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Abstract
In this paper, we study the existence of periodic solutions for a class of ordinary
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1 Introduction and main results
We consider the existence of periodic solutions for the following ordinary p-Laplacian
system:

⎧
⎨

⎩

(|u′(t)|p–u′(t))′ + ∇F(t, u(t)) = ,

u() – u(T) = u′() – u′(T) = ,
()

where p > , T > , and F : [, T] × R
N → R is T-periodic in t for all x ∈ R

N and satisfies
the following assumption:

(A) F(t, x) is measurable in t for each x ∈R
N and continuously differentiable in x for a.e.

t ∈ [, T], and there exist a ∈ C(R+,R+) and b ∈ L(, T ;R+) such that

∣
∣F(t, x)

∣
∣ ≤ a

(|x|)b(t),
∣
∣∇F(t, x)

∣
∣ ≤ a

(|x|)b(t)

for all x ∈R
N and a.e. t ∈ [, T], where ∇F(t, x) denotes the gradient of F(t, x) in x.

As we all know, for p = , system () reduces to the following second-order Hamiltonian
system:

⎧
⎨

⎩

u′′(t) + ∇F(t, u(t)) = ,

u() – u(T) = u′() – u′(T) = .
()

In , Rabinowitz [] published his pioneer paper for the existence of periodic solu-
tions for problem () under the following Ambrosetti-Rabinowitz superquadratic condi-
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tion: there exist μ >  and L∗ >  such that

 < μF(t, x) ≤ (∇F(t, x), x
)

for all |x| ≥ L∗ and a.e. t ∈ [, T]. ()

From then on, various conditions have been applied to study the existence and multiplicity
of periodic solutions for Hamiltonian systems by using the critical point theory; see [–]
and references therein.

Over the last few decades, many researchers tried to replace the Ambrosetti-Rabinowitz
superquadratic condition () by other superquadratic conditions. Some new super-
quadratic conditions are discovered. Especially, by using linking methods Schechter []
obtained the following theorems.

Theorem . ([], Theorem .) Suppose that F(t, x) satisfies (A) and the following con-
ditions:

(V) F(t, x) ≥  for all t ∈ [, T] and x ∈ R
N ;

(V) There are constants m >  and α ≤ m

T such that

F(t, x) ≤ α for all |x| < m, x ∈R
N and a.e. t ∈ [, T];

(V) There are constants β > π

T and C >  such that

F(t, x) ≥ β|x| for all |x| > C, x ∈R
N and a.e. t ∈ [, T];

(V) There exist a constant ξ >  and a function W (t) ∈ L(, T ;R) such that

ξF(t, x) –
(∇F(t, x), x

) ≤ W (t)|x| for all |x| > C, x ∈R
N and a.e. t ∈ [, T]

and

lim sup
|x|→∞

ξF(t, x) – (∇F(t, x), x)
|x| ≤ 

uniformly for a.e. t ∈ [, T].

Then system () possesses a nonconstant T-periodic solution.

Theorem . ([], Theorem .) Suppose that F(t, x) satisfies (A), (V), (V), (V), and
the following condition:

(V ′
) There is a constant q >  such that

F(t, x) ≤ C
(|x|q + 

)
for all t ∈ [, T] and x ∈ R

N ,

and there are constants m >  and α < π

T such that

F(t, x) ≤ α|x| for all |x| ≤ m, x ∈ R
N , and a.e. t ∈ [, T].

Then system () possesses a nonconstant T-periodic solution.
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Moreover, Schechter [] proved the existence of a periodic solution for system () if con-
dition (V) is replaced by the following local superquadratic condition: there is a subset
E ⊂ [, T] with meas(E) >  such that

lim inf|x|→∞
F(t, x)
|x| >  uniformly for a.e. t ∈ E. ()

Wang, Zhang, and Zhang [] established the existence of a nonconstant T-periodic so-
lution of system () under condition (). They obtained the following theorem.

Theorem . ([], Theorem .) Suppose that F(t, x) satisfies (A), (V), (V), (), and the
following conditions:

(V) There exist constants ξ > ,  ≤ γ < , L >  and the function d(t) ∈ L(, T ;R+) such
that

ξF(t, x) ≤ (∇F(t, x), x
)

+ d(t)|x|γ

for all |x| ≥ L, x ∈ R
N and a.e. t ∈ [, T];

(V) There exists a constant M∗ >  such that d(t) ≤ M∗ for a.e. t ∈ E.

Then system () possesses a nonconstant T-periodic solution.

Recently, there are many results concerning the existence of periodic and subharmonic
solutions for system (); see [–] and references therein. Manasevich and Mawhin []
generalized the Hartman-Knobloch results to perturbations of a vector p-Laplacian ordi-
nary operator. Xu and Tang [] proved the existence of periodic solutions for problem ()
by using the saddle point theorem. With the aid of the generalized mountain pass theorem,
Ma and Zhang [] extended the results of [] to systems ().

In this paper, motivated by the works [, , ], we consider the existence of peri-
odic solutions for ordinary p-Laplacian systems (). The main result is the following the-
orem.

Theorem . Suppose that F(t, x) satisfies the following conditions:

(H) F(t, x) ≥  for all (t, x) ∈ [, T] ×R
N ;

(H) lim|x|→
F(t,x)
|x|p =  uniformly for a.e. t ∈ [, T];

(H) There exist constants μ > p and L >  and W (t) ∈ L(, T ;R) such that

μF(t, x) –
(∇F(t, x), x

) ≤ W (t)|x|p

for all |x| ≥ L, x ∈ R
N , and a.e. t ∈ [, T], and

lim sup
|x|→∞

μF(t, x) – (∇F(t, x), x)
|x|p ≤ 

uniformly for a.e. t ∈ [, T];
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(H) There exists � ⊂ [, T] with meas(�) >  such that

lim inf|x|→∞
F(t, x)
|x|p > 

uniformly for a.e. t ∈ �.

Then system () possesses a nonconstant T-periodic solution.

Remark . For p = , it is easy to see that the conclusion in Theorem . is the same
if condition (H) is replaced by (V) or (V ′

). Thus, Theorem . generalizes Theorems
. and . in [] and Theorems . and . in []. Furthermore, Theorem . extends
Theorem . in []. There are functions F satisfying our Theorem . but not satisfying
the results mentioned before. For example, let

F(t, x) =
ψ(t)
T

(|x| + |x|) for all (t, x) ∈ [, T] ×R
N ,

where

ψ(t) =

⎧
⎨

⎩

sin(π t/T), t ∈ [, T/],

, t ∈ [T/, T].

Taking � = [T/, T/], a straightforward computation implies that F does not satisfy the
results in [, , ].

2 Proof of the main results
Let us consider the functional ϕ on W ,p

T given by

ϕ(u) =

p

∫ T



∣
∣u′∣∣p dt –

∫ T


F(t, u) dt

for each u ∈ W ,p
T , where

W ,p
T =

{
u : [, T] →R

N |u is absolutely continuous, u() = u(T),

and u′ ∈ Lp(, T ;RN)}

is a reflexive Banach space with norm

‖u‖ =
(∫ T



∣
∣u(t)

∣
∣p dt +

∫ T



∣
∣u′(t)

∣
∣p dt

)/p

for all u ∈ W ,p
T .

For u ∈ W ,p
T , let

u =

T

∫ T


u(t) dt, ũ = u(t) – u

and

W̃ ,p
T =

{
u ∈ W ,p

T |u = 
}

.
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Then we have

W ,p
T = W̃ ,p

T ⊕R
N

and

‖u‖Lp ≤ C
∥
∥u′∥∥

Lp (Wirtinger’s inequality),

‖u‖∞ ≤ C
∥
∥u′∥∥

Lp (Sobolev inequality)

for all u ∈ W̃ ,p
T , where C is a positive constant.

It follows from assumption (A) that the functional ϕ is continuously differentiable on
W ,p

T . Moreover, we have

〈
ϕ′(u), v

〉
=

∫ T



∣
∣u′∣∣p–(u′, v′)dt –

∫ T



(∇F(t, u), v
)

dt

for all u, v ∈ W ,p
T . It is well known that the problem of finding a T-periodic solution of

problem () is equal to that of finding the critical points of ϕ.
Now, we can state the proof of our result.

Proof of Theorem . Firstly, we will show that ϕ satisfies (P.-S.) condition, i.e., for every
sequence {un} ⊂ W ,p

T , {un} has a convergent subsequence if

{
ϕ(un)

}
is bounded and ϕ′(un) →  as n → ∞. ()

According to a standard argument, we only need to show that {un} is a bounded sequence
in W ,p

T . Otherwise, we can assume that ‖un‖ → ∞ as n → ∞. Let wn = un
‖un‖ , so that

‖wn‖ = . If necessary, taking a subsequence, still denoted by {wn}, we suppose that

wn ⇀ w weakly in W ,p
T ,

wn → w strongly in C
(
, T ;RN)

as n → ∞, and we have

wn → w as n → ∞. ()

By () there exists M >  such that

(
μ

p
– 

)
∥
∥u′

n
∥
∥p

Lp = μϕ(un) –
〈
ϕ′(un), un

〉
+

∫ T



(
μF(t, un) –

(∇F(t, un), un
))

dt

≤ M
(
 + ‖un‖

)
+

∫ T



(
μF(t, un) –

(∇F(t, un), un
))

dt.

So, we obtain

(
μ

p
– 

)
∥
∥w′

n
∥
∥p

Lp ≤ M( + ‖un‖)
‖un‖p +

∫ T
 (μF(t, un) – (∇F(t, un), un)) dt

‖un‖p . ()
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In view of (A) and (H), let � ⊂ � with |�| =  be such that

∣
∣F(t, x)

∣
∣ ≤ a

(|x|)b(t) and
∣
∣∇F(t, x)

∣
∣ ≤ a

(|x|)b(t) ()

for all x ∈R
N and t ∈ [, T] \ � and

lim sup
|x|→∞

μF(t, x) – (∇F(t, x), x)
|x|p ≤ 

uniformly for t ∈ [, T] \ �.
In fact, we have

lim sup
n→∞

μF(t, un) – (∇F(t, un), un)
‖un‖p ≤  ()

for t ∈ [, T] \ �. Otherwise, there exist t ∈ [, T] \ � and a subsequence of {un}, still
denoted by {un}, such that

lim sup
n→∞

μF(t, un(t)) – (∇F(t, un(t)), un(t))
‖un‖p > . ()

If {un(t)} is bounded, then there exists a positive constant M such that |un(t)| ≤ M

for all n ∈N. By () we find

μF(t, un(t)) – (∇F(t, un(t)), un(t))
‖un‖p

≤ (μ + M) max≤s≤M a(s)b(t)
‖un‖p → 

as n → ∞, which contradicts (). So, there is a subsequence of {un(t)}, still denoted by
{un(t)}, such that |un(t)| → ∞ as n → ∞. From (H) we have

lim sup
n→∞

μF(t, un(t)) – (∇F(t, un(t)), un(t))
‖un‖p

= lim sup
n→∞

μF(t, un(t)) – (∇F(t, un(t)), un(t))
|un(t)|p

∣
∣wn(t)

∣
∣p

= lim sup
n→∞

μF(t, un(t)) – (∇F(t, un(t)), un(t))
|un(t)|p lim

n→∞
∣
∣wn(t)

∣
∣p

≤ .

This contradicts (). Thus, () holds. From () and () we obtain

lim sup
n→∞

(
μ

p
– 

)
∥
∥w′

n
∥
∥p

Lp ≤ .

Since μ > p, we get

∥
∥w′

n
∥
∥p

Lp →  as n → ∞. ()
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Combining with (), this yields

wn → w as n → ∞,

which means that

w = w and T |w| = ‖w‖ = .

Then we have

∣
∣un(t)

∣
∣ → ∞ as n → ∞

uniformly for a.e. t ∈ [, T]. We deduce from (H), (H), and Fatou’s lemma that

lim inf
n→∞

∫ T



F(t, un)
‖un‖p dt ≥

∫ T


lim inf

n→∞
F(t, un)
‖un‖p dt

=
∫ T



[

lim inf
n→∞

F(t, un)
|un|p |w|p

]

dt

≥
∫

�

[

lim inf
n→∞

F(t, un)
|un|p |w|p

]

dt

> . ()

Since

ϕ(un)
‖un‖p =


p
∫ T

 |u′
n|p dt

‖un‖p –
∫ T

 F(t, un) dt
‖un‖p

and ϕ(un) is bounded, we obtain from () that

lim inf
n→∞

∫ T



F(t, un)
‖un‖p dt = ,

which contradicts (). Hence, {un} is a bounded sequence in W ,p
T , and we conclude that

ϕ satisfies (P.-S.) condition.
Now, by the generalized mountain pass theorem [], Theorem ., we only need to

show that

(G) infu∈S ϕ(u) > ,
(G) supu∈Q ϕ(u) < +∞, supu∈∂Q ϕ(u) ≤ ,

where S = W̃ ,p
T ∩ ∂Bρ , Q = {x + se|x ∈ R

N ∩ Br , s ∈ [, r]}, r > ,ρ < r, e ∈ W̃ ,p
T , and Br =

{u ∈ W ,p
T : ‖u‖ ≤ r}.

By (H) and (H) there exist constants M > L and η >  and a subset of �, still denoted
by �, with |�| >  such that

F(t, x) >
η

μ – p
|x|p ()
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and

μF(t, x) –
(∇F(t, x), x

) ≤ η|x|p ()

for all |x| ≥ M and t ∈ �. For x ∈R
N \ {} and t ∈ [, T], let

f (s) = F(t, sx) for all s ≥ M

|x| .

We deduce from () that

f ′(s) =

s
(∇F(t, sx), sx

)

≥ μ

s
F(t, sx) – ηsp–|x|p

=
μ

s
f (s) – ηsp–|x|p,

which yields

g(s) = f ′(s) –
μ

s
f (s) + ηsp–|x|p ≥ 

for all s ≥ M
|x| . From the above expression we have

f (s) =
(∫ s

M|x|

g(r) – ηrp–|x|p
rμ

dr + M

)

sμ ()

for all s ≥ M
|x| , where

M =
( |x|

M

)μ

f
(

M

|x|
)

.

It follows from () that

f (s) =
(∫ s

M|x|

g(r) – ηrp–|x|p
rμ

dr + M

)

sμ

=
(∫ s

M|x|

g(r)
rμ

dr – η|x|p
∫ s

M|x|
rp––μ dr + M

)

sμ

≥ Msμ +
(

η|x|p
μ – p

sp–μ –
η|x|μ

(μ – p)Mμ–p


)

sμ

≥
(

M–μ
 F

(
t, M|x|–x

)
–

η

(μ – p)Mμ–p


)

|x|μsμ.

Combining this with () yields

F(t, x) = f ()

≥
(

M–μ
 F

(
t, M|x|–x

)
–

η

(μ – p)Mμ–p


)

|x|μ
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≥
(

ηMp–μ


μ – p

–
ηMp–μ


μ – p

)

|x|μ

≥ ηMp–μ


μ – p

|x|μ

= M|x|μ

for all |x| ≥ M and t ∈ �, where M = ηMp–μ

 /(μ – p). So, we get

F(t, x) ≥ M|x|μ – MMμ
 ()

for all x ∈R
N and t ∈ �.

Choose

z(t) =
(
sin(ωt), , . . . , 

) ∈ W̃ ,p
T ,

where ω = π/T . Let

W ,p
T = R

N ⊕ span
{

z(t)
}

and

Q =
{

x ∈ R
N ||x| ≤ r

} ⊕ {sz| ≤ s ≤ r}.

Since dim(W ,p
T ) < ∞, all the norms are equivalent. For any u ∈ W ,p

T , there exists a positive
constant K such that

‖u‖Lp(�) ≥ K‖u‖L(�). ()

According to (), we have

F(t, x) ≥ M|x|p – M ()

for all x ∈R
N and t ∈ �, where

M =
ωpT
pKp

(∫

�

∣
∣z(t)

∣
∣ dt

)–p/

and M = MMμ
 + M

(
M

M

)p/(μ–p)

.

Now, it follows from () and () that

ϕ(x + sz) =

p

∫ T



∣
∣sz′(t)

∣
∣p dt –

∫ T


F(t, x + sz) dt

≤ 
p

∫ T



∣
∣sz′(t)

∣
∣p dt –

∫

�

F(t, x + sz) dt

≤ 
p
ωp|s|p

∫ T


| cosωt|p dt – M

∫

�

|x + sz|p dt + M|�|

≤ 
p
ωp|s|pT – M

∫

�

|x + sz|p dt + M|�|
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≤ 
p
ωp|s|pT – MKp

(∫

�

|x + sz| dt
)p/

+ M|�|

=

p
ωp|s|pT – MKp

(∫

�

(|x| + |sz|)dt
)p/

+ M|�|

=

p
ωp|s|pT – MKp

(

|�||x| + s
∫

�

|z| dt
)p/

+ M|�|.

Hence, we have

ϕ(x + sz) ≤ 
p
ωp|s|pT – MKp

(

s
∫

�

|z| dt
)p/

+ M|�|

≤ –

p
ωp|s|pT + M|�| ()

and

ϕ(x + sz) ≤ 
p
ωp|s|pT – MKp|�|p/|x|p + M|�|. ()

Let

r =
(

pM|�|
ωpT

)/p

and r =
(

M|�|–p/

MKp

)/p

.

For x + rz ∈ ∂Q, we get from () that

ϕ(x + rz) ≤ , ()

and, for x + sz ∈ ∂Q with  ≤ s ≤ r, |x| = r, we obtain from () that

ϕ(x + sz) ≤ . ()

If s = , then by (H) we get

ϕ(x) = –
∫ T


F(t, x) dt ≤  ()

for all x ∈R
N . By (), (), and () condition (G) holds.

On the other hand, it follows from (H) that there exist two positive constants ε < /(pC)
and δ < C such that

F(t, x) ≤ ε|x|p ()

for all |x| ≤ δ and a.e. t ∈ [, T].
For u ∈ W̃ ,p

T with ‖u‖ ≤ 
C

δ, we have ‖u‖∞ ≤ δ. We obtain from () and Wirtinger’s
inequality that

ϕ(u) =

p

∫ T



∣
∣u′∣∣p dt –

∫ T


F(t, u) dt

≥ 
p

∫ T



∣
∣u′∣∣p dt – ε

∫ T


|u|p dt
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≥
(


p

– εC

)
∥
∥u′∥∥p

Lp

≥
(


p

– εC

)

( + C)–‖u‖p.

Choose ρ ∈ (, δ/C) to obtain

inf
u∈S

ϕ(u) > ,

where S = W̃ ,p
T ∩ ∂Bρ . So, condition (G) holds.

Hence, there is a nonconstant T-periodic solution of system (). �
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