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Abstract
We discuss the existence of weak solutions to one class of Neumann boundary value
problems (BVP) for non-linear elliptic equations. We introduce a special family of
perturbed optimal control problems (OCPs) where the class of fictitious controls is
closely related with the properties of the distribution in the right-hand side of the
elliptic equation, and we show that optimal solutions of such problems allow one to
attain (in the limit) some approximate solutions as the parameter of perturbation
ε > 0 tends to zero. The main questions we discuss in this paper touch on the
solvability of perturbed OCPs, the uniqueness of their solutions, the asymptotic
properties of optimal pairs as the perturbation parameter ε > 0 tends to zero, and
deriving of optimality conditions for the perturbed OCPs. As a consequence, we
obtain the sufficient conditions of the existence of weak solutions to the given class
of non-linear Neumann BVPs and propose a way for their approximation.
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1 Introduction
In this paper we are concerned with the following Neumann boundary value problem
(BVP):

–�y + y = f (y) + g in �, (.)

∂y
∂ν

=  on ∂�, (.)

where f (y) = F ′(y), F ∈ C(K) for any compact set K ⊂ R, F(z) ≥ F() exp(C–
F z) for all

z ∈ R, ∂
∂ν

is the outward normal derivative, and g ∈ Lp(�) for some  < p < ∞ is a given
distribution.

It is well known that the indicated BVP is ill-posed in general. It means that there is
no reason to assert the existence of weak solutions to (.)-(.) for a given g ∈ Lp(�), or
to suppose that such solution, even if it exists, is unique (see, for instance, Gelfand [],
Crandall and Rabinowitz [], Mignot and Puel [], Gallouët, Mignot and Puel [], Fujita
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[], Pinsky [], Ferreira, De Pablo, Vazquez [], Dolbeault and Stańczy []). At the same
time, the BVPs like (.)-(.) appear in many contexts: in the study of stellar structures
[], in combustion theory for the chemical reactors [], etc.

The aim of this article is to discuss the existence of weak solutions to the Neumann
boundary value problem (.)-(.) and propose a way for their approximation. The char-
acteristic feature of the indicated BVP (.)-(.) is the fact that because of the property
of non-linearity of F(y), we have no prior estimate for the weak solutions in the standard
functional space. Moreover, since we cannot assert that the BVP (.)-(.) admits at least
one solution for a given g ∈ Lp(�), our main intention is to show that the original BVP
possesses the so-called approximate weak solutions. To do so, we define the approximate
solutions as the weak solutions to the problem (.)-(.) with special choice of the distri-
bution g∗ ∈ � which must be close (in some sense) to the original one g . The key point
in this approach is the construction of the set of feasible distributions �. As we will show
later on, this set has a rather complicate structure. So, it is not an easy matter to touch on
the choice of g∗ ∈ � directly. In view of this, we introduce a special family of perturbed
optimal control problems (OCPs) 〈inf(u,y)∈��

Jε(u, y)〉, where

Jε(u, y) =
ε


‖�y‖

L(�) +

p
‖g – u‖p

Lp(�),

u ∈ Lp(�) is the fictitious control, and �� is the set of feasible pairs (u, y) (admissible
control and the ‘corresponding’ weak solution) restricted by the constraints Jε(u, y) < +∞,
f (y) ∈ L(�), and related by the integral identity

∫
�

[
(∇y,∇ϕ) + yϕ

]
dx =

∫
�

f (y)ϕ dx +
∫

�

uϕ dx, ∀ϕ ∈ C∞

(
R

N).

The crucial questions we discuss in this paper are about solvability of perturbed OCPs,
uniqueness of their solutions, and asymptotic properties of optimal pairs as the pertur-
bation parameter ε >  tends to zero. The plan of the paper is as follows. In Section 
we give the formal statement of the boundary value problem and establish the necessary
background to its study. Following the ideas of Casas, Kavian, and Puel in [], we study
in Section  some auxiliary properties of the weak solutions to the Neumann problem
(.)-(.). In particular, we show that a prior estimate for the weak solutions in H(�) can
be derived if only such solutions have L(�)-bounded Laplacian. The key result of this
section is Proposition ., which gives reasons to suppose that the set of weak solutions
with L(�)-bounded Laplacian is not weakly closed in H(�) in general. In Section , we
consider the sequence of parametrized OCPs associated with the original BVP (.)-(.)
and show that each of this problem has a unique optimal control in spite of the fact that
the corresponding sets of fictitious controls are not necessary closed in the Lp-topology.
The variational properties of optimal pairs to the parametrized OCPs and their asymptotic
behavior are studied in Section . It has been shown that such sequences are sequentially
compact in the weak topology of Lp(�) × H(�) and each of their cluster points can be
interpreted as an approximation solution to the original BVP. In the last section we inves-
tigate the optimality conditions to the fictitious OCPs.

Thus, we derive the sufficient conditions of the existence of weak solutions to the class of
non-linear Neumann BVP (.)-(.) with g ∈ Lp(�) (where p > ) and give a practical ap-
proach to the approximation of such solutions (for the details we refer to Theorem .). It
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seems to us, following the same way the existence can be studied of approximate solutions
to BVP (.)-(.) provided the distribution g is in BV(�) ∩ L(�). However, as to the case
when g ∈ L(�) and g /∈ L+δ(�) for any δ > , it apparently remains an open question now.

2 Statement of the problem and some preliminaries
Let � be a bounded open connected subset of RN (N > ). We assume that the boundary
∂� is of the class C, or � is a convex domain with Lipschitzian boundary. So, the unit
outward normal ν = ν(x) is well defined for HN–-a.a. x ∈ ∂�, where a.a. means here with
respect to the (N – )-dimensional Hausdorff measure HN–. Throughout the paper we
assume that � is star-shaped with respect to some interior point x, i.e. (σ – x,ν(σ )) ≥ 
for HN–-a.a. σ ∈ ∂�.

Let F : R → (, +∞) be a mapping such that F ∈ C
loc(R) and there exists a constant

CF >  satisfying

F(z) ≤ CF F ′(z), ∀z ∈R, (.)

that is, in the following we may suppose that F(z) ≥ F() exp(C–
F z) over R. Hereinafter the

condition ϕ ∈ Ck
loc(R) means that we deal with a function ϕ : R → R satisfying ϕ ∈ Ck(K)

for any compact set K ⊂R.
Let p ( < p < ∞) be a given real number and let g ∈ Lp(�) be a given distribution. By

H(�) we denote the Sobolev space as the closure of C∞
 (RN ) with respect to the norm

‖y‖H(�) = (
∫
�

(y + |∇y|) dx)/. Let (H(�))∗ be the dual space to H(�).
In order to give a precise meaning to the solution to BVP (.)-(.) and indicate its

characteristic properties, we begin with the following concept.

Definition . We say that a function y = y(g) is a weak solution to the boundary value
problem (.)-(.) for a given distribution g ∈ Lp(�) with p >  if y ∈ H(�), y belongs to
the class of functions

Y =
{

y ∈ H(�)|f (y) ∈ L(�)
}

, (.)

and the integral identity
∫

�

[
(∇y,∇ϕ) + yϕ

]
dx =

∫
�

f (y)ϕ dx +
∫

�

gϕ dx (.)

holds for every test function ϕ ∈ C∞
 (RN ).

As was indicated before, it is unknown whether the original BVP admits at least one
weak solution in the sense of Definition . for a given distribution g ∈ Lp(�). Moreover,
as follows from (.), the continuity of the form [y,ϕ]f :=

∫
�

f (y)ϕ dx on the set Y ⊂ H(�)
is not evident. This motivates us to introduce the following set.

Definition . We say that an element y ∈ H(�) belongs to the set Hf if

∣∣∣∣
∫

�

f (y)ϕ dx
∣∣∣∣≤ c(y)

(∫
�

ϕ dx +
∫

�

|∇ϕ| dx
)/

, ∀ϕ ∈ C∞

(
R

N) (.)

with some constant depending on y.
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As a result, we have: if y ∈ Hf then y ∈ Y . Moreover, in this case the mapping ϕ �→ [y,ϕ]f

can be defined for all ϕ ∈ H(�) using (.) and the standard rule

[y,ϕ]f = lim
ε→

[y,ϕε]f , (.)

where {ϕε}ε> ⊂ C∞
 (RN ) and ϕε → ϕ strongly in H(�). In particular, if y ∈ Hf , then we

can define the value [y, y]f and this one is finite for every y ∈ Hf , although the ‘integrand’
yf (y) does not need to be integrable on �, in general. Taking this fact into account, we
immediately arrive at the following conclusion.

Proposition . If g ∈ Lp(�) is a given distribution and y ∈ Hf is a weak solution to BVP
(.)-(.) in the sense of Definition ., then y satisfies the energy equality

∫
�

|∇y| dx +
∫

�

y dx = [y, y]f +
∫

�

gy dx. (.)

We note that by the initial assumptions and Hölder’s inequality, this relation makes sense
because

∣∣∣∣
∫

�

gy dx
∣∣∣∣≤ ‖g‖L(�)‖y‖L(�) ≤ |�| p–

p ‖g‖Lp(�)‖y‖H(�) < +∞. (.)

However, since it is unknown whether the value [y, y]f preserves a constant sign for all
y ∈ Hf , it follows that we cannot make use of the energy equality (.) in order to derive a
prior estimate in ‖ · ‖H(�)-norm for the weak solutions. In particular, to specify the term
[y, y]f we can use the following result.

Lemma . Let y ∈ Y be a weak solution to BVP (.)-(.). Then y ∈ Hf , f (y) ∈ (H(�))∗,
and

[y, z]f =
〈
f (y), z

〉
(H(�))∗ ;H(�) =

∫
�

zf (y) dx, ∀z ∈ H(�), (.)

i.e. zf (y) ∈ L(�) for every z ∈ H(�).

Remark . Here, (H(�))∗ stands for the dual space of H(�) and, hence, (H(�))∗ can
be identified with the direct sum H–(�) ⊕ H– 

 (∂�).

Proof Following the definition of the weak solution, we have (see (.))

∫
�

f (y)ϕ dx ≤
∣∣∣∣
∫

�

(∇y,∇ϕ) dx
∣∣∣∣ +
∣∣∣∣
∫

�

yϕ dx
∣∣∣∣ +
∣∣∣∣
∫

�

gϕ dx
∣∣∣∣

≤ ‖y‖H(�)‖ϕ‖H(�) + ‖g‖L(�)‖ϕ‖L(�)

by (.)≤ (
‖y‖H(�) + |�| p–

p ‖g‖Lp(�)
)‖ϕ‖H(�), ∀ϕ ∈ C∞


(
R

N). (.)

Hence, y ∈ Hf by Definition ..
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Let z ∈ H(�) ∩ L∞(�) be an arbitrary element. Since f (y) ∈ L(�), it follows that the
term

∫
�

zf (y) dx is well defined. Let {ϕε}ε> ⊂ C∞(�) be a sequence such that ϕε → z in
H(�). In view of our assumptions, it is plausible to suppose that

sup
ε>

‖ϕε‖L∞(�) < +∞ and ϕε

∗
⇀ z in L∞(�).

Hence, using the fact that y ∈ Hf , we get

∫
�

zf (y) dx = lim
ε→

∫
�

ϕεf (y) dx = lim
ε→

[y,ϕε]f
by (.)= [y, z]f . (.)

Thus, we arrive at equation (.) for each z ∈ H(�) ∩ L∞(�).
Let us take now z ∈ H(�) such that z ≥  almost everywhere in �. For every ε > , let

Tε : R →R be the truncation operator defined by

Tε(s) = max
{
min
{

s, ε–}, –ε–}. (.)

The following property of Tε is well known (see []): If z ∈ H(�) then

Tε(z) ∈ L∞(�) ∩ H(�) ∀ε >  and Tε(z) → z in H(�) as ε → .

Hence, Tε(z) → z almost everywhere in �. Since

Tε(z)f (y)
by (.)≥ 

CF
Tε(z)F(y) >  in �, (.)

it follows that {Tε(z)f (y)}ε> is a pointwise non-decreasing sequence, and Tε(z)f (y) → zf (y)
for almost all x ∈ �. Therefore, by the monotone convergence theorem, zf (y) is a measur-
able function on �, and

lim
ε→

∫
�

Tε(z)f (y) dx =
∫

�

zf (y) dx.

Thus, (.) holds true for each z ∈ H(�) such that z ≥ .
As for a general case, i.e. z ∈ H(�), it is enough to note that z = z+ – z– with z+, z– ∈

H(�) and z+, z– ≥  in �, where

z+ := max{z, }, z– := max{–z, }.

To complete the proof, it remains to observe that

∫
�

zf (y) dx by (.)= lim
ε→

∫
�

ϕεf (y) dx

by (.)≤ lim
ε→

(
‖y‖H(�) + |�| p–

p ‖g‖Lp(�)
)‖ϕε‖H(�)

(
by the strong convergence of ϕε → z in H(�)

)

=
(
‖y‖H(�) + |�| p–

p ‖g‖Lp(�)
)‖z‖H(�)
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holds true for an arbitrary element z ∈ H(�). As a result, we have

f (y) ∈ (H(�)
)∗,

〈
f (y), z

〉
(H(�))∗ ;H(�) =

∫
�

zf (y) dx, ∀z ∈ H(�),

and
∥∥f (y)

∥∥
(H(�))∗ ≤ (‖y‖H(�) + |�| p–

p ‖g‖Lp(�)
)
. �

As a direct consequence of this lemma and Proposition ., we have the following result.

Corollary . Let g ∈ Lp(�) (p > ) be a given distribution and let y ∈ H(�) be a weak
solution to BVP (.)-(.) in the sense of Definition .. Then the energy equality for y takes
the form

∫
�

|∇y| dx +
∫

�

|y| dx =
∫

�

yf (y) dx +
∫

�

gy dx. (.)

3 Some auxiliary results and prior estimates
In this section we deal with some extra properties of the weak solutions to the boundary
value problem (.)-(.). In some aspects we follow the ideas of Casas, Kavian, and Puel
[] where the Dirichlet boundary value problem with exponential non-linearity has been
considered.

Proposition . Let y ∈ H(�) be a weak solution to BVP (.)-(.) such that �y ∈ L(�).
Then

(
N


– 
)∫

�

|∇y| dx +
N


∫
�

|y| dx ≤ N
∫

�

F(y) dx –
∫

�

g(x – x,∇y) dx, (.)

where x ∈ int� is a point such that (σ – x,ν(σ )) ≥  for almost all σ ∈ ∂�, and ν(σ )
denotes the outward unit normal vector to ∂� at the point σ .

Proof In view of the initial assumptions, we have –�y + y – g ∈ L(�). Hence, f (y) ∈ L(�)
and, therefore, the integral identity (.) makes sense for any test function ϕ ∈ L(�). Let
us consider ϕ := (x – x,∇y) ∈ L(�) as this function. Then (.) implies the relation

∫
�

(∇y,∇(x – x,∇y)
)

dx +
∫

�

y(x – x,∇y) dx

=
∫

�

f (y)(x – x,∇y) dx +
∫

�

g(x – x,∇y) dx. (.)

Step . We apply the formula of integration by parts to the left-hand side of (.) keeping
in mind that the initial assumptions on domain � and condition �y ∈ L(�) imply y ∈
H(�) ([], Section .). This yields

∫
�

(∇y,∇(x – x,∇y)
)

dx +
∫

�

y(x – x,∇y) dx

=
N∑

i=

∫
�

∂y
∂xi

∂

∂xi

[ N∑
j=

(xj – xj)
∂y
∂xj

]
dx +




∫
�

(
x – x,∇y)dx
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=
N∑

i=

∫
�

∣∣∣∣ ∂y
∂xi

∣∣∣∣


dx +
N∑

i,j=

∫
�

(xj – xj)
∂y
∂xi

∂y
∂xi ∂xj

dx

+



∫
�

(
x – x,∇y)dx

=
∫

�

|∇y| dx +



N∑
i,j=

∫
�

(xj – xj)
∂

∂xj

(
∂y
∂xi

)

dx

+



N∑
j=

∫
�

(xj – xj)
∂

∂xj

(
y)dx

=
∫

�

|∇y| dx +



∫
∂�

N∑
j=

[
(σj – xj)νj(σ )

][ N∑
i=

(
∂y(σ )
∂σi

)
]

dσ

–



N∑
j=

∫
�

[ N∑
i=

(
∂y
∂xi

)
]

dx +



∫
∂�

N∑
j=

[
(σj – xj)νj(σ )

]
y(σ ) dσ –

N


∫
�

y dx

=
(

 –
N


)∫
�

|∇y| dx –
N


∫
�

y dx

+



∫
∂�

(
σ – x,ν(σ )

)∣∣∇y(σ )
∣∣ dσ +




∫
∂�

(
σ – x,ν(σ )

)∣∣y(σ )
∣∣ dσ .

Since, by the star-shaped property of �, we have (σ – x,ν(σ )) ≥  for HN–-a.a. σ ∈ ∂�,
it follows that

∫
�

(∇y,∇(x – x,∇y)
)

dx +
∫

�

y(x – x,∇y) dx

≥
(

 –
N


)∫
�

|∇y| dx –
N


∫
�

|y| dx. (.)

Step . Before proceeding, let us notice that the relation

∫
�

f (y)(∇y,ψ) dx =
∫

∂�

F
(
y(σ )

)(
ν(σ ),ψ(σ )

)
dσ –

∫
�

F(y) divψ dx (.)

holds true for any vector-valued test function ψ ∈ C(�)N provided y ∈ H(�) is a weak
solution to (.)-(.). Indeed, let Tε : R → R be the truncation operator defined in (.).
By definition of Tε , we have

Tε(y) → y strongly in H(�) and almost everywhere in � as ε → . (.)

Moreover, since f (y) ∈ L(�) and f ∈ Cloc(R), it follows from (.) that

f
(
Tε(y)

)→ f (y) in L(�) and almost everywhere in �.

Then Lebesgue dominated theorem implies f (Tε(y))∇Tε(y) → f (y)∇y in L(�)N . Taking
into account the fact that

f
(
Tε(y)

)∇Tε(y) = ∇F
(
Tε(y)

)
, ∀ε > ,
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we conclude

f (y)∇y = ∇F(y) as elements of L(�).

As a result, the equality (.) is a direct consequence of the formula of integration by parts.
Now we are in a position to transform the right-hand side in (.). Indeed, due to equa-

tion (.), we have

∫
�

f (y)(x – x,∇y) dx =
∫

�

(
x – x,∇F(y)

)
dx

by (.)= –
∫

�

F(y) div(x – x) dx +
∫

∂�

F
(
y(σ )

)(
ν(σ ),σ – x

)
dσ

≥ –N
∫

�

F(y) dx,

because of the star-shaped property of � and the fact that F(z) ≥ F() exp(C–
F z) over R.

Combining this inequality with (.) and (.), we arrive at the desired equation (.). The
proof is complete. �

Remark . In the following, we will use the following version of inequality (.):

∫
�

|∇y| dx +
∫

�

|y| dx ≤ N
N – 

∫
�

F(y) dx –


N – 

∫
�

g(x – x,∇y) dx. (.)

The next result is crucial in this section. Namely, we show that inequality (.) implies
some prior estimate for the weak solutions y ∈ Y to the original BVP.

Theorem . Let y ∈ Y be a weak solution to BVP (.)-(.) such that y satisfies the in-
equality (.). Then

∫
�

yf (y) dx ≤ C‖g‖
Lp(�) + C‖g‖Lp(�) + C, (.)

‖y‖H(�) ≤ C‖g‖Lp(�) + C, (.)

for some positive constants Ci,  ≤ i ≤ , independent of g and y.

Proof Combining the energy equality (.) with inequality (.), we get

(
N


– 
)∫

�

yf (y) dx +
(

N


– 
)∫

�

gy dx +
∫

�

y dx

≤ N
∫

�

F(y) dx –
∫

�

g(x – x,∇y) dx.

Hence, in view of estimate (.), we can rewrite the last relation as follows:

∫
�

yf (y) dx +


N – 

∫
�

y dx ≤ N
N – 

∫
�

F(y) dx

+ |�| p–
p

(
 diam�

N – 
+ 
)

‖g‖Lp(�)‖y‖H(�). (.)
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For our further analysis, we set

�N :=
{

x ∈ � : y(x) >
NCF

N – 

}
,

where the constant CF is defined in (.). Since F : R → (, +∞), it follows from (.) that

N
N – 

∫
�

F(y) dx ≤ NCF

N – 

∫
�

f (y) dx

≤ 


∫
�N

yf (y) dx +
NCF

N – 

∫
�\�N

f
(

NCF

N – 

)
dx

≤ 


∫
�N

yf (y) dx +
N

N – 
CF |�|f

(
NCF

N – 

)

and
∫

�\�N

yf (y) dx ≤ NCF

N – 

∫
�\�N

f
(

NCF

N – 

)
dx

≤ N
N – 

CF |�|f
(

NCF

N – 

)
. (.)

Then inequality (.) yields the following relation:

∫
�N

yf (y) dx +


N – 

∫
�

y dx

=
∫

�

yf (y) dx –
∫

�\�N

yf (y) dx +


N – 

∫
�

y dx

by (.)≤ 


∫
�N

yf (y) dx +
N

N – 
CF |�|f

(
NCF

N – 

)

–
∫

�\�N

yf (y) dx + |�| p–
p

(
 diam�

N – 
+ 
)

‖g‖Lp(�)‖y‖H(�).

Therefore,




∫
�

yf (y) dx ≤ N
N – 

CF |�|f
(

NCF

N – 

)
–




∫
�\�N

yf (y) dx

+ |�| p–
p

(
 diam�

N – 
+ 
)

‖g‖Lp(�)‖y‖H(�).

As a result, we get from (.) and the previous inequality

∫
�

yf (y) dx ≤ N
N – 

CF |�|f
(

NCF

N – 

)
+ |�| p–

p

(
 diam�

N – 
+ 
)

‖g‖Lp(�)‖y‖H(�)

= Ĉ + Ĉ‖g‖Lp(�)‖y‖H(�). (.)

Finally using the energy equality (.), we obtain

‖y‖
H(�) ≤ Ĉ + Ĉ‖g‖Lp(�)‖y‖H(�),
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and this implies the desired estimate (.). In order to establish the estimate (.), it is
enough to make use of (.) in (.). The proof is complete. �

Remark . It is worth to notice that inequality (.) makes sense even if we do not as-
sume the fulfillment of inclusion �y ∈ L(�) but only have y ∈ Y and g ∈ Lp(�). At the
same time it is unknown whether this inequality holds for an arbitrary weak solution to
BVP (.)-(.). Since the existence and uniqueness of the weak solutions to the original
BVP is an open question for arbitrary given distribution g ∈ Lp(�) with p > , the following
result reflects some interesting properties of weak solutions satisfying inequality (.).

Proposition . Let (g, y) be a given pair in Lp(�) × H(�) with p > . Let {(gk , yk)}k∈N ⊂
Lp(�) × Y be a sequence such that, for each k ∈ N, the pairs (gk , yk) are related by the
integral identity (.), satisfy inequality (.), and

(gk , yk) ⇀ (g, y) weakly in Lp(�) × H(�) as k → ∞. (.)

Then y is a weak solution to BVP (.)-(.) for the given g ∈ Lp(�), the pair (g, y) satisfies
the inequality (.), and

f (yk) → f (y) in L(�) as k → ∞. (.)

Proof By the Rellich-Kondrachov theorem, the embedding H(�) ↪→ L(�) is compact.
Hence, the weak convergence yk ⇀ y in H(�) implies strong convergence in L(�).
Therefore, up to a subsequence, we can suppose that yk(x) → y(x) for almost every point
x ∈ �. As a result, we have the pointwise convergence: f (yk) → f (y) everywhere in �. Let
us show that this implies the strong convergence (.).

With that in mind we recall that a sequence {fk}k∈N is called equi-integrable on � if for
any δ > , there is a τ = τ (δ) such that

∫
S |fk|dx < δ for every measurable subset S ⊂ � of

Lebesgue measure |S| < τ . Let us show that the sequence {f (yk)}k∈N is equi-integrable on
�. To do so, we take m >  such that

m >
(C supk∈N ‖gk‖

Lp(�) + C supk∈N ‖gk‖Lp(�) + C)
δ

, (.)

where the constants Ci, i = , , , are as in (.). We also set τ = δ/(f (m)). Then, for every
measurable set S ⊂ � with |S| < τ , we have

∫
S

f (yk) dx ≤
∫

{x∈S:yk (x)>m}
f (yk) dx +

∫
{x∈S:yk (x)≤m}

f (yk) dx

≤ 
m

∫
{x∈S:yk (x)>m}

ykf (yk) dx +
∫

{x∈S:yk (x)≤m}
f (m) dx

by (.)≤ C‖gk‖
Lp(�) + C‖gk‖Lp(�) + C

m
+ f (m)|S|

by (.)≤ δ


+

δ


.

As a result, the assertion (.) is a direct consequence of Lebesgue’s convergence theorem.
Hence, y ∈ Y and it is easy to show that the limit pair (g, y) is related by the integral identity
(.). Indeed, in view of the initial assumptions and the strong convergence property (.),
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the limit passage in

∫
�

(∇yk ,∇ϕ) dx +
∫

�

ykϕ dx =
∫

�

f (yk)ϕ dx +
∫

�

gkϕ dx, ∀ϕ ∈ C∞

(
R

N),

becomes trivial. Thus, y is a weak solution to BVP (.)-(.) for the given g ∈ Lp(�).
Our next aim is to prove that (g, y) satisfies (.). With that in mind we make use of

the following result (see Boccardo and Murat []): if yk ⇀ y in H(�) and the sequence
{�yk}k∈N is bounded in L(�), then, within a subsequence, ∇yk(x) → ∇y(x) almost every-
where as k → ∞. Indeed, as follows from (.),

∫
�

|�yk|dx ≤
∫

�

|yk|dx +
∫

�

∣∣f (yk)
∣∣dx +

∫
�

|gk|dx. (.)

Hence, in view of (.) and Lp(�)-boundedness of {gk}k∈N with p > , we have

sup
k∈N

‖�yk‖L(�) < +∞.

Thus, in the following we may suppose that

∇yk ⇀ ∇y in L(�)N and ∇yk(x) ⇀ ∇y(x) a.e. in �. (.)

Let us show that this fact implies the strong convergence of gradients ∇yk → ∇y in
Lp′ (�)N with p′ = p/(p – ). Indeed, for an arbitrary small set A, by the Hölder inequality
for any q, q′ ≥  such that /q + /q′ = , we have

∫
A
|∇yk – ∇y|p′

dx ≤
(∫

A
|∇yk – ∇y|p′q dx

)/q(∫
A

q′
dx
)/q′

.

Having chosen q >  such that p′q = , we obtain


q′ =  –


q

=  –
p′


=

 – p′


=

p – 
(p – )

or q′ =
(p – )

p – 
.

Then
∫

A
|∇yk – ∇y|p′

dx ≤ |A| p–
(p–) sup

k∈N
‖∇yk – ∇y‖p′

L(�)N ≤ C|A| p–
(p–) ,

that is, the sequence {|∇yk – ∇y|p′ }k∈N is equi-integrable. Combining this fact with (.),
by the Lebesgue convergence theorem, we conclude: |∇yk – ∇y|p′ →  strongly in L(�),
and, therefore,

∇yk → ∇y strongly in Lp′
(�)N with p′ = p/( – p). (.)

As a result, we get

lim
k→∞

∫
�

gk(x – x,∇yk) dx by (.)=
∫

�

g(x – x,∇y) dx

(as a product of weakly and strongly convergent sequences),
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lim
k→∞

∫
�

F(yk) dx by (.)=
∫

�

F(y) dx,

lim inf
k→∞

∫
�

|∇y| dx
by (.)≥

∫
�

|∇y| dx.

Then we can pass to the limit in the inequality (.) to finally obtain

(
N


– 
)∫

�

|∇y| dx +
N


∫
�

|y| dx ≤
(

N


– 
)

lim inf
k→∞

∫
�

|∇yk| dx

+
N


lim inf
k→∞

∫
�

|yk| dx

≤ lim inf
k→∞

[
N
∫

�

F(yk) dx –
∫

�

gk(x – x,∇yk) dx
]

= N
∫

�

F(y) dx –
∫

�

g(x – x,∇y) dx.

The proof is complete. �

4 Fictitious controls and associated optimal control problems
Let us consider the following sequence of optimal control problems (OCPs) associated
with BVP (.)-(.):

{〈
inf

(u,y)∈��

Jε(u, y)
〉
, ε → 

}
, (.)

where

�� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(u, y)

∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ Lp(�), y ∈ Y ,∫
�

[
(∇y,∇ϕ) + yϕ

]
dx

=
∫

�

f (y)ϕ dx +
∫

�

uϕ dx, ∀ϕ ∈ C∞

(
R

N),
Jε(u, y) < +∞

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (.)

Jε(u, y) =
ε



∫
�

|�y| dx +

p

∫
�

|g – u|p dx. (.)

Here, we consider the function u ∈ Lp(�) as a fictitious control and ε is a small pa-
rameter. Hereinafter we assume that the parameter ε varies within a strictly decreasing
sequence of positive real numbers which converge to zero.

It is worth to notice that, in contrast to the original BVP (.)-(.) for which it is un-
known whether the set of its weak solutions is non-empty, each of the parametrized OCPs
(.)-(.) is regular in the following sense: the set of feasible solutions �� is always non-
empty. Indeed, it is enough to take an arbitrary function ỹ ∈ C∞(�) with ∂y

∂ν
=  on ∂�

and to put ũ := –�̃y + ỹ – f (̃y). Since ỹ ∈ Y and �̃y ∈ L(�), it follows from Proposition .
and Definition . that Jε (̃u, ỹ) < +∞ and the pair (̃u, ỹ) is related by integral identity (.).
Hence, (̃u, ỹ) ∈ ��.

Let us show that the OCPs (.)-(.) are solvable for each ε > .
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Theorem . Let g ∈ Lp(�) be a given distribution. Then for every ε >  there exists at
least one pair (u

ε , y
ε ) ∈ �� such that

Jε
(
u

ε , y
ε

)
= inf

(u,y)∈��

Jε(u, y).

Proof Since �� �= ∅, it follows that for given ε >  and g ∈ Lp(�) there exists a minimizing
sequence {(uε,k , yε,k)}k∈N to OCP (.)-(.), i.e.

lim
k→∞

Jε(uε,k , yε,k) = inf
(u,y)∈�ε

Jε(u, y) ≤ Jε (̃u, ỹ)

≤ ‖�̃y‖
L(�) + ‖g – ũ‖p

Lp(�) = C̃ < +∞. (.)

As a result, we have

sup
k∈N

‖�yε,k‖
L(�)

by (.)≤ ε–C̃ (.)

and this estimate implies that each of the pairs (uε,k , yε,k) satisfies the inequality (see (.)
and Proposition .)

∫
�

|∇yε,k| dx +
∫

�

|yε,k| dx ≤ N
N – 

∫
�

F(yε,k) dx

–


N – 

∫
�

uε,k(x – x,∇yε,k) dx. (.)

Moreover, in view of Theorem ., we have

sup
k∈N

[‖yε,k‖
H(�) + ‖uε,k‖p

Lp(�)
]

by (.) and (.)≤ sup
k∈N

[(
C‖uε,k‖Lp(�) + C

) + ‖uε,k‖p
Lp(�)

]

≤ p–Cp
 + p

(
 + p–Cp


)

sup
k∈N

Jε(uε,k , yε,k)
by (.)

< +∞ (.)

for ε >  small enough, where the constants C and C do not depend on ε.
Thus, passing to subsequences, if necessary, we can suppose that there exists a pair

(u
ε , y

ε ) ∈ Lp(�) × H(�) such that

uε,k ⇀ u
ε in Lp(�) and yε,k ⇀ y

ε in H(�) as k → ∞. (.)

Hence, in view of Proposition ., y
ε is a weak solution to BVP

–�y + y = f (y) + u
ε in �,

∂y
∂ν

=  on ∂�,

the pair (u
ε , y

ε ) satisfies the inequality (.), and

f (yε,k) → f
(
y
ε

)
in L(�) as k → ∞. (.)
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Thus, (u
ε , y

ε ) ∈ �, where

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ Lp(�), y ∈ Y ,∫
�

[
(∇y,∇ϕ) + yϕ

]
dx

=
∫

�

f (y)ϕ dx +
∫

�

uϕ dx, ∀ϕ ∈ C∞

(
R

N),∫
�

[|∇y| + y]dx

≤ N
N – 

∫
�

F(y) dx –


N – 

∫
�

u(x – x,∇y) dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (.)

It remains to show that (u
ε , y

ε ) ∈ �� and (u
ε , y

ε ) is an optimal pair to the constrained
minimization problem (.) for a given ε > . Taking into account the estimates (.) and
(.), it is easy to see that the sequence {yε,k}k∈N is bounded in the Banach space H

�(�)
connected with the Laplace operator by the formula (see, for instance, [])

H
�(�) =

{
y ∈ H(�) : �y ∈ L(�)

}
,

where the norm in H
�(�) can be defined in the standard way as the norm of the

graph:

‖y‖
H

�(�) = ‖y‖
H(�) + ‖�y‖

L(�).

Hence, the limit properties (.) can be supplemented by the following one:

�yε,k ⇀ �y
ε in L(�) as k → ∞.

As a result, making use of the lower semi-continuity property of the cost functional
Jε : Lp(�) × H(�) → R with respect to the weak convergence in Lp(�) × H

�(�), we
arrive at the following relation:

inf
(u,y)∈��

Jε(u, y) = lim
k→∞

Jε(uε,k , yε,k) ≥ Jε
(
u

ε , y
ε

)
.

Hence, Jε(u
ε , y

ε ) < +∞ (which implies (u
ε , y

ε ) ∈ ��) and (u
ε , y

ε ) is an optimal pair to the
corresponding optimization problem (.). �

Our next intention is to discuss the uniqueness property of the solutions to OCPs (.).
We begin with the following noteworthy characteristic of the set ��.

Lemma . Assume that, in addition to the property (.), the function F ∈ C
loc(R) is such

that its derivative f = F ′ : R → (,∞) is a strictly convex function. Then the set

� =
{

u ∈ Lp(�) : ∃y ∈ Y such that (u, y) ∈ ��

}
(.)

is non-empty and convex.
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Proof Since the set of feasible solution �� is non-empty, it follows from (.) that � �= ∅.
Let us establish the convexity of �. Let (u, y) and (u, y) be two different pairs of ��. It
is clear that in this case we have y �= y and u, u ∈ �. Let λ ∈ (, ). We set

u = λu + ( – λ)u, y = λy + ( – λ)y.

Our aim is to show that u ∈ �.
Since for Lipschitz � the mapping (–� + I) : H(�) → (H(�))∗ is an isomorphism, we

can define, in a unique way, a distribution z ∈ H(�) as follows:

–�z + z = u = λu + ( – λ)u in � and
∂z
∂ν

=  on ∂�.

By the initial assumptions, we have

–�y + y = f (y) + u and –�y + y = f (y) + u.

Hence,

–�y + y = λf (y) + ( – λ)f (y) + u in � and
∂y
∂ν

=  on ∂�. (.)

Taking into account the facts that f = F ′(z) >  almost everywhere in � (see (.)) and f
satisfies the Jensen inequality

f (y) ≤ λf (y) + ( – λ)f (y), (.)

we obtain

–�z + z ≤ f (z) + u and –�y + y
by (.) and (.)≥ F ′(y) + u, (.)

i.e. z is a subsolution to the boundary value problem

–�ψ + ψ = f (ψ) + u in �,
∂ψ

∂ν
=  on ∂�,

and y is its supersolution. Moreover, since

–�y + y ≥ f (y) + u
by (.)≥ u = –�z + z in �, (.)

it follows that –�(y – z) + (y – z) ≥ . Hence, by the strong maximum principle []
(see also Chapter  in []), we conclude that y ≥ z in �. Thus, following the clas-
sical techniques introduced by Sattinger [], we deduce that for a given control u =
λu + ( – λ)u there exists a solution ψ to the above boundary value problem such
that

z(x) ≤ ψ(x) ≤ y(x) almost everywhere in �. (.)
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Moreover, as follows from (.) and the fact that z, y ∈ H(�), we have ψ ∈ H(�)
and

∫
�

f (ψ) dx
by (.) and (.)≤

∫
�

f (y) dx

by (.)≤ λ
∥∥f (y)

∥∥
L(�) + ( – λ)

∥∥f (y)
∥∥

L(�) < +∞.

Hence, ψ ∈ Y and, therefore, ψ is a weak solution to BVP (.).
In order to prove the inclusion u ∈ �, it remains to establish that (u,ψ) ∈ ��. To do so,

we note that

–�z + z = u ≤ f (ψ) + u︸ ︷︷ ︸
–�ψ+ψ

by (.)≤ f (y) + u

by (.)≤ λ
(
f (y) + u

)
+ ( – λ)

(
f (y) + u

)

= λ(–�y + y) + ( – λ)(–�y + y). (.)

Since �z ∈ L(�) and yi ∈ H
�(�), i = , , it follows from (.) that �ψ ∈ L(�). Hence,

Jε(u,ψ) < +∞. So, (u,ψ) is an admissible pair to each of OCPs (.). Thus, u ∈ �. �

Remark . In general, we cannot assert that the set � is closed in Lp(�). Indeed, let
{uk}k∈N ⊂ � be a sequence such that uk → u in Lp(�) as k → ∞. Let {yk}k∈N ∈ Y be the
corresponding sequence of states, that is, (uk , yk) ∈ �� for each k ∈ N. Then, in view of
estimate (.), we can suppose that there exists a distribution y ∈ H(�) such that yk ⇀

y in H(�). Hence, by Proposition ., we have: y is a weak solution to BVP (.)-(.)
with g = u and the pair (u, y) satisfies the inequality (.). However, it is unknown whether
Jε(u, y) < +∞, because the given choice of the sequence of feasible pairs {(uk , yk)}k∈N ⊂ ��

does not guarantee the L(�)-boundedness of the corresponding Laplacians {�yk}k∈N. So,
it may happen that �y /∈ L(�). At the same time, as follows from Theorem ., the lack of
Lp(�)-closedness of � is not a restrictive option for the solvability of the corresponding
OCP. Moreover, as we show in the next assertion, the main result of Theorem . can be
essentially specified.

Theorem . Under assumptions of Lemma ., each of the OCPs (.) has a unique so-
lution.

Proof Let us assume the converse. Namely, let ε >  be a fixed value and let (uε,, yε,) and
(uε,, yε,) be two different pairs such that (uε,, yε,) �= (uε,, yε,) and

(uε,, yε,), (uε,, yε,) ∈ ��, Jε(uε,, yε,) = Jε(uε,, yε,) = inf
(u,y)∈��

Jε(u, y).

We set uε = (uε, + uε,)/. By analogy with the proof of Lemma ., it is easy to show that
there exists a distribution ψε ∈ H(�) such that (uε ,ψε) ∈ �� and

ψε ≤ (yε, + yε,)/ a.e. in �.
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In fact, because of the strict convexity of f , it can be shown that the previous inequality is
strict in �. Indeed, since

–�

(



yε, +



yε, – ψε

)
+
(




yε, +



yε, – ψε

)

=


(
f (yε,) + uε,

)
+



(
f (yε,) + uε,

)
– f (ψε) – uε

=


(
f (yε,) + f (yε,)

)
– f (ψε)

≥ 

(
f (yε,) + f (yε,)

)
– f
(

yε, + yε,



)
≥ 

by the Jensen inequality, and 
 (f (yε,) + f (yε,)) – f ( yε,+yε,

 ) �=  on � because of the strict
convexity of f , it follows that (yε, + yε,)/ > ψε in � by the strong maximum principle [,
]. As a result, we obtain an inequality

Jε(uε ,ψε) =
ε



∫
�

|�ψε| dx +

p

∫
�

|g – uε|p dx

≤ ε



∫
�

|�yε, + �yε,| dx +


pp

∫
�

|g – uε, + g – uε,|p dx

<
ε



∫
�

|�yε,| dx +


p

∫
�

|g – uε,|p dx

+
ε



∫
�

|�yε,| dx +


p

∫
�

|g – uε,|p dx

=



Jε(uε,, yε,) +



Jε(uε,, yε,) = inf
(u,y)∈�ε

Jε(u, y),

which is a contradiction with the fact that (uε ,ψε) is an admissible pair to the problem
(.). �

Remark . As was mentioned in Remark ., the convex set � is not closed in Lp(�).
Let � ⊂ Lp(�) denote the closure of � with respect to the strong topology of Lp(�). Then
by Mazur’s theorem this set coincides with the sequential weak closure of � in Lp(�), that
is, � = clw–Lp(�) �.

5 Variational properties of fictitious optimal control problems
Before setting foot in the asymptotic analysis of the sequence of OCPs (.) as ε → , we
define the μ-topology on Lp(�) × H(�) as the product of weak topologies of Lp(�) and
H(�), respectively. Let clμ �� be the sequential closure of the set of feasible pairs ��

with respect to the μ-topology. In view of Proposition ., it is clear that in this case we
have

� =
{

u ∈ Lp(�) : ∃y ∈ Y such that (u, y) ∈ clμ ��

}
. (.)

Indeed, let u be an arbitrary element of �. Then there exists a sequence {uε}ε> ∈ � such
that uε → u in Lp(�) as ε → . By definition of the set �, it follows that we can construct a
sequence of pairs {(uε , yε)}ε> such that (uε , yε) ∈ �� for all ε > . In view of the definition
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of the set �� and Theorem ., the sequence of states {yε}ε> is bounded in H(�). So,
we can suppose that there exists an element y ∈ H(�) such that, up to a subsequence,
yε ⇀ y in H(�). Hence, (uε , yε)

μ
⇀ (u, y) in Lp(�) × H(�) and therefore (u, y) ∈ clμ ��.

As a result, we see that u belongs to the set {v ∈ Lp(�) : ∃y ∈ Y such that (v, y) ∈ clμ ��},
that is, we have shown that

� ⊆ {u ∈ Lp(�) : ∃y ∈ Y such that (u, y) ∈ clμ ��

}
. (.)

In order to establish the converse inclusion, we fix an arbitrary pair (u∗, y∗) in clμ ��.
Then u∗ ∈ {u ∈ Lp(�) : ∃y ∈ Y s.t. (u, y) ∈ clμ ��} and there exists a sequence
{(uε , yε)}ε> ⊂ Lp(�) × Y such that (uε , yε) ∈ �� for each ε >  and (uε , yε)

μ
⇀ (u∗, y∗)

in Lp(�) × H(�). Since the condition (uε , yε) ∈ �� implies that uε ∈ �, it follows that
{uε}ε> ⊂ � and uε ⇀ u∗ in Lp(�) as ε → . Hence, u∗ ∈ clw–Lp(�) �. To conclude, it is
enough to apply Mazur’s theorem. Thus,

{
u ∈ Lp(�) : ∃y ∈ Y such that (u, y) ∈ clμ ��

}⊆ �

and combining this fact with (.), we arrive at the required equality.
It is clear now that clμ �� ⊆ �, where the set � is defined in (.). However, we cannot

exclude the case when we have (u, y) ∈ � and u ∈ Lp(�) \ �. Hence, the validity of the
inclusion � ⊆ clμ �� is not a clear issue. So, our next intention is to specify the structure
of the set clμ �� and see whether the property � ⊆ clμ �� holds.

Lemma . Assume that � is a star-shaped domain with respect to some of its interior
points x. Assume also that, in addition to the property (.), the function F ∈ C

loc(R) is
such that its derivative f = F ′ : � → (,∞) is a strictly convex function. Then

clμ �� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ �, y ∈ Y ,∫
�

[
(∇y,∇ϕ) + yϕ

]
dx

=
∫

�

f (y)ϕ dx +
∫

�

uϕ dx, ∀ϕ ∈ C∞

(
R

N),
∂y
∂ν

=  on ∂�,∫
�

[|∇y| + y]dx

≤ N
N – 

∫
�

F(y) dx –


N – 

∫
�

u(x – x,∇y) dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (.)

Proof Since the set in the right-hand side of (.) can be represented as

� ∩ (� × Y )

and the inclusion clμ �� ⊆ � ∩ (� × Y ) is obvious, we concentrate at the proof of the
reverse inclusion

� ∩ (� × Y ) ⊆ clμ ��. (.)

Let (u∗, y∗) be an arbitrary representative of the set �∩ (�×Y ). Then y∗ is a weak solution
to the boundary value problem (.)-(.) with g = u∗ in the sense of Definition .. Our
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aim is to show that (u∗, y∗) ∈ clμ ��. To this end, it is enough to prove the existence of the
sequence {(uε , yε)}ε> in Lp(�) × H(�) such that

(uε , yε)
μ
⇀
(
u∗, y∗) in Lp(�) × H(�), and (uε , yε) ∈ �� ∀ε > . (.)

The most natural way to construct such sequences is to apply the procedure of the direct
smoothing. Indeed, let us define the elements yε ∈ H(�) as follows:

yε(x) =


σ N (ε)

∫
RN

K
(

x – z
σ (ε)

)
ϕε(z) dz, (.)

where σ (ε) >  is a positive value such that σ (ε) →  as ε → , K is a positive compactly
supported smooth function with properties

K ∈ C∞

(
R

N),
∫
RN

K(x) dx = , and K(x) = K(–x), (.)

and {ϕε}ε> is a sequence in C∞
 (RN ) such that ϕε → y∗ in H(�) as ε → .

Then the property

yε → y∗ in L(�) and ∇yε → ∇y∗ in L(�)N (.)

is the direct consequence of the classical properties of smoothing. Moreover, we can sup-
pose that ∂yε

∂ν
has zero trace on ∂� for each ε small enough, i.e., in view of (.) we have:

yε ∈ H(�) and ∂yε

∂ν
=  on ∂� for each ε > . It remains to note that the parameters σ (ε)

can be defined such that limε→
√

ε/σ (ε) = . Hence,

√
ε�yε =

√
ε

σ (ε)

[


σ N (ε)

∫
RN

�K
(

x – z
σ (ε)

)
ϕε(z) dz

]
→  in L(�).

Summarizing these properties, we can infer that for a given element y∗ ∈ Y ⊂ H(�)
with ∂y∗

∂ν
=  on ∂� there exists a sequence {yε}ε> such that

(a) yε ∈ Y , ∂yε

∂ν
=  on ∂� for each ε > , and yε → y∗ in H(�) as ε → .

The smoothing parameter σ (ε) can be defined such that for a given non-negative constant
C we have

(b) �yε ∈ L(�) for each ε >  and limε→(ε‖�yε‖
L(�)) = C.

Moreover, by Lemma ., we have f (y∗) ∈ (H(�))∗. Hence, we can supplement the above
properties (a)-(b) by the following one:

(c) supε> ‖f (yε)‖(H(�))∗ < +∞.
Let us define the corresponding controls {uε}ε> as follows:

uε := –�yε + yε – f (yε), ∀ε > .

Since yε are the smooth functions, we obviously have uε ∈ Lp(�). Moreover, by Proposi-
tion ., each of the pairs (uε , yε) ∈ Lp(�) × Y is related by the integral identity

∫
�

(∇yε ,∇ϕ) dx +
∫

�

yεϕ dx =
∫

�

f (yε)ϕ dx +
∫

�

uεϕ dx, ∀ϕ ∈ C∞

(
R

N) (.)
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and the inequality

(
N


– 
)∫

�

|∇yε| dx +
N


∫
�

|yε| dx

≤ N
∫

�

F(y) dx –
∫

�

uε(x – x,∇yε) dx.

Thus, the sequence {(uε , yε)}ε> belongs to the set �� ⊂ �. It remains to show that
(uε , yε)

μ
⇀ (u∗, y∗) in Lp(�) × H(�). With that in mind, we make use of the following two

functional sequences {χε,}ε> ⊂ L∞(�) and {χε,}ε> ⊂ L∞(�), where

χε,(x) =

⎧⎨
⎩

, if uε(x)yε(x) ≥ ,

, otherwise,
and χε,(x) =  – χε,(x) ∀ε > .

Since the functions uε and yε are smooth enough, it follows that each component Q of
the sets �ε = {x ∈ �|χε, > } and � \ �ε is -connected in the sense of Zhikov (i.e. the
implication

v ∈ W ,(Q) and ∇v =  a.e. in Q �⇒ v = const a.e. in Q

holds true []). As a result, we have χε,i ∈ H(�) (see [], Lemma .). Hence, we can
consider χε,iyε as the test function in the integral identity (.). Taking into account that

∇(χε,iyε) = χε,i∇yε , a.e. in � ∀ε > , i = , 

and
∫

�

yε f (yε) dx ≤ ∥∥f (yε)
∥∥

(H(�))∗‖yε‖H(�),

we get

∣∣∣∣
∫

�

uεyε dx
∣∣∣∣≤
∫

�

|uεyε|dx =
∫

�

(uεyεχε, – uεyεχε,) dx

≤ ‖yε‖
H(�) + 

∥∥f (yε)
∥∥

(H(�))∗‖yε‖H(�)

≤ 
(‖yε‖H(�) +

∥∥f (yε)
∥∥

(H(�))∗
)‖yε‖H(�). (.)

Hence,

sup
ε>

‖uε‖(H(�))∗ ≤ 
(

sup
ε>

‖yε‖H(�) + sup
ε>

∥∥f (yε)
∥∥

(H(�))∗
)

< +∞.

As a result, we deduce that the sequence {uε}ε> is relatively compact with respect to the
weak topology of (H(�))∗.

Let u ∈ (H(�))∗ be any of its cluster point and let {uεk }k∈N be a subsequence of {uε}ε>

such that
∫

�

uεk ϕ dx → 〈
u,ϕ

〉
(H(�))∗ ;H(�) ∀ϕ ∈ H(�) as k → ∞. (.)
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Our next intension is to show that u ∈ L(�). As follows from (.), the sequence
{uεyε}ε> is bounded in L(�). Moreover, the properties (.) and (.) imply that

|∇yε| + y
ε → ∣∣∇y∗∣∣ +

(
y∗) in L(�),

yε f (yε) → y∗f
(
y∗) in L(�).

Due to this and the the energy equality

∫
�

uεyε dx =
∫

�

[|∇yε| + y
ε

]
dx –

∫
�

yε f (yε) dx, ∀ε >  (.)

we can conclude that the sequence {uεyε}ε> is equi-integrable on �. Hence, by Dunford-
Pettis Theorem, {uεyε}ε> is a weakly compact sequence in L(�). So, without loss of gen-
erality, we can suppose that there exists a function v : � →R such that

lim
k→∞

∫
�

uεk yεk dx =
∫

�

vy∗ dx by (.)=
〈
u, y∗〉

(H(�))∗ ;H(�). (.)

It remains to note that by definition (H(�))∗ = H–(�) ⊕ H– 
 (∂�) and u ∈ H–(�) if and

only if there exists a collection of functions g, g, . . . , gN in L(�) such that

〈u,ϕ〉H–(�),H
(�) =

∫
�

gϕ dx –
N∑

i=

∫
�

gi
∂ϕ

∂xi
dx.

Taking into account these facts and comparing them with the representation (.), we
conclude that the distribution u ∈ (H(�))∗ is regular, u = v ∈ L(�), and

〈
u, y∗〉

(H(�))∗ ;H(�) =
∫

�

uy∗ dx.

Thus, in view of equality (.) and the fact that {uε}ε> ⊂ L(�), we can suppose that
{uε}ε> is L-bounded sequence and uεk ⇀ u in L(�) as k → ∞.

Since {(uεk , yεk )}k∈N ⊂ ��, it follows that each of the pairs (uεk , yεk ) is related by the
integral identity

∫
�

(∇yεk ,∇ϕ) dx +
∫

�

yεk ϕ dx =
∫

�

f (yεk )ϕ dx +
∫

�

uεk ϕ dx, ∀ϕ ∈ C∞
 (RN ). (.)

Taking into account that yεk → y∗ in H(�), we can pass to the limit in (.) as k → ∞
(see the proof of Proposition . for the details). We get

∫
�

(∇y∗,∇ϕ) dx +
∫

�

y∗ϕ dx =
∫

�

f (y∗)ϕ dx +
∫

�

uϕ dx, ∀ϕ ∈ C∞
 (RN ). (.)

On the other hand, (u∗, y∗) ∈ �∩ (�×Y ). Hence, this pair is related by the similar relation

∫
�

(∇y∗,∇ϕ) dx +
∫

�

y∗ϕ dx =
∫

�

f (y∗)ϕ dx +
∫

�

u∗ϕ dx, ∀ϕ ∈ C∞
 (RN ). (.)
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Combining (.) with (.), we obtain

∫
�

(u – u∗)ϕ dx = , ∀ϕ ∈ C∞
 (RN ).

Since C∞
 (RN ) is dense in L(�), it follows that u = u∗ almost everywhere in �. Thus, in

view of the fact that u∗ ∈ Lp(�), we have the same property for L-cluster point u, i.e.
u ∈ Lp(�). It remains to note that this inference is valid for any cluster point u of the
sequence {uε}ε>. Hence, u∗ is a weak limit in Lp(�) for the entire sequence {uε}ε>.

Thus, we have constructed a sequence {(uε , yε)}ε> in Lp(�)×H(�) satisfying the prop-
erties (.). It suffices to conclude that (u∗, y∗) ∈ clμ ��. Hence, the inclusion (.) is valid.
The proof is complete. �

As a consequence of this lemma, we can give the following observation.

Proposition . Under assumptions of Lemma ., we have: for any pair (u∗, y∗) ∈ clμ ��

and for any non-negative real number C there exists a sequence {(̂uε , ŷε)}ε> in Lp(�) ×
H(�) such that

(̂uε , ŷε)
μ
⇀
(
u∗, ŷ

)
in Lp(�) × H(�), (̂uε , ŷε) ∈ ��, ∀ε > , (.)

ûε → u∗ strongly in Lp(�), (.)

�̂yε ∈ L(�) ∀ε > , and lim
ε→

(
ε


‖�̂yε‖

L(�)

)
= C, (.)

where ŷ = y∗ provided the Neumann boundary value problem (.)-(.) has a unique solu-
tion for g = u∗.

Proof Let (u∗, y∗) ∈ clμ �� be an arbitrary pair. Closely following the proof of Lemma .,
we can construct a sequence {(uεk , yεk )}k∈N in Lp(�) × H(�) with properties (.) and
(a)-(c). Here, {εk}k∈N stands for a strictly decreasing sequence of positive real numbers
converging to zero. Then, by Mazur’s lemma, there exists a sequence of controls {̂uεk }k∈N

such that

ûεk → u∗ strongly in Lp(�) and ûεk = co{uε , . . . , uεk }, ∀k ∈N, (.)

where co A denotes the convex hull of the set A. In view of Lemma ., � is a convex set.
Since {uεk }k∈N ⊂ �, it follows from (.) that {̂uεk }k∈N ⊂ � as well. Let us show that the
corresponding weak solutions ŷk to the boundary value problem

–�y = f (y) + ûεk in �,
∂y
∂ν

=  on ∂�,

satisfy properties (.) and (.).
By definition of the convex hull co{uε , uε , . . . , uεk } we have: for each k ∈ N there exists

a collection of non-negative real numbers {α,k , . . . ,αk,k} such that

α,k + α,k + · · · + αk,k =  and ûε = α,kuε + α,kuε + · · · + αk,kuεk .
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With each control ûεk we associate two elements zk ∈ H
(�) and wk ∈ H

(�) by the fol-
lowing rule:

–�zk + zk = ûεk =
k∑

i=

αi,kuεi in � and
∂zk

∂ν
=  on ∂�, (.)

wk = α,kyε + α,kyε + · · · + αk,kyεk . (.)

Hence,

–�yεi = f (yεi ) + uεi in � and
∂yεi

∂ν
=  on ∂�, i = , . . . , k,

imply

–�wk + wk =
k∑

i=

αi,kf (yi,k) + ûεk in � and
∂wk

∂ν
=  on ∂�. (.)

Taking into account the facts that f (y) >  almost everywhere in � (see (.)) and f satisfies
Jensen’s inequality

f (wk) ≤
k∑

i=

αi,kf (yi,k), (.)

we obtain

–�zk + zk ≤ f (zk) + ûεk and �wk + zk
by (.) and (.)≥ f (wk) + ûεk , (.)

i.e. zk is a subsolution to the boundary value problem

–�ψ + ψ = f (ψ) + ûεk in �,
∂ψ

∂ν
=  on ∂�,

and wk is its supersolution. Moreover, since

–�wk + wk ≥ f (wk) + ûεk

by (.)≥ ûεk = –�zk + zk in �, (.)

it follows that –�(wk – zk) + (wk – zk) ≥  and ∂wk
∂ν

=  = ∂zk
∂ν

on ∂�. Hence, by the strong
maximum principle [], we conclude that wk ≥ zk in �. Thus, following the classical tech-
niques [], we can deduce that for given control ûεk there exists a solution ŷεk to the above
Neumann boundary value problem and it is such that

zk(x) ≤ ŷεk (x) ≤ wk(x) almost everywhere in �. (.)

Moreover, as follows from (.) and the fact that zk , wk ∈ H(�), we have ŷεk ∈ H(�) and

∫
�

f (̂yεk ) dx
by (.) and (.)≤

∫
�

f (ωk) dx

by (.)≤
k∑

i=

αi,k
∥∥f (yi,k)

∥∥
L(�) < +∞.



Kogut et al. Boundary Value Problems  (2016) 2016:208 Page 24 of 32

Hence, ŷεk ∈ Y and, therefore, ŷεk is a weak solution to BVP (.).
Let us show that {̂yεk }k∈N is a weakly compact sequence in H(�) with the extra property

�̂yεk ∈ L(�) ∀ε > , and lim
εk→

(
εk


‖�̂yεk ‖

L(�)

)
= C. (.)

Indeed, as follows from (.), we have

sup
k∈N

‖zk‖H(�) = sup
k∈N

∥∥(–� + I)–ûεk

∥∥
H(�) ≤ sup

k∈N

( k∑
i=

αi,k‖uεi‖L(�)

)

≤ |�| p–
p sup

k∈N

( k∑
i=

αi,k‖uεi‖Lp(�)

)

≤ |�| p–
p sup

k∈N
‖uεk ‖Lp(�) < +∞ (.)

and

sup
k∈N

‖�zk‖L(�) ≤ sup
k∈N

‖̂uεk ‖L(�) + sup
k∈N

‖zk‖H(�)

≤ sup
k∈N

[( k∑
i=

αi,k

)
‖uεk ‖L(�)

]
+ |�| p–

p sup
k∈N

‖uεk ‖Lp(�)

≤ |�| p–
p sup

k∈N
‖uεk ‖Lp(�) < +∞. (.)

As to the supersolutions wk , we get

sup
k∈N

‖wk‖H(�) = sup
k∈N

∥∥∥∥∥
k∑

i=

αi,kyεi

∥∥∥∥∥
H(�)(

by (.) and the fact that (uεk , yεk ) ∈ ��

)

≤ sup
k∈N

[( k∑
i=

αi,k

)(
C‖uεk ‖Lp(�) + C

)]

= C sup
k∈N

‖uεk ‖Lp(�) + C < +∞ (.)

and

lim
εk→

(√
εk‖�wk‖L(�)

)≤ lim
εk→

(
√

εk

[ k∑
i=

αi,k‖�yεi‖L(�)

])

≤ lim
εk→

[√
εk‖�yεk ‖L(�)

] by property (b)= . (.)

As a result, it follows from inequality (.) and estimates (.), and (.) that the se-
quence {̂yεk }k∈N is bounded in H(�) and, hence, there exists an element ŷ ∈ H(�) such
that, up to a subsequence,

ŷεk ⇀ ŷ in H(�).
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Then Proposition . implies that ŷ is a weak solution to BVP (.)-(.) for g = u∗ and the
pair (u∗, ŷ) satisfies the inequality (.). It is clear now that ŷ = y∗ provided the Neumann
boundary value problem (.)-(.) has a unique solution for g = u∗. Thus, the sequence
{(̂uε , ŷε)}ε> possesses the desired properties (.)-(.). As to the property (.), its
validity immediately follows from (.) and (.). The proof is complete. �

Our main intention in this paper is to discuss the variational properties of the solutions
to the sequence of fictitious optimal control problems (.) as ε → . As usual, we assume
that � is star-shaped with respect to some of its interior point x and in addition to the
property (.), the function f : � → (,∞) is strictly convex. Let {(u

ε , y
ε )}ε> ⊂ �� be a

sequence of optimal pairs to the corresponding fictitious problem (.). As follows from
Theorem ., each of the OCPs (.) has a unique solution. We begin with the following
result.

Proposition . There exists a pair (u, y) ∈ clμ �� such that, within a subsequence,

(
u

ε , y
ε

) μ
⇀
(
u, y) in Lp(�) × H(�), (.)

lim
ε→

(
ε


∥∥�y

ε

∥∥
L(�)

)
= C� (.)

for some C� ≥ .

Proof Since the pair (̃u, ỹ) := (–f (), ) is feasible for each of OCPs (.), i.e. (̃u, ỹ) ∈ ��, it
follows that

Jε
(
u

ε , y
ε

)
= inf

(u,y)∈��

Jε(u, y) ≤ Jε (̃u, ỹ) =

p
∥∥g + f ()

∥∥
Lp(�)︸ ︷︷ ︸

C∗

< +∞, ∀ε > .

Hence,

sup
ε>

[
ε


∥∥�y

ε

∥∥
L(�)

]
≤ C∗ and

sup
ε>

∥∥u
ε

∥∥p
Lp(�) ≤ p–‖g‖p

Lp(�) + p– sup
ε>

∥∥g – u
ε

∥∥p
Lp(�)

≤ p–‖g‖p
Lp(�) + p–p sup

ε>
Jε
(
u

ε , y
ε

)

≤ p–‖g‖p
Lp(�) + p–pC∗,

sup
ε>

∥∥y
ε

∥∥
H(�)

by (.)≤ C sup
ε>

∥∥u
ε

∥∥
Lp(�) + C < +∞.

So, we can suppose that there exist a subsequence of {(u
ε , y

ε )}ε> (still denoted by the same
index ε), a pair (u, y) ∈ Lp(�) × H(�), and a constant C� ≥  such that

lim
ε→

[
ε


∥∥�y

ε

∥∥
L(�)

]
= C� and

(
u

ε , y
ε

) μ
⇀
(
u, y) in Lp(�) × H(�). (.)

To conclude the proof, it remains to note that (u, y) ∈ clμ �� by Proposition . and
Lemma .. �
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The main question arising in this case is about the variational properties of the μ-cluster
pairs (u, y) ∈ Lp(�) × H(�).

Theorem . Let (u, y) ∈ Lp(�) × H(�) be a μ-cluster pair of the sequence of optimal
solutions {(u

ε , y
ε )}ε> to the fictitious problems (.) as ε → . Then

J
(
u, y) = inf

(u,y)∈clμ ��

J(u, y), (.)

where

J(u, y) =

p
‖g – u‖p

Lp(�), ∀(u, y) ∈ clμ ��.

Proof To begin with, let us show that the constrained minimization problem

〈
inf

(u,y)∈clμ ��

J(u, y)
〉

has a non-empty set of solutions. Indeed, in view of definition of the set clμ �� (see
Lemma .), there exists a sequence {(uk , yk)}k∈N ⊂ clμ �� such that

lim
k→∞

J(uk , yk) = inf
(u,y)∈clμ ��

J(u, y). (.)

Moreover, because of the density of C∞(�) × C∞
 (RN ) in Lp(�) × H(�), we can suppose

that the sequence is rather regular. For our purpose it is enough to have the following
inclusion: (uk , yk) ∈ �� for all k ∈N. Then there exists a constant C >  such that

sup
k∈N

‖uk‖p
Lp(�) ≤ p–‖g‖p

Lp(�) + p– sup
k∈N

‖g – uk‖p
Lp(�)

≤ p–‖g‖p
Lp(�) + p–p sup

k∈N
J(uk , yk)

by (.)≤ p–‖g‖p
Lp(�) + p–pC∗,

sup
k∈N

‖yk‖H(�)
by (.)≤ C sup

k∈N
‖uk‖Lp(�) + C < +∞.

So, the minimizing sequence {(uk , yk)}k∈N is relatively μ-compact in Lp(�) × H(�), that
is, there exists a pair (u∗, y∗) ∈ Lp(�) × H(�) such that, up to a subsequence,

(uk , yk)
μ
⇀
(
u∗, y∗) and

(
u∗, y∗) by Proposition . and Lemma .∈ clμ ��.

To conclude the optimality of (u∗, y∗) to the problem 〈inf(u,y)∈clμ ��
J(u, y)〉, it remains to

make use of the lower semi-continuity of the cost functional J : clμ �� →R with respect
to the μ-convergence.

We are now in a position to prove the equality (.). By contraposition, let us assume
that

J
(
u, y) > inf

(u,y)∈clμ ��

J(u, y) = J
(
u∗, y∗) for some

(
u∗, y∗) ∈ clμ ��. (.)
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Then, due to Proposition ., we can construct a sequence {(̂uε , ŷε)}ε> in Lp(�) × H(�)
with properties

(̂uε , ŷε)
μ
⇀
(
u∗, ŷ

)
in Lp(�) × H(�), (̂uε , ŷε) ∈ ��, ∀ε > , (.)

ûε → u∗ strongly in Lp(�), (.)

�̂yε ∈ L(�) ∀ε > , and lim
ε→

(
ε


‖�̂yε‖

L(�)

)
= C�, (.)

where the constant C� is defined by (.). Moreover, since we have a weak solution to
the boundary value problem

–�y = f (y) + u∗ in �,
∂y
∂ν

=  on ∂�,

can be non-unique, we admit the case that y∗ �= ŷ as elements of H(�). Then we can write
down

Jε
(
u

ε , y
ε

)
= inf

(u,y)∈��

Jε(u, y) ≤ Jε (̂uε , ŷε), ∀ε > ,

or in other terms

ε



∫
�

∣∣�y
ε

∣∣ dx +

p

∫
�

∣∣g – u
ε

∣∣p dx ≤ ε



∫
�

|�̂yε| dx +

p

∫
�

|g – ûε|p dx. (.)

Passing to the limit in both sides of this inequality as ε →  and taking into account that

lim
ε→

ε



∫
�

∣∣�y
ε

∣∣ dx by (.)= C�,

lim
ε→

ε



∫
�

|�̂yε| dx by (.)= C�,

lim inf
ε→

∫
�

∣∣g – u
ε

∣∣p dx
by (.)≥

∫
�

∣∣g – u∣∣p dx,

lim
ε→

∫
�

|g – ûε|p dx by (.)=
∫

�

∣∣g – u∗∣∣p dx,

we arrive at the relation

J
(
u, y) =


p

∫
�

∣∣g – u∣∣p dx ≤ 
p

∫
�

∣∣g – u∗∣∣p dx = J
(
u∗, ŷ

)≡ J
(
u∗, y∗),

which comes into conflict with (.). The proof is complete. �

6 On optimality conditions for the fictitious OCPs
The main goal of this section is to derive some optimality conditions for the fictitious OCP

Jε(u, y) =
ε



∫
�

|�y| dx +

p

∫
�

|g – u|p dx → inf (.)
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subjected to the constraints

–�y + y = f (y) + u in �, (.)

∂y
∂ν

=  on ∂�, (.)

u ∈ Lp(�) for some p > . (.)

Let s = rN
N+r with r > N > , and let h ∈ Ls(�) be a given distribution. Due to the well-

known regularity result (see []), the unique solution z ∈ H(�) of the following Neu-
mann boundary value problem:

–�z + z = h in �, (.)

∂z
∂ν

=  on ∂�, (.)

belongs to L∞(�) and there exists a constant Cs (independent of z and h) such that

‖z‖L∞(�) ≤ Cs‖h‖Ls(�). (.)

Moreover, since Ls(�) is continuously injected into (H(�))∗, it follows from (.) that

‖z‖L∞(�) ≤ C∗
s ‖h‖(H(�))∗ with some C∗

s > . (.)

We are now in a position to establish the following result.

Theorem . Assume that � is a bounded open subset of RN (N > ) which is star-shaped
with respect to some of its interior point x. Let F : R → (, +∞) be a mapping of the class
C

loc(R) such that F satisfies estimate (.), its derivative f = F ′ : R→ (,∞) is a strictly con-
vex function, the second derivative F ′′ is bounded from below, and f is log-quasi-additive,
i.e. there exists a constant C∗ >  such that

f (v + z) ≤ C∗f (v)f (z) ∀v, z ∈R. (.)

For a fixed ε > , let (u
ε , y

ε ) ∈ �� be an optimal pair to the problem (.)-(.) with an
extra property

f
(
y
ε

) ∈ Lp(�). (.)

Then there exists a distribution ϕε ∈ H(�) such that (u
ε , y

ε ,ϕε) ∈ Lp(�) × H(�) × H(�)
satisfies the following optimality system:

–�y
ε + y

ε = f
(
y
ε

)
+ u

ε in �,
∂y

ε

∂ν
=  on ∂�, (.)

–�ϕε +
(
 – f ′(y

ε

))
ϕε = ε�y

ε

(
 – f ′(y

ε

))
in �,

∂ϕε

∂ν
=  on ∂�, (.)

ϕε = –
∣∣g – u

ε

∣∣p–(g – u
ε

)
+ ε�y

ε a.e. in �. (.)
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Proof For an arbitrary distribution z ∈ H(�) ∩ L∞(�) such that

∂z
∂ν

=  on ∂� and �z ∈ Lp(�), (.)

and every λ ∈R (λ �= ), we set

yλ
ε = y

ε + λz, (.)

uλ
ε = u

ε – λ(�z – z) + f
(
y
ε

)
– f
(
y
ε + λz

)
. (.)

Since

z ∈ L∞ �⇒ z ∈ Lp(�) and
(
 – f (λz)

) ∈ L∞(�),

λ(�z – z)
by (.)∈ Lp(�),

∣∣f (y
ε

)
– f
(
y
ε + λz

)∣∣ by (.)≤ (
 + C∗f (λz)

)
f
(
y
ε

) by (.)∈ Lp(�), (.)

it follows from (.)-(.) that

uλ
ε ∈ Lp(�),

∂yλ
ε

∂ν
=  on ∂�, –�yλ

ε + yλ
ε = f

(
yλ
ε

)
+ uλ

ε in �,

and Jε
(
uλ

ε , yλ
ε

)
< +∞.

Hence, (uλ
ε , yλ

ε ) is a feasible pair to the problem (.)-(.), i.e. (uλ
ε , yλ

ε ) ∈ �� for all values
λ ∈R. As a result, we have the following inequality for the increment of the cost functional:

�Jε
(
u

ε , y
ε

)
:= Jε

(
uλ

ε , yλ
ε

)
– Jε
(
u

ε , y
ε

)≥ , ∀λ ∈ R. (.)

Using the fact that

lim
λ→

Jε(uλ
ε , yλ

ε ) – Jε(u
ε , y

ε )
λ

=
ε


lim
λ→

∫
�

|�yλ
ε | – |�y

ε |
λ

dx +

p

lim
λ→

∫
�

|g – uλ
ε |p – |g – u

ε |p
λ

dx

= ε

∫
�

�y
ε�z dx +

∫
�

∣∣g – u
ε

∣∣p–(g – u
ε

)(
–�z + z – f ′(y

ε

)
z
)

dx,

we deduce from (.) that
∫

�

(∣∣g – u
ε

∣∣p–(g – u
ε

)
– ε�y

ε

)
(–�z + z) dx

= –ε

∫
�

�y
ε z dx +

∫
�

∣∣g – u
ε

∣∣p–(g – u
ε

)
f ′(y

ε

)
z dx (.)

for every z ∈ H(�) ∩ L∞(�) with properties (.).
Having set

ϕε := –
∣∣g – u

ε

∣∣p–(g – u
ε

)
+ ε�y

ε ,
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we see from (.), (.), and (.) that

∫
�

ϕεh dx =
∫

�

ϕε(–�z + z) dx

= ε

∫
�

�y
ε z dx –

∫
�

∣∣g – u
ε

∣∣p–(g – u
ε

)
f ′(y

ε

)
z dx. (.)

Since we have the convexity inequality

f
(
y
ε + λz

)
– f
(
y
ε

)≥ λf ′(y
ε

)
z,

estimate (.), and the boundedness of f ′ from below on R imply

f ′(y
ε

) ∈ Lp(�), (.)

it follows that
∣∣∣∣
∫

�

∣∣g – u
ε

∣∣p–(g – u
ε

)
f ′(y

ε

)
z dx

∣∣∣∣≤
∫

�

∣∣g – u
ε

∣∣p–∣∣f ′(y
ε

)∣∣dx‖z‖L∞(�)

≤ ∥∥g – u
ε

∥∥p–
Lp(�)

∥∥f ′(y
ε

)∥∥
Lp(�)‖z‖L∞(�).

Moreover, taking into account that

∫
�

�y
ε z dx =

∫
�

[
y
ε – f

(
y
ε

)
– u

ε

]
z dx

≤ [|�| 

∥∥y

ε

∥∥
H(�) +

∥∥f
(
y
ε

)∥∥
L(�) + |�| p–

p
∥∥u

ε

∥∥
Lp(�)

]‖z‖L∞(�),

we finally get

∫
�

ϕεh dx ≤ B‖z‖L∞(�)
by (.)≤ C∗

s B‖h‖(H(�))∗ , (.)

where

B = |�| 

∥∥y

ε

∥∥
H(�) +

∥∥f
(
y
ε

)∥∥
L(�) + |�| p–

p
∥∥u

ε

∥∥
Lp(�)

+
∥∥g – u

ε

∥∥p–
Lp(�)

∥∥f ′(y
ε

)∥∥
Lp(�).

Since the estimate (.) is valid for all h ∈ C∞
 (RN ) and the set C∞

 (RN ) is dense in
(H(�))∗, we deduce from the above inequality that ϕε ∈ H(�). It remains to notice that
equations (.) are direct consequences of the integral identity (.). �

7 Conclusion
Because of ill-posedness of the original BVP (.)-(.), it is reasonably to suppose that the
set of solutions to minimization problem (.) is not singleton. On the other hand, we
have

inf
(u,y)∈clμ ��

J(u, y) =

p

inf
(u,y)∈clμ ��

[‖g – u‖p
Lp(�)

]
=


p

inf
u∈�

[‖g – u‖p
Lp(�)

]
.
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It means that the minimal value of the cost functional J(u, y) does not depend on the
y-component of the optimal pair. Hence, Theorem . implies that even if the sequence of
optimal solutions {(u

ε , y
ε )}ε> to the fictitious problems (.) has more than one μ-cluster

pair, their u-components must coincide. In other words, if {(u
ε , y

ε )}ε> is a sequence of
optimal pairs to the fictitious problems (.), then {y

ε }ε> is relatively weakly compact in
H(�) and there exists a unique u ∈ � such that

u
ε ⇀ u in Lp(�) as ε → ,

where u is a minimizer to the minimization problem 
p infu∈�[‖g – u‖p

Lp(�)]. This circum-
stance and the ill-posedness of the BVP (.)-(.) motivates us to introduce the following
concept.

Definition . Let g be a given element of Lp(�) with p > . Then we say that a distribution
y∗ = y∗(g) ∈ H(�) is an approximate solution to the boundary value problem (.)-(.) if
y∗ ∈ Y , ∂y∗

∂ν
=  on ∂�, and y∗ satisfies the relations

∫
�

(∇y∗,∇ϕ
)

dx +
∫

�

y∗ϕ dx =
∫

�

f
(
y∗)ϕ dx +

∫
�

g∗ϕ dx, ∀ϕ ∈ C∞

(
R

N), (.)
∫

�

∣∣∇y∗∣∣ dx +
∫

�

∣∣y∗∣∣ dx ≤ N
N – 

∫
�

F
(
y∗)dx –


N – 

∫
�

g∗(x – x,∇y∗)dx, (.)

where

∥∥g – g∗∥∥p
Lp(�) = inf

(u,y)∈clμ ��

‖g – u‖p
Lp(�). (.)

As immediately follows from this definition, the approximate solution y∗ is not unique,
in general. Moreover, y∗ coincides with a weak solution to (.)-(.) in the sense of Def-
inition . provided g∗ = g . However, in this case we have a weak solution with an ex-
tra property: this solution satisfies the inequality (.) even if we do not know whether
�y∗ ∈ L(�). In the context of Definition ., the question arises as to the existence and at-
tainability of the approximate solutions to the boundary value problem (.)-(.). In view
of this, it makes sense to give the following final result which is an obvious consequence
of Theorem ., Proposition ., and Theorem ..

Theorem . Let � be a bounded open subset of RN (N > ) which is assumed to be star-
shaped with respect to some of its interior point x. Let F : R → (, +∞) be a mapping of
the class C

loc(R) such that F satisfies estimate (.) and its derivative f = F ′ : RN → (,∞)
is a strictly convex function. Let g ∈ L(�) be a given distribution. If there exists a positive
value δ >  such that g ∈ L+δ(�), then the set of approximate solutions to the boundary
value problem (.)-(.) is non-empty. Moreover, in this case some of such solutions y∗ ∈ Y
can be attained as follows: y∗ is an H(�)-weak cluster point of the sequence {y

ε }ε>, where
{(u

ε , y
ε )}ε> are minimizers to the corresponding fictitious OCPs (.).
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