u_n\} \subset \mathcal{N}_{\lambda,M}(\Omega)$  such that

$$\mathcal{J}_{\lambda,M}(u_n) < c_{\lambda} + \frac{1}{n} \tag{3.3}$$

and

$$\mathcal{J}_{\lambda,M}(u_n) < \mathcal{J}_{\lambda,M}(w) + \frac{1}{n} \|w - u_n\|_{X_0} \quad \forall w \in \mathcal{N}_{\lambda,M}(\Omega).$$
(3.4)

Let n large enough, by Lemma 2.5, we obtain

$$\mathcal{J}_{\lambda,M}(u_n) = \frac{a(r-p+1)}{p(r+1)} \|u_n\|_{X_0}^p + \frac{b(r-p^2+1)}{p^2(r+1)} \|u_n\|_{X_0}^{p^2} - \frac{\lambda(r-q)}{(q+1)(r+1)} \int_{\Omega} f|u_n|^{q+1} dx$$

$$< c_{\lambda} + \frac{1}{n} < \frac{c_{\lambda}}{2},$$

which implies that

$$||f||_{L^{\mu_q}}S_{\mu}^{q+1}||u_n||_{X_0}^{q+1} \ge \int_{\Omega} f|u_n|^{q+1} dx > -\frac{(q+1)(r+1)}{\lambda(r-q)} \frac{c_{\lambda}}{2} > 0.$$
(3.5)

This implies  $u_n \neq 0$  and by using (3.4), (3.5), and the Hölder inequality, we get

$$||u_n||_{X_0} > \left[ -\frac{(q+1)(r+1)}{\lambda(r-q)} \frac{c_{\lambda}}{2} ||f||_{L^{\mu_q}}^{-1} S_{\mu}^{-(q+1)} \right]^{\frac{1}{q+1}}$$
(3.6)

and

$$||u_n||_{X_0} < \left[ \frac{\lambda p(r-q)(r+1)}{a(q+1)(r+1)(r-p+1)} ||f||_{L^{\mu_q}} S_{\mu}^{q+1} \right]^{\frac{1}{p-q-1}}.$$
(3.7)

In the following, we will prove that

$$\|\mathcal{J}'_{\lambda,M}(u_n)\|_{(X_0)^*} \to 0 \quad \text{as } n \to \infty.$$

By using Lemma 3.1 with  $u_n$  we get the functions  $\xi_n : B(0; \epsilon_n) \to \mathbb{R}^+$  for some  $\epsilon_n > 0$ , such that  $\xi_n(w)(u_n - w) \in \mathcal{N}_{\lambda,M}(\Omega)$ . For fixed  $n \in \mathbb{N}$ , we choose  $0 < \rho < \epsilon_n$ . Let  $u \in X_0$  with  $u \neq 0$  and let  $w_\rho = \frac{\rho u}{\|u\|_{X_0}}$ . Set  $\eta_\rho = \xi_n(w_\rho)(u_n - w_\rho)$ , since  $\eta_\rho \in \mathcal{N}_{\lambda,M}(\Omega)$ , we deduce from (3.4) that

$$\mathcal{J}_{\lambda,M}(\eta_{\rho}) - J_{\lambda,M}(u_n) \ge -\frac{1}{n} \|\eta_{\rho} - u_n\|_{X_0} \quad \forall w \in \mathcal{N}_{\lambda,M}(\Omega),$$

and by the mean value theorem, we obtain

$$\left\langle \mathcal{J}'_{\lambda,M}(u_n), \eta_\rho - u_n \right\rangle + o\left(\|\eta_\rho - u_n\|_{X_0}\right) \ge -\frac{1}{n} \|\eta_\rho - u_n\|_{X_0}.$$

Hence,

$$\langle \mathcal{J}'_{\lambda,M}(u_n), -w_\rho \rangle + (\xi_n(w_\rho) - 1) \langle \mathcal{J}'_{\lambda,M}(u_n), u_n - w_\rho \rangle$$

$$\geq -\frac{1}{n} \|\eta_\rho - u_n\|_{X_0} + o(\|\eta_\rho - u_n\|_{X_0}). \tag{3.8}$$

By  $\xi_n(w_\rho)(u_n - w_\rho) \in \mathcal{N}_{\lambda,M}(\Omega)$  and (3.8) it follows that

$$-\rho \left\langle \mathcal{J}'_{\lambda,M}(u_n), \frac{u}{\|u\|_{X_0}} \right\rangle + \left( \xi_n(w_\rho) - 1 \right) \left\langle \mathcal{J}'_{\lambda,M}(u_n) - \mathcal{J}'_{\lambda,M}(\eta_\rho), u_n - w_\rho \right\rangle$$

$$\geq -\frac{1}{n} \|\eta_\rho - u_n\|_{X_0} + o \left( \|\eta_\rho - u_n\|_{X_0} \right).$$

Thus,

$$\left\langle \mathcal{J}'_{\lambda,M}(u_n), \frac{u}{\|u\|_{X_0}} \right\rangle \leq \frac{1}{n\rho} \|\eta_{\rho} - u_n\|_{X_0} + \frac{1}{\rho} o(\|\eta_{\rho} - u_n\|_{X_0}) + \frac{(\xi_n(w_{\rho}) - 1)}{\rho} \left\langle \mathcal{J}'_{\lambda,M}(u_n) - \mathcal{J}'_{\lambda,M}(\eta_{\rho}), u_n - w_{\rho} \right\rangle. \tag{3.9}$$

Since

$$\|\eta_{\rho} - u_n\|_{X_0} \le \rho |\xi_n(w_{\rho})| + |\xi_n(w_{\rho}) - 1| \|u_n\|_{X_0}$$

and

$$\lim_{n\to\infty}\frac{|\xi_n(w_\rho)-1|}{\rho}\leq \|\xi_n'(0)\|,$$

taking the limit  $\rho \rightarrow 0$  in (3.9), we obtain

$$\left\langle \mathcal{J}'_{\lambda,M}(u_n), \frac{u}{\|u\|_{X_0}} \right\rangle \leq \frac{C}{n} \left( 1 + \left\| \xi'_n(0) \right\| \right)$$

for some constant C > 0, independent of  $\rho$ . In the following, we will show that  $\|\xi_n'(0)\|$  is uniformly bounded in n. From (3.1), (3.7), and the Hölder inequality, we obtain for some  $\kappa > 0$ 

$$\left\langle \xi_n'(0), \nu \right\rangle \leq \frac{\kappa \|\nu\|_{X_0}}{a(p-q-1)\|u_n\|_{X_0}^p + b(p^2-q-1)\|u_n\|_{X_0}^{p^2} - (r-q)\int_{\Omega} g|u_n|^{r+1} \, dx}.$$

We only need to prove that

$$\left| a(p-q-1) \|u_n\|_{X_0}^p + b(p^2-q-1) \|u_n\|_{X_0}^{p^2} - (r-q) \int_{\Omega} g |u_n|^{r+1} dx \right| > c$$
 (3.10)

for some c > 0 and n large enough. If (3.10) is fails, then there exists a subsequence  $\{u_n\}$  such that

$$a(p-q-1)\|u_n\|_{X_0}^p + b(p^2-q-1)\|u_n\|_{X_0}^{p^2} - (r-q)\int_{\Omega} g|u_n|^{r+1} dx = o(1).$$
 (3.11)

Combining (3.11) with (3.6), we may find a suitable constant d > 0 such that

$$\int_{\Omega} g|u_n|^{r+1} dx \ge d \quad \text{for } n \text{ sufficiently large.}$$
(3.12)

By (3.11) and  $u_n \in \mathcal{N}_{\lambda,M}(\Omega)$ , we have

$$\lambda \int_{\Omega} f |u_{n}|^{q+1} dx$$

$$= a \|u_{n}\|_{X_{0}}^{p} + b \|u_{n}\|_{X_{0}}^{p^{2}} - \int_{\Omega} g |u_{n}|^{r+1} dx$$

$$= \frac{1}{p^{2} - q - 1} (a(p^{2} - q - 1) \|u_{n}\|_{X_{0}}^{p} + b(p^{2} - q - 1) \|u_{n}\|_{X_{0}}^{p^{2}}) - \int_{\Omega} g |u_{n}|^{r+1} dx$$

$$\geq \frac{1}{p^{2} - q - 1} (a(p - q - 1) \|u_{n}\|_{X_{0}}^{p} + b(p^{2} - q - 1) \|u_{n}\|_{X_{0}}^{p^{2}}) - \int_{\Omega} g |u_{n}|^{r+1} dx$$

$$= \frac{r - q}{p^{2} - q - 1} \int_{\Omega} g |u_{n}|^{r+1} dx - \int_{\Omega} g |u_{n}|^{r+1} dx + o(1)$$

$$= \frac{r - p^{2} + 1}{p^{2} - q - 1} \int_{\Omega} g |u_{n}|^{r+1} dx + o(1). \tag{3.13}$$

Moreover, we have by (3.11) and (3.13)

$$a(p-q-1)\|u_n\|_{X_0}^p \le a(p-q-1)\|u_n\|_{X_0}^p + b(p^2-q-1)\|u_n\|_{X_0}^{p^2}$$

$$= (r-q)\int_{\Omega} g|u_n|^{r+1} dx + o(1)$$

$$\le \lambda \frac{(p^2-q-1)(r-q)}{r-p^2+1} \int_{\Omega} f|u_n|^{q+1} dx + o(1)$$

$$\le \lambda \frac{(p^2-q-1)(r-q)}{r-p^2+1} \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \|u_n\|_{X_0}^{q+1} + o(1),$$

which implies that

$$||u_n||_{X_0} \le \left(\lambda \frac{(p^2 - q - 1)(r - q)}{a(p - q - 1)(r - p^2 + 1)} ||f||_{L^{\mu_q}} S_{\mu}^{q+1}\right)^{\frac{1}{p - q - 1}} + o(1).$$
(3.14)

Let

$$\mathcal{I}_{\lambda,M}(u) = K(p,q,r) \left( \frac{\|u\|_{X_0}^{pr}}{\int_{\Omega} g |u_n|^{r+1} dx} \right)^{\frac{1}{r-1}} - \lambda \int_{\Omega} f |u|^{q+1} dx,$$

where

$$K(p,q,r) = \left(\frac{a(p-q-1)}{r-q}\right)^{\frac{r}{r-1}} \frac{r-p^2+1}{p^2-q-1}.$$

From (3.11), it is easy to see that

$$||u_n||_{X_0}^p \le \frac{r-q}{a(p-q-1)} \int_{\Omega} g|u_n|^{r+1} dx. \tag{3.15}$$

Thus,

$$\mathcal{I}_{\lambda,M}(u_n) \leq \left(\frac{a(p-q-1)}{r-q}\right)^{\frac{r}{r-1}} \frac{r-p^2+1}{p^2-q-1} \left(\frac{\left(\frac{r-q}{a(p-q-1)}\right)^r \left(\int_{\Omega} g|u_n|^{r+1} dx\right)^r}{\int_{\Omega} g|u_n|^{r+1} dx}\right)^{\frac{1}{r-1}} \\
-\frac{r-p^2+1}{p^2-q-1} \int_{\Omega} g|u_n|^{r+1} dx + o(1) \\
= o(1).$$
(3.16)

But, by (3.12), (3.14), and  $\lambda \in \Gamma_0$ ,

$$\begin{split} \mathcal{I}_{\lambda,M}(u_n) &\geq K(p,q,r) \left( \frac{\|u_n\|_{X_0}^{pr}}{\|g\|_{L^{\nu_r}} S_{\nu}^{r+1} \|u_n\|_{X_0}^{r+1}} \right)^{\frac{1}{r-1}} - \lambda \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \|u_n\|_{X_0}^{q+1} \\ &= \|u_n\|_{X_0}^{q+1} \left( K(p,q,r) \|g\|_{L^{\nu_r}}^{\frac{1}{1-r}} S_{\nu}^{\frac{r+1}{1-r}} \|u_n\|_{X_0}^{p^*} - \lambda \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \right) \\ &\geq \|u_n\|_{X_0}^{q+1} \left\{ K(p,q,r) \|g\|_{L^{\nu_r}}^{\frac{1}{1-r}} S_{\nu}^{\frac{r+1}{1-r}} \left[ \lambda \frac{(p^2 - q - 1)(r - q)}{a(p - q - 1)(r - p^2 + 1)} \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \right]^{\frac{p^*}{p - q - 1}} \\ &- \lambda \|f\|_{L^{\mu_q}} S_{\mu}^{q+1} \right\}, \end{split}$$

which contradicts (3.16), where  $p^* = \frac{(p-2)r}{r-1} - q < 0$ .

Hence, we obtain

$$\left\langle \mathcal{J}'_{\lambda,M}(u_n), \frac{u}{\|u\|_{X_0}} \right\rangle \leq \frac{C}{n}.$$

This completes the proof of (i). Similarly, we can prove (ii) by using Lemma 3.2.  $\Box$ 

**Theorem 3.4** Assume that (H1)-(H4) hold. For each  $0 < \lambda < \Gamma_0$  ( $\Gamma_0$  is as in Lemma 3.3), the functional  $\mathcal{J}_{\lambda,M}$  has a minimizer  $u_{\lambda}^+$  in  $\mathcal{N}_{\lambda,M}^+(\Omega)$  satisfying:

- (1)  $\mathcal{J}_{\lambda,M}(u_{\lambda}^+) = c_{\lambda}^+ = c_{\lambda}$ ;
- (2)  $u_{\lambda}^{+}$  is a solution of (1.1).

*Proof* By Lemma 3.3(i), there exists a minimizing sequence  $\{u_n\} \subset \mathcal{N}_{\lambda,M}(\Omega)$  for  $\mathcal{J}_{\lambda,M}$  on  $\mathcal{N}_{\lambda,M}(\Omega)$  such that

$$\mathcal{J}_{\lambda,M}(u_n) = c_{\lambda} + o(1), \qquad \mathcal{J}'_{\lambda,M}(u_n) = o(1) \quad \text{in } (X_0)^*.$$

From Lemma 2.5 and the compact embedding theorem, we see that there exist a subsequence  $\{u_n\}$  and  $u_{\lambda}^+ \in X_0$  such that

$$u_n \rightharpoonup u_{\lambda}^+$$
 weakly in  $X_0$ 

$$u_n \to u_\lambda^+ \quad \text{strongly in } L^\eta(\Omega) \text{ for } 1 < \eta < p_s^*.$$
 (3.17)

In the following we will prove that  $\int_{\Omega} f |u_{\lambda}^{+}|^{q+1} dx \neq 0$ . In fact, if not, by (3.17) and the Hölder inequality we can obtain

$$\int_{\Omega} f|u_n|^{q+1} dx \to \int_{\Omega} f|u_{\lambda}^+|^{q+1} dx = 0$$

as  $n \to \infty$ . Hence,

$$a||u_n||_{X_0}^p + b||u_n||_{X_0}^{p^2} = \int_{\Omega} g|u_n|^{r+1} dx + o(1)$$

and

$$\mathcal{J}_{\lambda,M}(u_n) = a\left(\frac{1}{p} - \frac{1}{r+1}\right) \|u_n\|_{X_0}^p + b\left(\frac{1}{p^2} - \frac{1}{r+1}\right) \|u_n\|_{X_0}^{p^2} + o(1),$$

which contradicts  $\mathcal{J}_{\lambda,M}(u_n) \to c_{\lambda} < 0$  as  $n \to \infty$ . Furthermore,

$$o(1) = \langle \mathcal{J}'_{\lambda,M}(u_n), \phi \rangle = \langle \mathcal{J}'_{\lambda,M}(u_{\lambda}^+), \phi \rangle + o(1)$$
 for all  $\phi \in X_0$ .

Thus,  $u_{\lambda}^+ \in \mathcal{N}_{\lambda,M}(\Omega)$  is a nonzero solution of (1.1) and  $\mathcal{J}_{\lambda,M}(u_{\lambda}^+) \geq c_{\lambda}$ . Next, we will prove that  $\mathcal{J}_{\lambda,M}(u_{\lambda}^+) = c_{\lambda}$ . Since

$$\mathcal{J}_{\lambda,M}(u_{\lambda}^{+}) = \frac{a}{p} \|u_{\lambda}^{+}\|_{X_{0}}^{p} + \frac{b}{p^{2}} \|u_{\lambda}^{+}\|_{X_{0}}^{p^{2}} - \frac{\lambda}{q+1} \int_{\Omega} f |u_{\lambda}^{+}|^{q+1} dx - \frac{1}{r+1} \int_{\Omega} g |u_{\lambda}^{+}|^{r+1} dx \\
= \left(\frac{a}{p} - \frac{a}{r+1}\right) \|u_{\lambda}^{+}\|_{X_{0}}^{p} + \left(\frac{b}{p^{2}} - \frac{b}{r+1}\right) \|u_{\lambda}^{+}\|_{X_{0}}^{p^{2}} \\
+ \left(\frac{\lambda}{r+1} - \frac{\lambda}{q+1}\right) \int_{\Omega} f |u_{\lambda}^{+}|^{q+1} dx \\
\leq \lim \inf_{n \to \infty} \left[\left(\frac{a}{p} - \frac{a}{r+1}\right) \|u_{n}\|_{X_{0}}^{p} + \left(\frac{b}{p^{2}} - \frac{b}{r+1}\right) \|u_{n}\|_{X_{0}}^{p^{2}} \\
+ \left(\frac{\lambda}{r+1} - \frac{\lambda}{q+1}\right) \int_{\Omega} f |u_{n}|^{q+1} dx \right] \\
= \lim \inf_{n \to \infty} \mathcal{J}_{\lambda,M}(u_{n}) = c_{\lambda}.$$

Hence,  $\mathcal{J}_{\lambda,M}(u_{\lambda}^+) = c_{\lambda}$ . Moreover, we have  $u_{\lambda}^+ \in \mathcal{N}_{\lambda,M}^+(\Omega)$ . In fact, if  $u_{\lambda}^+ \in \mathcal{N}_{\lambda,M}^-(\Omega)$ , by Lemma 2.4, there are unique  $t^+$  and  $t^-$  such that  $t^+u_{\lambda}^+ \in \mathcal{N}_{\lambda,M}^+(\Omega)$  and  $t^-u_{\lambda}^+ \in \mathcal{N}_{\lambda,M}^-(\Omega)$ , we have  $t_{\lambda}^+ < t_{\lambda}^- = 1$ . Since

$$\frac{d}{dt}\mathcal{J}_{\lambda,M}(t_{\lambda}^{+}u_{\lambda}^{+})=0 \quad \text{and} \quad \frac{d^{2}}{dt^{2}}\mathcal{J}_{\lambda,M}(t_{\lambda}^{+}u_{\lambda}^{+})>0,$$

there exists  $t_{\lambda}^+ < t^* \le t_{\lambda}^-$  such that  $\mathcal{J}_{\lambda,M}(t_{\lambda}^+ u_{\lambda}^+) < \mathcal{J}_{\lambda,M}(t^* u_{\lambda}^+)$ . By Lemma 2.4, we get

$$\mathcal{J}_{\lambda,M}(t_{\lambda}^{+}u_{\lambda}^{+}) < \mathcal{J}_{\lambda,M}(t^{*}u_{\lambda}^{+}) \leq \mathcal{J}_{\lambda,M}(t_{\lambda}^{-}u_{\lambda}^{+}) = \mathcal{J}_{\lambda,M}(u_{\lambda}^{+}),$$

which is a contradiction. Since  $\mathcal{J}_{\lambda,M}(u_{\lambda}^+) = \mathcal{J}_{\lambda,M}(|u_{\lambda}^+|)$  and  $|u_{\lambda}^+| \in \mathcal{N}_{\lambda,M}^+(\Omega)$ , we see that  $u_{\lambda}^+$  is a solution of (1.1) by Lemma 2.3.

Similarly, we can obtain the theorem of existence of a local minimum for  $\mathcal{J}_{\lambda,M}$  on  $\mathcal{N}_{\lambda,M}^-(\Omega)$  as follows.

**Theorem 3.5** Assume that (H1)-(H4) hold. For each  $0 < \lambda < \Gamma_0$  ( $\Gamma_0$  is as in Lemma 3.3), the functional  $\mathcal{J}_{\lambda,M}$  has a minimizer  $u_{\lambda}^-$  in  $\mathcal{N}_{\lambda,M}^-(\Omega)$  satisfying:

- (1)  $\mathcal{J}_{\lambda,M}(u_{\lambda}^{-}) = c_{\lambda}^{-}$ ;
- (2)  $u_{\lambda}^{-}$  is a solution of (1.1).

Finally, we give the main result of this paper as follows.

**Theorem 3.6** Suppose that the conditions (H1)-(H4) hold. Then there exists  $\Gamma_0 > 0$  such that for  $\lambda \in (0, \Gamma_0)$ , (1.1) has at least two solutions.

*Proof* From Theorems 3.4, 3.5, we see that (1.1) has two solutions  $u_{\lambda}^+$  and  $u_{\lambda}^-$  such that  $u_{\lambda}^+ \in \mathcal{N}_{\lambda,M}^+(\Omega)$ ,  $u_{\lambda}^- \in \mathcal{N}_{\lambda,M}^-(\Omega)$ . Since  $\mathcal{N}_{\lambda,M}^+(\Omega) \cap \mathcal{N}_{\lambda,M}^-(\Omega) = \emptyset$ , we see that  $u_{\lambda}^+$  and  $u_{\lambda}^-$  are different.

**Remark 3.2** Obviously, if p = 2, then (H3) and (H4) hold. Moreover, if p = 2, s = 1, a = 1, and b = 0, then Theorem 3.6 is in agreement with Theorem 1.2 in [1].

# **Competing interests**

The author declares that he has no competing interests.

# **Author's contributions**

All results belong to CB.

# Acknowledgements

This work is supported by Natural Science Foundation of China (11571136 and 11271364).

Received: 5 August 2016 Accepted: 11 November 2016 Published online: 25 November 2016

# References

- Wu, TF: Multiplicity results for a semilinear elliptic equation involving sign-changing weight function. Rocky Mt. J. Math. 39, 995-1011 (2009)
- 2. Autuori, G, Fiscella, A, Pucci, P: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, 699-714 (2015)
- Chen, CY, Kuo, YC, Wu, TF: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876-1908 (2011)
- 4. Fiscella, A, Valdinoci, E: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156-170 (2014)
- 5. Pucci, P, Saldi, S: Critical stationary Kirchhoff equations in  $\mathbb{R}^N$  involving nonlocal operators. Rev. Mat. Iberoam. **32**, 1-22 (2016)
- Pucci, P, Xiang, M, Zhang, B: Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in ℝ<sup>N</sup>. Calc. Var. Partial Differ. Equ. 54(3), 2785-2806 (2015)
- 7. Mishra, PK, Sreenadh, K: Existence and multiplicity results for fractional *p*-Kirchhoff equation with sign changing nonlinearities. Adv. Pure Appl. Math. (2015). doi:10.1515/apam-2015-0018
- 8. Di Nezza, E, Palatucci, G, Valdinoci, E: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521-573 (2012)
- Drabek, P, Pohozaev, SI: Positive solutions for the p-Laplacian: application of the fibering method. Proc. R. Soc. Edinb. A 127, 703-726 (1997)
- Ni, WM, Takagi, I: On the shape of least energy solution to a Neumann problem. Commun. Pure Appl. Math. 44, 819-851 (1991)
- 11. Ekeland, I: On the variational principle. J. Math. Anal. Appl. 17, 324-353 (1974)