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Abstract
In this paper we derive some identities for the solution of the problem of
homogeneous and anisotropic micropolar thermoelasticity. These can be applied to
proving uniqueness of the solution of the corresponding boundary initial value
problem.

1 Introduction
In [], the author derives some uniqueness criteria for solutions of the Cauchy problem for
the standard equations of dynamical linear thermoelasticity backward in time. Lagrange-
Brun identities are combined with some differential inequalities in order to show that
the final boundary value problem associated with the linear thermoelasticity backward in
time has at most one solution in appropriate classes of displacement-temperature fields.
The uniqueness results are obtained under the assumptions that the density mass and the
specific heat are strictly positive and the conductivity tensor is positive definite.

According to [], in a micropolar continuum the deformation is described not only by
the displacement vector, but also by an independent rotation vector. This rotation vector
specifies the orientation of a triad of director vectors attached to each material particle.
A material point can experience a microrotation without undergoing a macrodisplace-
ment.

The results obtained in this paper are extensions of those for the solutions of the Cauchy
problem for the standard equations of dynamical linear thermoelasticity. The identities
established in this paper lay the foundations for a uniqueness result.

In [], Eringen establishes a uniqueness theorem for the boundary initial value prob-
lem of linear micropolar elastodynamics by means of some relations between the kinetic
density, the strain energy density and the total power of the applied forces.

The spatial and the time arguments of a function will be omitted when there is no likeli-
hood of confusion. A superposed dot denotes differentiation with respect to time t and a
subscript preceded by a comma denotes differentiation with respect to the corresponding
spatial variable. The subscripts i, j, k, m, n take values , ,  and summation is implied by
index repetition.

Let B̄ denote a regular region of the three dimensional Euclidean space occupied by a
homogeneous micropolar body whose boundary is ∂B. The interior of B̄ is denoted by B.
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The governing equations of the theory of anisotropic and homogeneous micropolar
thermoelasticity, as described in [] and also in [–] and [], are the equations of mo-
tion

tij,j + ρFi = ρüi, mij,j + εijktjk + ρMi = Iijϕ̈j, ()

and the equation of energy

ρη̇ =
ρ

θ
r – qi,i. ()

Equations () and () are defined for (x, t) ∈ B × [,∞).
When the reference solid has a center of symmetry at each point, but is otherwise non-

isotropic, then the constitutive equations, defined for (x, t) ∈ B̄ × [,∞), are

tij = Aijmnεmn + Bijmnγmn – Dijθ ,

mij = Bmnijεmn + Cijmnγmn – Eijθ ,

ρη = Dijεij + Eijγij +
c
θ

θ ,

qi = –

θ

Kijβj.

()

The deformation tensors εij and γij used in equations () are defined in B̄ × [,∞) by
means of the geometric equations

εij = uj,i + εjikϕk , γij = ϕj,i. ()

The system of equations is complete if we add the law of heat flow

βi = θ,i ()

for all (x, t) ∈ B̄ × [,∞).
In the equations above we used the following notations: ui are the components of the

displacement vector, ϕi are the components of the microrotation vector, tij are the com-
ponents of the stress tensor, mij are the components of the couple stress tensor, qi are the
components of the heat conduction vector, η is the specific entropy per unit mass, ρ is
the constant reference density, θ is the constant reference temperature, θ is the temper-
ature measured from the temperature θ, c is the specific heat, Iij are the components of
the inertia, βi are the components of the thermal displacement gradient vector, Fi are the
components of the external body force vector, Mi are the components of the external body
couple vector, r is the external rate of heat supply per unit mass and εijk is the alternating
symbol.

The coefficients from () and (), that is, Aijmn, Bijmn, Cijmn, Dij, Eij, Iij, Kij, and c are
constant constitutive coefficients subject to the following symmetry conditions:

Aijmn = Amnij, Cijmn = Cmnij, Iij = Iji, Kij = Kji. ()
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We further assume that c ≥  and Kijθ,iθ,j ≥ .
The free energy 
 , used to obtain the constitutive equations, is given by

ρ
 =



Aijmnεijεmn + Bijmnεijγmn +



Cijmnγijγmn

– Dijεijθ – Eijγijθ –
c

θ
θ +

c
θ

Kijτ,iτ,j. ()

We denoted by τ the thermal displacement related to the temperature variation. The re-
lationship between τ and θ is given by

τ̇ = θ . ()

We consider the initial conditions

ui(x, ) = u
i (x),

u̇i(x, ) = u̇
i (x),

θ (x, ) = θ(x), x ∈ B̄,

ϕj(x, ) = ϕ
j (x), x ∈ B̄,

ϕ̇j(x, ) = ϕ̇
j (x), x ∈ B̄,

()

and the boundary conditions

ui(x, t) = ũi(x, t) on �̄ × [,∞),

ti(x, t) = t̃i(x, t) on � × [,∞),

θ (x, t) = θ̃ (x, t) on �̄ × [,∞),

q(x, t) = q̃(x, t) on � × [,∞),

ϕj(x, t) = ϕ̃j(x, t) on �̄ × [,∞),

mi(x, t) = m̃i(x, t) on � × [,∞),

()

where u
i , u̇

i , θ, ϕ̇
j , ũi, t̃i, θ̃ , q̃, ϕ̃j, and m̃i are prescribed functions. We have

ti(x, s) := tij(x, s)nj(x), ()

q(x, s) := qi(x, s)ni(x), ()

mi(x, s) := mij(x, s)nj(x), ()

where ni are the components of the outward unit normal vector to the boundary surface
and �,�,�,�,�, and � are subsurfaces of ∂B such that �̄ ∪ � = �̄ ∪ � = �̄ ∪
� = ∂B and � ∩ � = � ∩ � = � ∩ � = ∅.
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Following [], we impose some continuity conditions

{u,ϕ} ∈ C,,

{ε,γ , Fi, Mi, r} ∈ C,,

{t, m, q} ∈ C,,

θ ∈ C,, η ∈ C,,

{ũi, t̃i, ϕ̃j, m̃i, θ̃ , q̃} ∈ C, on ∂B × [,∞),
{

u
i , u̇

i ,ϕ
j , ϕ̇

j , θ} ∈ C on B̄,

{Dij, Eij, Aijmn, Bijmn, Cijmn, c, Kij,ρ, Iij} ∈ C.

()

We use the symbol Ci,j to denote the class of functions whose space partial derivatives of
order up to and including i and whose time derivatives of order up to and including j are
continuous. Such formal continuity requirements exist to any order as demanded by the
existing expressions, unless otherwise stated. Furthermore, we need

θ ∈ C, on B̄ × [,∞),

Eij, Dij ∈ C(B̄).
()

Following [], we define an admissible state to be the collection S{u,ϕ; ε,γ ; t, m; q, θ}
of the ordered set of functions u,ϕ, ε,γ , t, m, q, and θ whose continuity requirements are
described above. If S meets the constitutive equations () and the strain displacement re-
quirements () then we say that S is kinematically admissible. If a kinematically admissible
state meets the boundary and initial conditions and satisfies the equations of motion ()
and the equation of energy (), we call it the solution of the mixed problem.

Introducing the constitutive equations () and the geometric equations () in the equa-
tions of motion () and the equation of energy (), we obtain a system of coupled partial
differential equations in terms of the displacements ui, the microrotations ϕi and the ther-
mal displacements θ

[
Aijmn(un,m + εnmkϕk) + Bijmnϕn,m – Dijθ

]
,j + ρFi = ρüi,

[
Bmnij(un,m + εnmkϕk) + Cijmnϕn,m – Eijθ

]
,j

+ εijk
[
Ajkmn(un,m + εnmkϕk) + Bjkmnϕn,m – Djkθ

]
+ ρMi = Iijϕ̈j,

Dij(u̇j,i + εjikϕ̇k) + Eijϕ̇j,i +
c
θ

θ̇ =
ρ

θ
r +


θ

(Kijθ,j),i,

()

for any (x, t) ∈ B × [,∞).
By a solution of the initial boundary value problem of the micropolar thermoelasticity

in the cylinder B × [, T) we mean an ordered array {ui,ϕi, θ} which satisfies system ()
for all (x, t) ∈ B × [, T), the initial conditions () and the boundary conditions ().

2 Some useful identities
Throughout this paper it is assumed that a solution {ui,ϕi, θ} exists. Following [] and
[], we establish some auxiliary identities for the solution of the initial boundary value
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problem. We consider the external data

D =
{

Fi, Mi, r; u
i , u̇

i , θ,ϕ
j , ϕ̇

j ; ũi, t̃i, θ̃ , q̃, ϕ̃j, m̃i
}

. ()

Lemma . Let us consider a solution of the initial boundary value problem corresponding
to the external data D. Then for all t ∈ [, T) we have

∫

B
ρu̇i(t)u̇i(t) dv

=
∫

B
ρu̇i()u̇i() dv + 

∫ t



∫

B
ρFi(s)u̇i(s) dv ds

+ 
∫ t



∫

∂B
u̇i(s)ti(s) da ds + 

∫ t



∫

B
Dijθ (s)u̇i,j(s) dv ds

– 
∫ t



∫

B
Aijmn

[
un,m(s) + εnmkϕk(s)

]
u̇i,j(s) dv ds

– 
∫ t



∫

B
Bijmnϕn,m(s)u̇i,j(s) dv ds, ()

∫

B


θ

cθ(t) dv + 
∫ t



∫

B


θ

Kijβi(s)βj(s) dv ds

= 
∫ t



∫

B
θ (s)

ρ

θ
r(s) dv ds

– 
∫ t



∫

∂B
θ (s)q(s) da ds – 

∫ t



∫

B
θ (s)Dij

[
u̇j,i(s) + εjikϕ̇k(s)

]
dv ds

– 
∫ t



∫

B
θ (s)Eijϕ̇j,i(s) dv ds +

∫

B


θ

cθ() dv, ()
∫

B
Iijϕ̇i(t)ϕ̇j(t) dv

=
∫

B
Iijϕ̇i()ϕ̇j() dv + 

∫ t



∫

∂B
ϕ̇i(s)mij(s)nj da ds

– 
∫ t



∫

B
Bmnij

[
un,m(s) + εnmkϕk(s)

]
ϕ̇i,j(s) dv ds

+ 
∫ t



∫

B
Cijmnϕn,m(s)ϕ̇i,j(s) dv ds

– 
∫ t



∫

B
Eijθ (s)ϕ̇i,j(s) dv ds + 

∫ t



∫

B
εijkAjkmn

[
un,m(s) + εnmkϕk(s)

]
ϕ̇i(s) dv ds

+ 
∫ t



∫

B
εijkBjkmnϕn,m(s)ϕ̇i(s) dv ds – 

∫ t



∫

B
εijkDjkθ (s)ϕ̇i(s) dv ds

+ 
∫ t



∫

B
ρMiϕ̇i(s) dv ds. ()

Proof We multiply the first equation from () by u̇i to obtain

ρu̇i(s)üi(s) = ρFi(s)u̇i(s) +
[
tij(s)u̇i(s)

]
,j – tij(s)u̇i,j(s). ()
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We further have

∂

∂s

{


[
ρu̇i(s)u̇i(s)

]}

= ρFi(s)u̇i(s) +
[
tij(s)u̇i(s)

]
,j

– Aijmn
[
un,m(s) + εnmkϕk(s)

]
u̇i,j(s) – Bijmnϕn,m(s)u̇i,j(s) + Dijθ (s)u̇i,j(s). ()

We integrate this relation over B × [, t], t ∈ [, T), and use the divergence theorem and
equation () to obtain equation ().

We have

∂

∂s

{




θ

cθ(s)
}

= θ (s)

θ

cθ̇ (s). ()

We further have by the third relation in () and by ()

∂

∂s

{




θ

cθ(s)
}

= θ (s)
ρ

θ
r(s) – θ (s)qi,i(s) – θ (s)Dijε̇ij(s) – θ (s)Eijγ̇ij(s), ()

which by θ (s)qi,i(s) = [θ (s)qi(s)],i – θ,i(s)qi(s), by the fourth relation in (), and by () be-
comes

∂

∂s

{




θ

cθ(s)
}

= θ (s)
ρ

θ
r(s) –

[
θ (s)qi(s)

]
,i – βi(s)


θ

Kijβj(s) – θ (s)Dijε̇ij(s) – θ (s)Eijγ̇ij(s). ()

We integrate this relation over B × [, t], t ∈ [, T), and use the divergence theorem and
equation () to obtain equation ().

We multiply the second equation from () by ϕ̇i to obtain

Iijϕ̈j(s)ϕ̇i(s) =
[
mij(s)ϕ̇i(s)

]
,j – mij(s)ϕ̇i,j(s) + εijktjk(s)ϕ̇i(s) + ρMiϕ̇i(s). ()

We further have

∂

∂s

{


[
Iijϕ̇i(s)ϕ̇j(s)

]}

=
[
mij(s)ϕ̇i(s)

]
,j –

[
Bmnijεmn(s) + Cijmnγmn(s) – Eijθ (s)

]
ϕ̇i,j(s)

+ εijk
[
Ajkmnεmn(s) + Bjkmnγmn(s) – Djkθ (s)

]
ϕ̇i(s) + ρMiϕ̇i(s)

=
[
mij(s)ϕ̇i(s)

]
,j – Bmnij

[
un,m(s) + εnmkϕk(s)

]
ϕ̇i,j(s) + Cijmnϕn,m(s)ϕ̇i,j(s)

– Eijθ (s)ϕ̇i,j(s) + εijkAjkmn
[
un,m(s) + εnmkϕk(s)

]
ϕ̇i(s)

+ εijkBjkmnϕn,m(s)ϕ̇i(s) – εijkDjkθ (s)ϕ̇i(s) + ρMiϕ̇i(s). ()

We integrate this relation over B × [, t], t ∈ [, T), and use the divergence theorem and
equation () to obtain equation (). �
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Lemma . Let us consider a solution of the initial boundary value problem corresponding
to the external data D. Then for all t ∈ [, T

 ) we have

∫

B
ρu̇i(t)u̇i(t) dv

=
∫

B
ρu̇i()u̇i(t) dv

+
∫ t



∫

B

[
ρFi(t – s)u̇i(t + s) – ρFi(t + s)u̇i(t – s)

]
dv ds

+
∫ t



∫

∂B

[
ti(t – s)u̇i(t + s) – ti(t + s)u̇i(t – s)

]
da ds

+
∫ t



∫

B

{
u̇i,j(t – s)Aijmn[un,m + εnmkϕk](t + s)

– u̇i,j(t + s)Aijmn[un,m + εnmkϕk](t – s)
}

dv ds

+
∫ t



∫

B

[
u̇i,j(t – s)Bijmnϕn,m(t + s) – u̇i,j(t + s)Bijmn ϕn,m(t – s)

]
dv ds

+
∫ t



∫

B

[
u̇i,j(t + s)Dijθ (t – s) – u̇i,j(t – s)Dijθ (t + s)

]
dv ds. ()

Proof Let us consider s ∈ [, t], t ∈ [, T
 ). Then, using the identity

–
∂

∂s
[
ρu̇i(t – s)u̇i(t + s)

]
= ρu̇i(t + s)üi(t – s) – ρu̇i(t – s)üi(t + s), ()

we obtain

ρu̇i(t)u̇i(t) = ρu̇i()u̇i(t) +
∫ t


ρ
[
u̇i(t + s)üi(t – s) – u̇i(t – s)üi(t + s)

]
ds. ()

By the first relation from (), we have

ρ
[
u̇i(t + s)üi(t – s) – u̇i(t – s)üi(t + s)

]

= ρFi(t – s)u̇i(t + s)

– ρFi(t + s)u̇i(t – s) +
[
tij(t – s)u̇i(t + s) – tij(t + s)u̇i(t – s)

]
,j

– tij(t – s)u̇i,j(t + s) + tij(t + s)u̇i,j(t – s). ()

By the first relation in () and by () we have

tij(t + s)u̇i,j(t – s) – tij(t – s)u̇i,j(t + s)

= u̇i,j(t – s)Aijmn[un,m + εnmkϕk](t + s)

– u̇i,j(t + s)Aijmn[un,m + εnmkϕk](t – s)

+ u̇i,j(t – s)Bijmnϕn,m(t + s) – u̇i,j(t + s)Bijmnϕn,m(t – s)

– u̇i,j(t – s)Dijθ (t + s) + u̇i,j(t + s)Dijθ (t – s). ()
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Now we substitute equation () in equation () and this in equation () to obtain

ρu̇i(t)u̇i(t)

= ρu̇i()u̇i(t) +
∫ t



[
ρFi(t – s)u̇i(t + s) – ρFi(t + s)u̇i(t – s)

]
ds

+
∫ t



[
tij(t – s)u̇i(t + s) – tij(t + s)u̇i(t – s)

]
,j ds

+
∫ t



{
u̇i,j(t – s)Aijmn[un,m + εnmkϕk](t + s)

– u̇i,j(t + s)Aijmn[un,m + εnmkϕk](t – s)
}

ds

+
∫ t



[
u̇i,j(t – s)Bijmnϕn,m(t + s) – u̇i,j(t + s)Bijmnϕn,m(t – s)

]
ds

+
∫ t



[
u̇i,j(t + s)Dijθ (t – s) – u̇i,j(t – s)Dijθ (t + s)

]
ds. ()

We integrate equation () over B, use the divergence theorem and equation () to obtain
the final result. �

3 Zero external data
Suppose that the boundary initial value problem of linear micropolar elastodynamics has
two solutions u(α), ϕ(α), θ (α), α = , . Let u = u() – u(), ϕ = ϕ() – ϕ(), θ = θ () – θ ().
Then u, ϕ, and θ satisfy ()-(), (), and () with Fi = Mi = , r = , ũi = t̃i = θ̃ = q̃ = ϕ̃j =
m̃i = , u

i = u̇
i = θ = ϕ

j = ϕ̇
j = , i.e. homogeneous equations and boundary and initial

conditions.

Lemma . Let us consider a solution of the initial boundary value problem corresponding
to zero external data D = . Then for all t ∈ [, T) we have

∫

B
ρu̇i(t)u̇i(t) dv

= 
∫ t



∫

B
Dijθ (s)u̇i,j(s) dv ds

– 
∫ t



∫

B
Aijmn

[
un,m(s) + εnmkϕk(s)

]
u̇i,j(s) dv ds

– 
∫ t



∫

B
Bijmnϕn,m(s)u̇i,j(s) dv ds, ()

∫

B


θ

cθ(t) dv + 
∫ t



∫

B


θ

Kijβi(s)βj(s) dv ds

= –
∫ t



∫

B
θ (s)Dij

[
u̇j,i(s) + εjikϕ̇k(s)

]
dv ds – 

∫ t



∫

B
θ (s)Eijϕ̇j,i(s) dv ds, ()

∫

B
Iijϕ̇i(t)ϕ̇j(t) dv

= –
∫ t



∫

B

{
Bmnij

[
un,m(s) + εnmkϕk(s)

]
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+ Cijmnϕn,m(s) – Eijθ (s)
}
ϕ̇i,j(s) dv ds

+ 
∫ t



∫

B
εijk

{
Ajkmn

[
un,m(s) + εnmkϕk(s)

]

+ Bjkmnϕn,m(s) – Djkθ (s)
}
ϕ̇i(s) dv ds, ()

∫

B
ρu̇i(t)u̇i(t) + Iijϕ̇i(t)ϕ̇j(t) +


θ

cθ(t) dv

= –
∫ t



∫

B

[
un,m(s) + εnmkϕk(s)

][
Aijmnu̇i,j(s) + Bmnijϕ̇i,j(s)

– εijkAjkmnϕ̇i(s)
]

dv ds – 
∫ t



∫

B
ϕn,m(s)

[
Bijmnu̇i,j(s) + Cijmnϕ̇i,j(s)

– εijkBjkmnϕ̇i(s)
]

dv ds + 
∫ t



∫

B
Dijθ (s)u̇i,j(s) dv ds + 

∫ t



∫

B
Eijθ (s)ϕ̇i,j(s) dv ds

– 
∫ t



∫

B
εijkDjkθ (s)ϕ̇i(s) dv ds – 

∫ t



∫

B
θ (s)Dij

[
u̇j,i(s) + εjikϕ̇k(s)

]
dv ds

– 
∫ t



∫

B
θ (s)Eijϕ̇j,i(s) dv ds – 

∫ t



∫

B


θ

Kijβi(s)βj(s) dv ds. ()

Proof We choose u̇
i (x) = , x ∈ B̄, ũi(x, t) =  on �̄ × [,∞), t̃i(x, t) =  on � × [,∞)

and Fi(x, t) =  on B̄ × [,∞) in () to obtain equation ().
We choose θ(x) = , x ∈ B̄, θ̃ (x, t) =  on �̄ × [,∞), q̃(x, t) =  on � × [,∞) and

r(x, t) =  on B̄ × [,∞) in () to obtain equation ().
We choose ϕ̇

j (x) = , x ∈ B̄, ϕ̃j(x, t) =  on �̄ × [,∞), m̃i(x, t) =  on � × [,∞) and
Mi(x, t) =  on B̄ × [,∞) in () to obtain equation ().

We add up the previous three formulas. �

Lemma . Let us consider a solution of the initial boundary value problem corresponding
to zero external data D. Then for all t ∈ [, T

 ) we have

∫

B
ρu̇i(t)u̇i(t) dv

=
∫ t



∫

B

{
u̇i,j(t – s)Aijmn[un,m + εnmkϕk](t + s)

– u̇i,j(t + s)Aijmn[un,m + εnmkϕk](t – s)
}

dv ds

+
∫ t



∫

B

[
u̇i,j(t – s)Bijmnϕn,m(t + s) – u̇i,j(t + s)Bijmnϕn,m(t – s)

]
dv ds

+
∫ t



∫

B

[
u̇i,j(t + s)Dijθ (t – s) – u̇i,j(t – s)Dijθ (t + s)

]
dv ds. ()

Proof We choose u̇
i (x) = , x ∈ B̄, ũi(x, t) =  on �̄ × [,∞), t̃i(x, t) =  on � × [,∞)

and Fi(x, t) =  on B̄ × [,∞) in () to obtain equation (). �

4 Some useful remarks
We assume that meas� = . Let {ui,ϕj, θ}(x, t) be a solution of the initial boundary
value problem corresponding to zero external data D = . We might want to prove that
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{ui,ϕj, θ}(x, t) =  in B̄ × [,∞). Let

φ(t) =
∫ t



∫

B


θ

Kijβi(s)βj(s) dv ds ()

for all t ∈ [,∞). If φ(t) =  and θ �= , Kij �= , then either βi(x, s) =  or βj(x, s) =  in
B× [,∞). If βi(x, s) =  then θ,i(x, s) =  in B× [,∞). By [] and [] and since meas� �= 
and θ (x, t) =  on �̄ × [,∞) we have

∫

B
θ,i(t)θ,i(t) dv ≥ λ

∫

B
θ(t) dv ()

where λ > , λ = const. is the smallest eigenvalue of the fixed membrane problem. There-
fore θ (x, t) =  in B̄ × [,∞), which yields

∫

B
ρu̇i(t)u̇i(t) dv

= –
∫ t



∫

B
Aijmn

[
un,m(s) + εnmkϕk(s)

]
u̇i,j(s) dv ds – 

∫ t



∫

B
Bijmnϕn,m(s)u̇i,j(s) dv ds

= –
∫ t



∫

B
Aijmnεmn(s)u̇i,j(s) dv ds – 

∫ t



∫

B
Bijmnγmn(s)u̇i,j(s) dv ds, ()

∫

B
Iijϕ̇i(t)ϕ̇j(t) dv

= –
∫ t



∫

B

{
Bmnij

[
un,m(s) + εnmkϕk(s)

]
+ Cijmnϕn,m(s)

}
ϕ̇i,j(s) dv ds

+ 
∫ t



∫

B
εijk

{
Ajkmn

[
un,m(s) + εnmkϕk(s)

]
+ Bjkmnϕn,m(s)

}
ϕ̇i,j(s) dv ds

= –
∫ t



∫

B

{
Bmnijεmn(s) + Cijmnγmn(s)

}
ϕ̇i,j(s) dv ds

+ 
∫ t



∫

B
εijk

{
Ajkmnεmn(s) + Bjkmnγmn(s)

}
ϕ̇i,j(s) dv ds. ()

By imposing certain conditions on the coefficients, we might prove that ϕ(x, t) =  and
u(x, t) =  in B̄ × [,∞). Following [], we know that

Aklmnεklεmn + Cklmnγklγmn + Bklmnεklγmn ≥ . ()

Now we derive some useful inequalities for the constitutive coefficients Eij and Dij. Since
θ (x, s) =  on ∂B × [, T) we have

– 
∫ t



∫

B
θ (s)Eijϕ̇j,i(s) dv ds

= –
∫ t



∫

B

{[
Eijθ (s)ϕ̇j(s)

]
,i –

[
Eijθ (s)

]
,iϕ̇j(s)

}
dv ds

= –
∫ t



∫

∂B
Eijθ (s)ϕ̇j(s)ni da ds + 

∫ t



∫

B

[
Eij,iθ (s)ϕ̇j(s) + Eijθ,i(s)ϕ̇j(s)

]
dv ds

= 
∫ t



∫

B

{[ √
ε√
ρ

Eij,iθ (s)
][√

ρ√
ε

ϕ̇j(s)
]

+
[ √

ε√
ρ

Eijθ,i(s)
][√

ρ√
ε

ϕ̇j(s)
]}

dv ds, ()
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which by the Cauchy-Schwartz inequality and by the arithmetic-geometric mean inequal-
ity is bounded by

≤ 
∫ t



∫

B

{[ √
ε√
ρ

Eij,iθ (s)
]

+
[ √

ε√
ρ

Eijθ,i(s)
]} 


{[√

ρ√
ε

ϕ̇j(s)
]

+
[√

ρ√
ε

ϕ̇j(s)
]} 


dv ds

≤
∫ t



∫

B

{[ √
ε√
ρ

Eij,iθ (s)
]

+
[ √

ε√
ρ

Eijθ,i(s)
]

+ ρϕ̇j(s)ϕ̇j(s)
(


ε

+

ε

)}
dv ds. ()

We assume that

mE = sup
B̄

(EijEij)

 > , ()

m∗
E = sup

B̄
(Eij,iEkj,k)


 > . ()

We denote QE
j = Eijθ,i and

QE
j QE

j = Eijθ,iQE
j ≤ (EijEij)



(
QE

j θ,iQE
j θ,i

) 
 , ()

which yields

Eijθ,iEkjθ,k ≤ m
Eθ,iθ,i. ()

Therefore ∀ε, ε > 

–
∫ t



∫

B
θ (s)Eijϕ̇j,i(s) dv ds

≤
∫ t



∫

B

{(

ε

+

ε

)
ρϕ̇j(s)ϕ̇j(s) +

ε

ρ
m∗

E θ(s) +
ε

ρ
m

Eθ,i(s)θ,i(s)
}

dv ds, ()

which by () is further bounded by

≤
∫ t



∫

B

{(

ε

+

ε

)
ρϕ̇j(s)ϕ̇j(s) +

(
ε

ρ
m∗

E λ– +
ε

ρ
m

E

)
θ,i(s)θ,i(s)

}
dv ds. ()

Since θ (x, t) =  in B̄ × [,∞), by () and by () we obtain

∫ t



∫

B
ρϕ̇j(s)ϕ̇j(s) dv ds ≥ . ()

Hence we do not need any condition on ρ to prove the positivity of the integral above.
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We perform similar computations for the constitutive coefficient Dij. We have, since
θ (x, s) =  on ∂B × [, T),

– 
∫ t



∫

B
θ (s)Diju̇j,i(s) dv ds

= –
∫ t



∫

B

{[
Dijθ (s)u̇j(s)

]
,i –

[
Dijθ (s)

]
,iu̇j(s)

}
dv ds

= –
∫ t



∫

∂B
Dijθ (s)u̇j(s)ni da ds + 

∫ t



∫

B

[
Dij,iθ (s)u̇j(s) + Dijθ,i(s)u̇j(s)

]
dv ds

= 
∫ t



∫

B

{[ √
ε√
ρ

Dij,iθ (s)
][√

ρ√
ε

u̇j(s)
]

+
[ √

ε√
ρ

Dijθ,i(s)
][√

ρ√
ε

u̇j(s)
]}

dv ds, ()

which by the Cauchy-Schwartz inequality and by the arithmetic-geometric mean inequal-
ity is bounded by

≤ 
∫ t



∫

B

{[ √
ε√
ρ

Dij,iθ (s)
]

+
[ √

ε√
ρ

Dijθ,i(s)
]} 


{[√

ρ√
ε

u̇j(s)
]

+
[√

ρ√
ε

u̇j(s)
]} 


dv ds

≤
∫ t



∫

B

{[ √
ε√
ρ

Dij,iθ (s)
]

+
[ √

ε√
ρ

Dijθ,i(s)
]

+ ρu̇j(s)u̇j(s)
(


ε

+

ε

)}
dv ds. ()

We assume that

mD = sup
B̄

(DijDij)

 > , ()

m∗
D = sup

B̄
(Dij,iDkj,k)


 > . ()

We denote QD
j = Dijθ,i and

QD
j QD

j = Dijθ,iQD
j ≤ (DijDij)



(
QD

j θ,iQD
j θ,i

) 
 , ()

which yields

Dijθ,iDkjθ,k ≤ m
Dθ,iθ,i. ()

Therefore ∀ε, ε > 

– 
∫ t



∫

B
θ (s)Diju̇j,i(s) dv ds

≤
∫ t



∫

B

{(

ε

+

ε

)
ρu̇j(s)u̇j(s) +

ε

ρ
m∗

D θ(s) +
ε

ρ
m

Dθ,i(s)θ,i(s)
}

dv ds, ()

which by () is further bounded by

≤
∫ t



∫

B

{(

ε

+

ε

)
ρu̇j(s)u̇j(s) +

(
ε

ρ
m∗

D λ– +
ε

ρ
m

D

)
θ,i(s)θ,i(s)

}
dv ds. ()
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Since θ (x, t) =  in B̄ × [,∞), by () and by () we obtain

∫ t



∫

B
ρu̇j(s)u̇j(s) dv ds ≥ . ()

Hence we do not need any condition on ρ to prove the positivity of the integral above.
We say that Kij is a positive definite tensor if there exists a positive constant k >  such

that ∀ξi

Kijξiξj ≥ kξiξi. ()

Thus k can be identified with the minimum of the positive eigenvalues of Kij on B̄. Since
Kijθ,iθ,j ≥ kθ,iθ,i we have ∀ε, ε > , t ∈ [, T)

– 
∫ t



∫

B
θ (s)Eijϕ̇j,i(s) dv ds

≤
(


ε

+

ε

)∫ t



∫

B
ρϕ̇j(s)ϕ̇j(s) dv ds

+
θ

ρk

(
εm∗

E λ– + εm
E
)∫ t



∫

B


θ

Kijθ,i(s)θ,j(s) dv ds ()

and

– 
∫ t



∫

B
θ (s)Diju̇j,i(s) dv ds

≤
(


ε

+

ε

)∫ t



∫

B
ρu̇j(s)u̇j(s) dv ds

+
θ

ρk

(
εm∗

D λ– + εm
D
)∫ t



∫

B


θ

Kijθ,i(s)θ,j(s) dv ds. ()

We choose parameters ε, ε so small that

α =  –
θ

ρk

(
εm∗

D λ– + εm
D
)

–
θ

ρk

(
εm∗

E λ– + εm
E
)

> . ()

Hence from equation () we have

∫

B


θ

cθ(t) dv + α

∫ t



∫

B


θ

Kijβi(s)βj(s) dv ds

≤
(


ε

+

ε

)∫ t



∫

B
ρu̇j(s)u̇j(s) dv ds

+
(


ε

+

ε

)∫ t



∫

B
ρϕ̇j(s)ϕ̇j(s) dv ds – 

∫ t



∫

B
θ (s)Dijεijkϕk(s) dv ds. ()
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