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Abstract
In this article, we consider the following boundary value problem of nonlinear
fractional differential equation with p-Laplacian operator:

Dα(φp(D
αu(t))) = f (t,u(t)), 0 < t < 1,

u(0) = u(1) = Dαu(0) = Dαu(1) = 0,

where 1 < α ≤ 2 is a real number, Dα is the conformable fractional derivative,
φp(s) = |s|p–2s, p > 1, φ–1

p = φq, 1/p + 1/q = 1, and f : [0, 1]× [0, +∞) → [0, +∞) is
continuous. One of the difficulties here is that the corresponding Green’s function
G(t, s) is singular at s = 0. By the use of an approximation method and fixed point
theorems on cone, some existence and multiplicity results of positive solutions are
acquired. Some examples are presented to illustrate the main results.
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1 Introduction
Recently, differential equations have been of great interest. Integer order differential equa-
tions with p-Laplacian have been subject to a lot of research [, ]. Now, many people pay
attention to the existence and multiplicity of solutions for boundary value problems of
fractional differential equations with p-Laplacian by the use of techniques of nonlinear
analysis [–], upper and lower solutions method [, ], coincidence degree [], Banach
contraction mapping principle [], etc.

Chen et al. [] investigated the boundary value problem for a fractional differential equa-
tion with a p-Laplacian operator at resonance,

Dβ
+

(
φp

(
Dα

+u(t)
))

= f
(
t, u(t), Dα

+u(t)
)
,  < t < ,

Dα
+u() = Dα

+u() = ,
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where  < α,β ≤ ,  < α+β ≤ , and Dα
+ is the Caputo fractional derivative. φp(s) = |s|p–s,

p > , φ–
p = φq, /p + /q = . By using the coincidence degree theory, a new result of the

existence of solution is obtained.
Lu et al. [] studied the following p-Laplacian fractional differential equations boundary

problems:

Dβ
+

(
φp

(
Dα

+u(t)
))

= f
(
t, u(t)

)
,  < t < ,

u() = u′() = u′() = , Dα
+u() = Dα

+u() = ,

where  < α ≤ ,  < β ≤ , Dα
+, Dβ

+ are the standard Riemann-Liouville fractional deriva-
tives, φp(s) = |s|p–s, p > , φ–

p = φq, /p + /q = , and f : [, ] × [, +∞) → [, +∞) is
continuous. By the properties of the Green’s function, the Guo-Krasnosel’skii fixed point
theorem, the Leggett-Williams fixed point theorem, and the upper and lower solutions
method, some new existence results are obtained.

To the best of our knowledge, most of the literature about boundary value problems did
not involve the singularity of G(t, s). Therefore, in order to fill this gap in the literature, in
this paper, we investigate the following p-Laplacian fractional differential equation bound-
ary value problem:

Dα
(
φp

(
Dαu(t)

))
= f

(
t, u(t)

)
,  < t < , (.)

u() = u() = Dαu() = Dαu() = , (.)

where  < α ≤  is a real number, Dα is the conformable fractional derivative, φp(s) = |s|p–s,
p > , φ–

p = φq, /p + /q = , f : [, ] × [, +∞) → [, +∞) is continuous. By the approx-
imation method and fixed point theorems on cone, some existence and multiplicity re-
sults of positive solutions are obtained. For α = , Problem (.), (.) is called a fourth
p-Laplacian boundary value problem, which has been studied in [–].

The rest of this paper is organized as follows. In Section , we recall some concepts rela-
tive to the new conformable fractional calculus and give some lemmas with respect to the
corresponding Green’s function. In Section , we investigate the existence of positive so-
lution for the boundary value problem (.), (.). In Section , the multiplicity of positive
solutions is studied. In Section , we present some examples to illustrate our main results
in Section  and Section , respectively.

2 Preliminaries and lemmas
For the convenience of the reader, we give some background material from fractional cal-
culus theory to facilitate the analysis of Problem (.), (.). These results can be found in
the recent literature; see [–].

Definition . Let α ∈ (n, n + ] and f be a n-differentiable function at t > , then the
fractional conformable derivative of order α at t >  is given by

Dαf (t) = Dα–nf (n)(t) = lim
ε→

f (n)(t + εtn+–α) – f (n)(t)
ε

, (.)
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provided the limit of the right hand side exists. If f is α-differentiable in some (, a), a > ,
and limt→+ Dαf (t) exists, then define

Dαf () = lim
t→+

Dαf (t). (.)

Remark . As a basic example, given α ∈ (n, n + ], we have

Dαtk = ,

where k = , , . . . , n.

Lemma . Let t > , α ∈ (n, n + ]. The function f (t) is (n + )-differentiable if and only if
f is α-differentiable, moreover, Dαf (t) = tn+–αf (n+)(t).

Proof Let h = εtn+–α + O(ε). With Definition ., we have

Dαf (t) = lim
ε→

f (n)(t + εtn+–α) – f (n)(t)
ε

= lim
ε→

f (n)(t + h) – f (n)(t)
h

tn+–α+O(ε)

= tn+–αf (n+)(t).

The proof is complete. �

Definition . ([]) Let α ∈ (n, n + ]. The fractional integral of order α >  at t >  of a
function f : (,∞) → R is given by

Iαf (t) = In+(tα–n–f (t)
)

=

n!

∫ t


(t – s)nsα–n–f (s) ds, (.)

where In+ denotes the integration operator of order n + .

Lemma . Let α ∈ (n, n + ] and f be a continuous function defined in (, +∞), one has
DαIαf (t) = f (t) for t > .

Proof Since f (t) is continuous, Iαf (t) is (n + )-differentiable. In view of Lemma . one
has

Dα
(
Iαf

)
(t) = tn+–α dn+

dtn+

(

n!

∫ t


(t – s)nsα–n–f (s) ds

)

= tn+–αf (t)tα–n–

= f (t).

The proof is complete. �

Lemma . ([] Mean value theorem) Let a ≥  and f : [a, b] → R be a function with the
properties that
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() f is continuous on [a, b],
() f is α-differentiable on (a, b) for some α ∈ (, ).

Then there exists c ∈ (a, b) such that

Dαf (c) =
f (b) – f (a)

α

bα – 
α

aα
.

Lemma . Let α ∈ (n, n + ], f be a α-differentiable function at t > , then Dαf (t) =  for
t ∈ (,∞) if and only if f (t) = a + at + · · · + an–tn– + antn, where ak ∈ R, for k = , , . . . , n.

Proof The sufficiency follows by Remark ..
Next, given t, t ∈ (,∞) with t < t, by Lemma ., there exists ξ ∈ (t, t) such that

f (n)(t) – f (n)(t) = Dαf (ξ )
(


α

tα
 –


α

tα


)
.

By means of Dαf (ξ ) = , we have f (n)(t) = f (n)(t), with arbitrary t, t, one has f (n)(t) ≡ C
and f (t) = a + at + · · · + an–tn– + antn, for t ∈ (,∞). �

With Lemma . and Lemma ., the following lemma is immediate.

Lemma . Assume that u ∈ C(, +∞) with a fractional derivative of order α ∈ (n, n + ]
that belongs to C(, ) ∩ L(, ). Then

IαDαu(t) = u(t) + c + ct + · · · + cntn, (.)

for some ck ∈ R, k = , , . . . , n.

Now, we present the Green’s function. In the following arguments, we always suppose
that α ∈ (, ].

Lemma . Given y ∈ C[, ], the unique solution of

Dαu(t) + y(t) = ,  < t < , (.)

u() = u() = , (.)

is

u(t) =
∫ 


G(t, s)y(s) ds,

where

G(t, s) =

⎧
⎨

⎩
( – t)sα–, for  ≤ s ≤ t ≤ ;

tsα–( – s), for  ≤ t ≤ s ≤ .
(.)
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Proof Applying Lemma . we reduce equation (.) to an equivalent integral equation,

u(t) = –Iαy(t) + c + ct

= –
∫ t


(t – s)sα–y(s) ds + c + ct,

for some c, c ∈ R. By (.), we have c = , c =
∫ 

 (t – s)sα–y(s) ds. Therefore, the unique
solution of Problem (.), (.) is

u(t) = –
∫ t


(t – s)sα–y(s) ds + t

∫ 


(t – s)sα–y(s) ds

=
∫ t



(
–tsα– + sα– + tsα– – tsα–)y(s) ds

+
∫ 

t

(
tsα– – tsα–)y(s) ds

=
∫ t


( – t)sα–y(s) ds +

∫ 

t
tsα–( – s)y(s) ds

=
∫ 


G(t, s)y(s) ds.

The proof is complete. �

We point out here that (.) becomes the usual Green’s function when α = .

Lemma . Let y ∈ C[, ] and  < α ≤ . Then the fractional differential equation bound-
ary value problem

Dα
(
φp

(
Dαu(t)

))
= y(t),  < t < , (.)

u() = u() = Dαu() = Dαu() = , (.)

has a unique solution,

u(t) =
∫ 


G(t, s)φq

(∫ 


G(s, τ )y(τ ) dτ

)
ds. (.)

Proof Apply the operator Iα on both sides of (.), with Lemma ., we have

φp
(
Dαu(t)

)
+ C + Ct = Iαy(t).

So,

φp
(
Dαu(t)

)
= Iαy(t) – C – Ct

=
∫ t


(t – τ )τα–y(τ ) dτ – C – Ct
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for some C, C ∈R. By the boundary conditions Dαu() = Dαu() = , we have

C = , C =
∫ 


( – τ )τα–y(τ ) dτ .

Therefore, the solution u(t) of the fractional differential equation boundary value problem
(.) and (.) satisfies

φp
(
Dαu(t)

)
=

∫ t


(t – τ )τα–y(τ ) dτ – t

∫ 


( – τ )τα–y(τ ) dτ

= –
∫ 


G(t, τ )y(τ ) dτ .

Thus, the fractional differential equation boundary value problem (.) and (.) is equiv-
alent to the problem

Dαu(t) + φq

(∫ 


G(t, τ )y(τ ) dτ

)
= ,  < t < ,

u() = u() = .

Lemma . implies that the fractional differential equation boundary value problem (.)
and (.) has a unique solution,

u(t) =
∫ 


G(t, s)φq

(∫ 


G(s, τ )y(τ ) dτ

)
ds.

The proof is complete. �

Lemma . The function G(t, s) defined by (.) satisfies the following properties:

(i) G(t, s) > , for all t, s ∈ (, );
(ii) min 

 ≤t≤ 


G(t, s) ≥ 
 max≤t≤ G(t, s) = 

 G(s, s), for s ∈ (, ).

Proof Observing the expression of G(t, s), it is clear that G(t, s) >  for t, s ∈ (, ). Next,
for given s ∈ (, ) we consider the partial derivative of G(t, s) with respect to t,

∂G(t, s)
∂t

=

⎧
⎨

⎩
–sα–, s ≤ t;

sα–( – s), t ≤ s.

This shows that G(t, s) is decreasing with respect to t for s ≤ t, and increasing for t ≤ s.
So,

max
≤t≤

G(t, s) = G(s, s) = ( – s)sα–

and

min

 ≤t≤ 



G(t, s) =

⎧
⎨

⎩


 sα–, s ∈ (, 

 ];

 ( – s)sα–, s ∈ [ 

 , ).
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Let

γ (s) =
min 

 ≤t≤ 


G(t, s)

G(s, s)
=

⎧
⎨

⎩


(–s) , s ∈ (, 

 ];


s , s ∈ [ 
 , ).

Clearly, γ (s) ≥ 
 , s ∈ (, ), the proof is complete. �

It should be noted that the constant bound is new for fractional derivatives. It was
pointed out that the Riemann-Liouville fractional derivative does not allow one to get
a positive constant boundary (see [], Remark .).

Lemma . ([])

() If  < q ≤ , then

∣∣φq(u + v) – φq(u)
∣∣ ≤ –q|v|q–

for all u, v ∈ R.
() If q > , then

∣∣φq(u + v) – φq(u)
∣∣ ≤ (q – )

(|u| + |v|)q–|v|

for all u, v ∈ R.

Lemma . ([]) Suppose E is a Banach space and Tn : E → E, n = , , . . . are completely
continuous operators, T : E → E. If ‖Tnu – Tu‖ uniformly converges to zero when n → ∞
for all bounded set 
 ⊆ E, then T : E → E is completely continuous.

Definition . The map θ is said to be a nonnegative continuous concave functional on
a cone P of a Banach space E provided that θ : P → [,∞) is continuous and

θ
(
tx + ( – t)y

) ≥ tθ (x) + ( – t)θ (y)

for all x, y ∈ P and  < t < .

The following fixed point theorems are useful in our proofs.

Lemma . ([]) Let E be a Banach space, P ⊆ E a cone, and 
, 
 two bounded open
balls of E centered at the origin with 
 ⊂ 
. Suppose that A : P ∩ (
\
) → P is a
completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂
, and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂
 or
(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂
, and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂


holds. Then A has a fixed point in P ∩ (
\
).

Lemma . ([]) Let P be a cone in a real Banach space E, Pc = {x ∈ P|‖x‖ ≤ c}, θ a
nonnegative continuous concave functional on P such that θ (x) ≤ ‖x‖, for all x ∈ Pc, and
P(θ , b, d) = {x ∈ P|b ≤ θ (x),‖x‖ ≤ d}. Suppose A : Pc → Pc is completely continuous and
there exist constants  < a < b < d ≤ c such that
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(C) {x ∈ P(θ , b, d)|θ (x) > b} is non-empty, and θ (Ax) > b, for x ∈ P(θ , b, d);
(C) ‖Ax‖ < a, for x ≤ a;
(C) θ (Ax) > b, for x ∈ P(θ , b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x, x, x with

‖x‖ < a, b < θ (x), a < ‖x‖, θ (x) < b.

Remark . ([]) If we have d = c, then condition (C) of Lemma . implies condition
(C) of Lemma ..

3 Existence results
Let E = C[, ] be endowed with the ordering u ≤ v if u(t) ≤ v(t) for all t ∈ [, ], and the
maximum norm ‖u‖ = max≤t≤ |u(t)|. Define

P =
{

u ∈ E|u(t) ≥ , min

 ≤t≤ 



u(t) ≥ 


‖u‖
}

.

Define the nonnegative continuous concave functional θ by

θ (u) = min

 ≤t≤ 



∣
∣u(t)

∣
∣.

Given the continuous function f ∈ C([, ] × [,∞)), define T , Tn : P → E as

(Tu)(t) :=
∫ 


G(t, s)φq

(∫ 


G(s, τ )f

(
τ , u(τ )

)
dτ

)
ds,

(Tnu)(t) :=
∫ 


n

G(t, s)φq

(∫ 


n

G(s, τ )f
(
τ , u(τ )

)
dτ

)
ds, n = , , . . . .

Lemma . T : P → P is completely continuous.

Proof Firstly, we show that Tn : P → P are completely continuous for n = , , . . . . Given
u ∈ P, with Lemma . and the nonnegativity of f (t, u), one has

(Tnu)(t) =
∫ 


n

G(t, s)φq

(∫ 


n

G(s, τ )f
(
τ , u(τ )

)
dτ

)
ds

≤
∫ 


n

G(s, s)φq

(∫ 


n

G(s, τ )f
(
τ , u(τ )

)
dτ

)
ds,

so

‖Tnu‖ ≤
∫ 


n

G(s, s)φq

(∫ 


n

G(s, τ )f
(
s, u(s)

)
dτ

)
ds.
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And next, if u ∈ P,

min

 ≤t≤ 



(Tnu)(t) = min

 ≤t≤ 



∫ 


n

G(t, s)φq

(∫ 


n

G(s, τ )f
(
s, u(s)

)
dτ

)
ds

≥ 


∫ 


n

G(s, s)φq

(∫ 


n

G(s, τ )f
(
s, u(s)

)
dτ

)
ds

≥ 


‖Tnu‖.

As a consequence Tn : P → P. The continuity of Tn follows by the continuity of G(t, s)
and f (t, u). Let 
 ⊂ P be bounded, i.e., there exists a positive constant M >  such that
‖u‖ ≤ M for all u ∈ 
. Let

L = max
≤t≤,≤u≤M

∣
∣f (t, u)

∣
∣ + , H =

∫ 


G(s, s) ds + ,

then, for u ∈ 
, we have

∣
∣(Tnu)(t)

∣
∣ =

∫ 


n

G(t, s)φq

(∫ 


n

G(s, τ )f
(
sτ , u(τ )

)
dτ

)
ds

≤ Lq–Hq

< +∞.

Hence, Tn(
) is bounded for n = , , . . . . On the other hand, given ε > , let

δ =
ε

Lq–Hq–( 
α– + 

α
)
,

then, for each u ∈ 
, t, t ∈ [, ], t < t, and t – t < δ, one has

∣
∣(Tnu)(t) – (Tnu)(t)

∣
∣ < ε.

That is to say that Tn(
) has equicontinuity. In fact, we consider three situations.
()  < t < t < 

n .

∣
∣(Tnu)(t) – (Tnu)(t)

∣
∣

=
∣∣
∣∣

∫ 


n

G(t, s)φq

(∫ 


n

G(s, τ )f
(
τ , u(τ )

)
dτ

)
ds

–
∫ 


n

G(t, s)φq

(∫ 


n

G(s, τ )f
(
τ , u(τ )

)
dτ

)
ds

∣∣
∣∣

≤ Lq–Hq–
∫ 


n

∣
∣G(t, s) – G(t, s)

∣
∣ds

= Lq–Hq–
∫ 


n

(t – t)sα–( – s) ds

≤ Lq–Hq–(t – t)
(


α – 

–

α

)

< ε.
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()  < t < 
n < t < .

∣
∣(Tnu)(t) – (Tnu)(t)

∣
∣

≤ Lq–Hq–
(∫ t


n

∣
∣G(t, s) – G(t, s)

∣
∣ds

+
∫ 

t

∣
∣G(t, s) – G(t, s)

∣
∣ds

)

≤ (LH)q–
(∫ t


n

sα–[(s – t) + (t – t)s
]

ds

+
∫ 

t

(t – t)sα–( – s) ds
)

≤ (LH)q–(t – t)
∫ 



(
sα– + sα–)ds

≤ (LH)q–(t – t)
(


α – 

+

α

)

< ε.

() 
n < t < t < .

∣
∣(Tnu)(t) – (Tnu)(t)

∣
∣

≤ Lq–Hq–
(∫ t


n

∣
∣G(t, s) – G(t, s)

∣
∣ds +

∫ t

t

∣
∣G(t, s) – G(t, s)

∣
∣ds

+
∫ 

t

∣
∣G(t, s) – G(t, s)

∣
∣ds

)

= Lq–Hq–
(∫ t


n

(t – t)sα– ds +
∫ t

t

(t – t)
(
sα– + sα–)ds

+
∫ 

t

(t – t)
(
sα– – sα–)ds

)

≤ Lq–Hq–(t – t)
∫ 



(
sα– + sα–)ds

≤ Lq–Hq–(t – t)
(


α – 

+

α

)

< ε.

By the means of the Arzela-Ascoli theorem, we see that Tn : P → P are completely con-
tinuous operators.

Secondly, it is clear that T : P → P. We prove that Tn : P → P uniformly converges to T
and T : P → P is completely continuous too.

With the use of Lemma ., we have

φq(A + B) < φq(A) + φq(B) + (q – )(A + B)q–B.
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Given ε > , let

N =
( Lq–H

αq– + qLq–Hq–

α

ε

)
,

then ‖Tnu – Tu‖ < ε, for all n > N . In fact,

‖Tnu – Tu‖
= max

≤t≤

∣∣(Tnu)(t) – (Tu)(t)
∣∣

=
∫ 


G(t, s)φq

(∫ 


G(s, τ )f

(
τ , u(τ )

)
dτ

)
ds

–
∫ 


n

G(t, s)φq

(∫ 


n

G(s, τ )f
(
τ , u(τ )

)
dτ

)
ds

<
∫ 


G(t, s)

[
φq

(∫ 


n

G(s, τ )f
(
τ , u(τ )

)
dτ

)
+ φq

(∫ 
n


G(s, τ )f

(
τ , u(τ )

)
dτ

)

+ (q – )
(∫ 


G(s, τ )f

(
τ , u(τ )

)
dτ

)q– ∫ 
n


G(s, τ )f

(
τ , u(τ )

)
dτ

]
ds

–
∫ 


n

G(t, s)φq

(∫ 


n

G(s, τ )f
(
s, u(s)

)
dτ

)
ds

≤
∫ 

n


G(t, s)φq

(∫ 


n

G(s, τ )f
(
τ , u(τ )

)
dτ

)
ds

+ Lq–
∫ 


G(s, s) dsφq

(∫ 
n


G(τ , τ ) dτ

)

+ (q – )Lq–
∫ 


G(s, s) ds

(∫ 


G(τ , τ ) dτ

)q– ∫ 
n


G(τ , τ ) dτ

≤
(

Lq–Hq–

α
+

Lq–H
αq– +

(q – )Lq–Hq–

α

)(

n

)α

=
(

Lq–H
αq– +

qLq–Hq–

α

)(

n

)α

< ε.

By the use of Lemma ., T : P → P is completely continuous. �

Denote

M =
(∫ 


G(s, s) dsφq

(∫ 


G(τ , τ ) dτ

))–

,

N =
(∫ 






G(s, s) dsφq

(∫ 





G(τ , τ ) dτ

))–

.

Theorem . Let f (t, u) be continuous on [, ] × [,∞). Assume that there exist two dif-
ferent positive constants r, r, and r = r such that
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(H) f (t, u) ≤ φp(Mr), for (t, u) ∈ [, ] × [, r];
(H) f (t, u) ≥ φp(Nr), for (t, u) ∈ [ 

 , 
 ] × [ 

 r, r].

Then Problem (.), (.) has at least one positive solution u such that min{r, r} ≤ ‖u‖ ≤
max{r, r}.

Proof By Lemma ., T : P → P is completely continuous. Without loss of generality, sup-
pose  < r < r, and let


 :=
{

u ∈ P|‖u‖ < r
}

, 
 :=
{

u ∈ P|‖u‖ < r
}

.

For u ∈ ∂
, we have  ≤ u(t) ≤ r for all t ∈ [, ]. It follows from (H) that

‖Tu‖ = max
≤t≤

∣∣
∣∣

∫ 


G(t, s)φq

(∫ 


G(s, τ )f

(
τ , u(τ )

)
dτ

)
ds

∣∣
∣∣

≤ Mr

∫ 


G(s, s) dsφq

(∫ 


G(τ , τ ) dτ

)
= r = ‖u‖.

So,

‖Tu‖ ≤ ‖u‖, for u ∈ ∂
.

For u ∈ ∂
, by the definition of P, we have

u(t) ≥ 


‖u‖ =



r, t ∈
[




,



]
.

By assumption (H), for t ∈ [ 
 , 

 ], we have

(Tu)(t) =
∫ 


G(t, s)φq

(∫ 


G(s, τ )f

(
τ , u(τ )

)
dτ

)
ds

≥
∫ 






G(s, s)φq

(∫ 








G(τ , τ )f
(
τ , u(τ )

)
dτ

)
ds

≥ Nr

∫ 








G(s, s) dsφq

(∫ 








G(τ , τ ) dτ

)
= r = ‖u‖.

So,

‖Tu‖ ≥ ‖u‖, for u ∈ ∂
.

Therefore, by Lemma ., we complete the proof. �

4 Multiplicity
Theorem . Suppose f (t, u) is continuous on [, ] × [,∞) and there exist constants
 < a < 

 b such that the following assumptions hold:

(A) f (t, u) ≤ φp(Ma), for (t, u) ∈ [, ] × [, a];
(A) f (t, u) ≥ φp( 

 Nb), for (t, u) ∈ [ 
 , 

 ] × [ 
 b, b];
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(A) f (t, u) ≤ φp(Mb), for (t, u) ∈ [, ] × [, b].

Then the boundary value problem (.), (.) has at least three positive solutions u, u, u

with

max
≤t≤

∣
∣u(t)

∣
∣ < a,




b < min

 ≤t≤ 



∣
∣u(t)

∣
∣ < max

≤t≤

∣
∣u(t)

∣
∣ ≤ b,

a < max
≤t≤

∣∣u(t)
∣∣ ≤ b, min


 ≤t≤ 



∣∣u(t)
∣∣ <




b.

Proof We show that all the conditions of Lemma . are satisfied. If u ∈ Pb, then ‖u‖ ≤ b.
Assumption (A) implies f (t, u(t)) ≤ Mb for  ≤ t ≤ , consequently,

‖Tu‖ = max
≤t≤

∣
∣∣
∣

∫ 


G(t, s)φq

(∫ 


G(s, τ )f

(
τ , u(τ )

)
dτ

)
ds

∣
∣∣
∣

≤
∫ 


G(s, s)φq

(∫ 


G(τ , τ )f

(
τ , u(τ )

)
dτ

)
ds

≤ Mb
∫ 


G(s, s) dsφq

(∫ 


G(τ , τ ) dτ

)
≤ b.

Hence, T : Pb → Pb. Similarly, if u ∈ Pa, then assumption (A) yields f (t, u(t)) ≤ Ma,  ≤
t ≤ . Therefore, condition (C) of Lemma . is satisfied.

Choose

u(t) =

 b + b


=

b


,  ≤ t ≤ .

Then u(t) ∈ P(θ , 
 b, b), θ (u) = θ ( b

 ) > 
 b, consequently,

{
u ∈ P

(
θ ,




b, b
)∣∣

∣θ (u) >



b
}

= ∅.

Hence, if u ∈ P(θ , 
 b, b), then 

 b ≤ u(t) ≤ b for 
 ≤ t ≤ 

 . From assumption (A), we have
f (t, u(t)) ≥ N( 

 b) for 
 ≤ t ≤ 

 . So

θ (Tu) = min

 ≤t≤ 



∣∣(Tu)(t)
∣∣ ≥

∫ 






G(s, s)φq

(∫ 








G(τ , τ )f
(
τ , u(τ )

)
dτ

)
ds

> N



b
∫ 









G(s, s) dsφq

(∫ 








G(τ , τ ) dτ

)
=




b.

That is,

θ (Tu) >



b, for all u ∈ P
(

θ ,



b, b
)

.

This shows that condition (C) of Lemma . is satisfied.
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By Lemma . and Remark ., Problem (.), (.) has at least three positive solutions
u, u, u, satisfying

max
≤t≤

∣
∣u(t)

∣
∣ < a,




b < min

 ≤t≤ 



∣
∣u(t)

∣
∣,

a < max
≤t≤

∣∣u(t)
∣∣, min


 ≤t≤ 



∣∣u(t)
∣∣ <




b.

The proof is complete. �

5 Some examples
Example . Consider the following boundary value problem:

D


(
φ

(
D


 u(t)

))
=  +

√
u +

t


,  < t < , (.)

u() = u() = D

 u() = D


 u() = . (.)

By a simple computation, we obtain M = ., N ≈ .. Choose r = , r = 
 , then

f (t, u) =  +
√

u +
t


≤ . < φ(Mr) = ., for (t, u) ∈ [, ] × [, ],

f (t, u) =  +
√

u +
t


≥  > φ(Nr) ≈ ., for (t, u) ∈

[



,



]
×

[



,




]
.

With the use of Theorem ., the fractional differential equation boundary value problem
(.) and (.) has at least one positive solution u such that 

 ≤ ‖u‖ ≤ .

Example . Consider the following boundary value problem:

D


(
φ

(
D


 u(t)

))
= f (t, u),  < t < , (.)

u() = u() = D

 u() = D


 u() = , (.)

where

f (t, u) =

⎧
⎨

⎩
u + 

 t, u ≤ ;

 + u + 
 t, u ≥ .

We obtain M = ., N ≈ .. Choose a = ., b = , then

f (t, u) = u +
t


< . < φ(Ma) = ., for (t, u) ∈ [, ] × [, .],

f (t, u) =  + u +



t ≥  > φ

(
Nb


)
≈ ., for (t, u) ∈

[



,



]
× [, ],

f (t, u) =  + u +



t ≤ . < φ(Mb) = , for (t, u) ∈ [, ] × [, ].
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With the use of Theorem ., the fractional differential equation boundary value problem
(.) and (.) has at least three positive solutions u, u, and u with

max
≤t≤

∣∣u(t)
∣∣ < .,  < min


 ≤t≤ 



∣∣u(t)
∣∣ < max

≤t≤

∣∣u(t)
∣∣ ≤ ,

. < max
≤t≤

∣∣u(t)
∣∣ ≤ , min


 ≤t≤ 



∣∣u(t)
∣∣ < .
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