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Abstract
In this paper, we consider the stochastic heat equation of the form

∂u

∂ t
= (� +�α )u +

∂ f

∂x
(t, x,u) +

∂2W

∂ t ∂x
,

whereW is a fractional Brownian sheet,� +�α is a pseudo differential operator onR
which gives rise to a Lévy process consisting of the sum of a Brownian motion and an
independent symmetric α-stable process, and f : [0, T ]×R×R → R is a nonlinear
measurable function. We introduce the existence, uniqueness, Hölder regularity and
density estimate of the solution.
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1 Introduction
Stochastic heat equations and fractional heat equations driven by fractional Brownian mo-
tion (sheet) are a recent research direction in probability theory and its applications. In
Balan and Conus [], Song [], the authors considered intermittency for the fractional heat
equation and a class of stochastic partial differential equations. In Chen et al. [], Hu et al.
[], Hu, Lu and Nualart [],the authors discussed the Feynman-Kac formula for fractional
heat equations. In Bo et al. [], Diop and Huang [], Duncan et al. [], Balan [], Hu and
Nualart [], Liu and Yan [], the authors introduced the stochastic heat equations with
fractional white noises, and about the stochastic heat equations with fractional-colored
noises we can see Jiang et al. [, ], Balan and Tudor [, ], Tudor [] and the refer-
ences therein. However, it is very limited to study the stochastic heat equations driven by
the mixed fractional operator �+�α and fractional Brownian sheet, where �α = –(–�)α/

is the fractional power of the Laplacian. On the other hand, many mathematical problems
in physics and engineering with respect to systems and processes are represented by a
kind of equations, more precisely fractional order differential equations driven by frac-
tional noise. The increasing interest in this class of equations is motivated both by their
applications to fluid dynamic traffic model, viscoelasticity, heat conduction in materials
with memory, electrodynamics with memory and also because they can be employed to
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approach nonlinear conservation laws (see, for example, Sobczyk [] and Droniou and
Imbert []). Therefore, it seems interesting to handle the mixed fractional heat equations
driven by fractional Brownian sheet. In this paper, we are concerned with the stochastic
heat equation of the form

{
∂u
∂t = (� + �α)u + ∂f

∂x (t, x, u(t, x)) + ∂W
∂t ∂x , t ∈ [, T], x ∈R,

u(, x) = ϑ(x), x ∈R
(.)

with  < α < , where W (t, x) is the fractional Brownian sheet and the nonlinear mea-
surable function f : [, T] × R × R → R and the initial-value ϑ(x) satisfy the following
assumptions:

Assumption  For some p ≥ , we have

sup
x∈R

E
(∣∣ϑ(x)

∣∣p) < +∞, (.)

and there is a constant θ ∈ (, ) with pθ <  such that

sup
x∈R

E
(∣∣ϑ(

x + x′) – ϑ(x)
∣∣p) < Cp

∣∣x′∣∣pθ . (.)

Assumption  For each T > , there exists a constant C >  such that

∣∣f (t, x, y)
∣∣ ≤ C

(
 + |y|), (.)∣∣f (t, x, y) – f

(
s, x′, y′)∣∣ ≤ C

(|t – s| +
∣∣x – x′∣∣ +

∣∣y – y′∣∣) (.)

for all (t, x, y) ∈ [, T] ×R×R and x′, y′ ∈R.

The paper is organized as follows. Section  contains some preliminaries on the pseudo
differential operator �+�α , the double-parameter fractional noises and the related Malli-
avin calculus. In Section , we study the existence and uniqueness of the mild solution to
(.) by using a Picard approximation. In Section  we show the Hölder regularity of the so-
lution u(t, x). Section  is devoted to showing the existence of the density of u(t, x) and we
show that the law of u(t, x) is absolutely continuous with respect to the Lebesgue measure
on R by using Malliavin calculus.

2 Preliminaries
In this section, we briefly recall some basic results for Green function of the pseudo differ-
ential operator � + �α and Malliavin calculus associated with fractional Brownian sheet.
We refer to Chen et al. [–] and Nualart [] and the references therein for more de-
tails. For convenience, in this paper we assume that C is a positive constant depending
only on T , H , α and its value may be different in different positions.

2.1 On the pseudo differential operator � + �α

It is well known that, for a second order elliptic differential operator D on R
d satisfying

some natural conditions, there is a diffusion process X onR
d such that D is its infinitesimal
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generator, and its transition density function is the fundamental solution of the equation

∂u
∂t

= Du.

We also call the fundamental solution the heat kernel (Green function) of D . For a large
class of Markov processes with discontinuous sample paths, we also have such a corre-
spondence, and such Markov processes have been widely used in various problems. In
this one, an important Markov processes with discontinuous sample paths is (rotation-
ally) symmetric α-stable (Lévy) process with  < α ≤ .

A symmetric α-stable process X = {Xt , t ≥ ,Px, x ∈R} on R
d is a Lévy process such that

Ex
[
exp

{
iζ · (Xt – X)

}]
= exp

{
–t|ζ |α}

for every x, ζ ∈ R
d , where Ex denotes the expectation with respect to Px. When α = ,

X is a Brownian motion on R
d whose infinitesimal generator is the Laplacian �. When

 < α < , the infinitesimal generator of a symmetric α-stable process X is the fractional
Laplacian �α = –(–�)α/, which is a nonlocal operator and it can be defined by

�αh(x) = lim
δ↓

∫
{x′∈Rd :|x′–x|>δ}

(
h
(
x′) – h(x)

) L(d,α)
|x – x′|d+α

dx′,

where L(d,α) := αα–π– d
 
( d+α

 )/
( – α
 ) and 
 denotes the classical Gamma function.

In this paper, we consider only the case d = .
Let now Xα be a real value α-stable process with  < α <  and let B be a real value

Brownian motion independent of Xα . Define the process X by

Xt := Bt + Xα
t , t ≥ .

Then the infinitesimal generator of X is � + �α and

Ex
[
exp

{
iζ (Xt – X)

}]
= exp

{
–t

(|ζ | + |ζ |α)}

for every x, ζ ∈R
d . Denote by Gα(t, x) the fundamental solution of the equation

∂u
∂t

= (� + �α)u

(or equivalently the heat kernel of � + �α). It follows from Chen et al. [] that

C–


(
(t – s)– 

 e– C |x–y|
(t–s) + (t – s)– 

 ∧ t – s
|x – y|+α

)

≤ Gα(s, y; t, x) ≤ C

(
(t – s)– 

 e– |x–y|
C(t–s) + (t – s)– 

 ∧ t – s
|x – y|+α

)
(.)

for all t > s > , x, y ∈ R
d and some constants C, C > , where a ∧ a := min{a, a} for

a, a ∈R and Gα(s, y; t, x) := Gα(t – s, x – y).
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2.2 Malliavin calculus
Recall that a fractional Brownian sheet defined on a probability space (�,F , P) with
indices H, H ∈ (, ), W = {W (t, x), t ∈ [, T], x ∈ R} is a Gaussian random field with
W (, ) =  and

EW (t, x) = , E
(
W (t, x)W (s, y)

)
= RH (s, t)RH (x, y)

for all s, t > , x, y ∈R, where

RHj (u, v) =


(|u|Hj + |v|Hj – |u – v|Hj

)
, j = , ; u, v ∈R.

LetH be the completion of the linear space I generated by the indicator functions (s,t]×(x,y]

on [, T] ×R with respect to the scalar product

〈[,t]×[,x], [,s]×[,y]〉H = RH (s, t)RH (x, y).

The following embedding property follows from Bo et al. [] (see also Jiang et al. [] and
Wei []).

Proposition . For H > 
 we have

L

H
(
[, T] ×R

) ⊂H.

Define the mapping W (g) between I and the Gaussian space associated with W by

g = [,t]×[,x] −→
∫ T



∫
R

g(s, x)W (ds, dy) = W (t, x).

Then it is an isometry and it can be extended to H, which is called the Wiener integral of
g with respect to W . Denote

�H (t, s; x, y) = HH(H – )(H – )|t – s|H–|x – y|H–

for any  ≤ s < t ≤ T and x, y ∈R.

Proposition . For ϕ,ψ ∈H, we have E[W (μ)] =  and

E
[
W (ϕ)W (ψ)

]
=

∫
[,T]

ds dt
∫
R

ϕ(s, x)ψ(t, y)�H(s, t; x, y) dy dx.

Proposition . If H ∈ ( 
 , ) and ϕ,ψ ∈ L


H ([a, b]), then

∫
[a,b]

ϕ(x)ψ(y)|x – y|H– dx dy ≤ C‖ϕ‖
L


H ([a,b])

‖ψ‖
L


H ([a,b])

.

Consider now the set C of smooth and cylindrical functional

� = f
(
W (g), . . . , W (gn)

)
, (.)
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where the function f and its derivatives of all orders are bounded and gi ∈ H, i = , . . . , n.
Define the derivative operator D� (the Malliavin derivative) by

D� :=
n∑

j=

∂f
∂xj

W (g), . . . , W (gn)gj

for the functional � of the form (.). Then D is a close operator from L(�) into L(�;H).
Denote Dh� = 〈D�, h〉H. Let Dh and D

, be the closures of C with respect to the norms

‖�‖h =
√

E
[|�| + ‖Dh�‖

]
for h ∈H and

‖�‖, =
(
E|�| + E‖D�‖

H
)/,

respectively. Then D
, is the domain of D on L(�) and

� ∈D
, ⇐⇒ � ∈Dhn

for each n ∈ N, if
∑∞

n= E|Dhn�| < +∞, where {hn, n ≥ } is an orthogonal basis of H.
The divergence operator (integral) δ is defined as the adjoint of D. A random variable

u ∈ L(�;H) belongs to the domain Dom(δ) of δ, provided

E
∣∣〈D�, u〉H

∣∣ ≤ C‖�‖L(�)

for all � ∈ C . Thus, δ(u) can be determined by the next duality relationship:

E〈D�, u〉H = E
(
�δ(u)

)
, u ∈D

,.

We will also use the next notations:

δ(u) =
∫ T



∫
R

u(s, x)W (ds, dx)

and

δ(u[,t]×A) =
∫ t



∫
A

u(s, x)W (ds, dx).

By using Malliavin calculus for stochastic partial differential equations (abbr. SPDEs)
driven by fractional noises, we can get the following propositions (see, e.g., Wei [] and
Jiang et al. []).

Proposition . Let FN := σ {W (M), M ⊂ N} for N ∈ B([, T] ×R), and let the random
variable Y be square integrable. If Y is measurable with respect the σ -field FNc , then

DY N = ,

almost surely.
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Proposition . For a random variable Y belonging to D
,, if ‖DY‖

H >  almost surely,
the law of Y is absolutely continuous with respect to the Lebesgue measure.

3 Existence and uniqueness of the solution
Given a filtered probability space (�,F , (Ft)t≥, P) with the natural filtration (Ft)t≥

of W . In this section, the Cauchy problem (.) will be discussed. By using the heat kernel
Gα(s, y; t, x) of � + �α , as usual (see, e.g., Walsh []) we say that the stochastic field

u : [, T] ×R× � −→R

is a mild solution to (.) if

u(t, x) =
∫
R

Gα(, y; t, x)ϑ(y) dy +
∫ t



∫
R

Gα(s, y; t, x)W (ds, dy)

+
∫ t



∫
R

∂Gα

∂y
(s, y; t, x)f

(
s, y, u(s, y)

)
dy ds (.)

for all t ≥  and x ∈R. Now we can state the main result in this section, and its proof could
be derived by using some estimates of the heat kernel Gα(s, y; t, x) and some properties of
the stochastic integral

∫ t



∫
R

Gα(s, y; t, x)W (ds, dy).

Theorem . Under Assumptions  and , equation (.) admits a unique solution u =
{u(t, x), (t, x) ∈ [, T] ×R} such that

sup
t∈[,T],x∈R

E
∣∣u(t, x)

∣∣p < +∞

for all α ∈ (, ) and p ≥ .

Proof We first use Picard’s approximation to get a solution to (.) and then we show that
the solution is unique. This proof will be decomposed into three steps, and we define

⎧⎪⎨
⎪⎩

u(t, x) =
∫
R

Gα(, y; t, x)ϑ(y) dy,
un+(t, x) = u(t, x) +

∫ t

∫
R

Gα(s, y; t, x)W (dy, ds)
+

∫ t

∫
R

∂Gα

∂y (s, y; t, x)f (s, y, un(s, y)) dy ds
(.)

for all t ≥ , x ∈R and n ∈N = {, , , . . .}.
Step I. We prove that

sup
n∈N

sup
t∈[,T],x∈R

E
∣∣un(t, x)

∣∣p < +∞.

By Hölder’s inequality and Assumption , we get

E
∣∣u(t, x)

∣∣p ≤ E
((∫

R

∣∣Gα(, y; t, x)
∣∣dy

)p– ∫
R

∣∣Gα(, y; t, x)
∣∣∣∣ϑ(y)

∣∣p dy
)

≤ sup
x∈R

E
∣∣ϑ(x)

∣∣p
(∫

R

∣∣Gα(, y; t, x)
∣∣dy

)p

(.)
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for all p ≥ . Notice that (.) implies that

sup
t∈[,T],x∈R

∫
R

∣∣Gα(, y; t, x)
∣∣dy < +∞.

We see that supt∈[,T],x∈R E|u(t, x)|p < +∞.
On the other hand, for each n ≥  and p ≥  we denote

�p,n(t, x) = E
∣∣∣∣
∫ t



∫
R

Gα(s, y; t, x)W (dy, ds)
∣∣∣∣
p

,

�p,n(t, x) = E
∣∣∣∣
∫ t



∫
R

∂Gα

∂y
(s, y; t, x)f

(
s, y, un(s, y)

)
dy ds

∣∣∣∣
p

.

By (.) it follows that

E
∣∣un+(t, x)

∣∣p ≤ C
(
E
∣∣u(t, x)

∣∣p + �p,n(t, x) + �p,n(t, x)
)
. (.)

We need to estimate �p,n(t, x) and �p,n(t, x). Clearly, we have

∫
R

(t – s)– 
H e– C|x–y|

t–s dy ≤ C(t – s)– 
H

+ 


and

∫
R

(
(t – s)– 

 ∧ (t – s)
|x – y|+α

) 
H

dy ≤ C(t – s)– 
H

+ 
(+α)

for all t > s > . It follows that

∥∥Gα(s, ·; t, x)
∥∥

L


H (R)

=
(∫

R

Gα(s, y; t, x)


H dy
)H

≤ C
(∫

R

(
(t – s)– 

 e– |x–y|
C(t–s) + (t – s)– 

 ∧ (t – s)
|x – y|+α

) 
H

dy
)H

≤ C
(∫

R

(
(t – s)– 

 e– |x–y|
C(t–s)

) 
H dy +

∫
R

(
(t – s)– 

 ∧ (t – s)
|x – y|+α

) 
H

dy
)H

≤ C
(
(t – s)– 

 + H
 + (t – s)– 

 + H
(+α)

) ≤ C(t – s)– 
 + H

 , (.)

which implies that

�p,n(t, x)

= E
∣∣∣∣
∫ t



∫
R

Gα(r, z; t, x)W (dr, dz)
∣∣∣∣
p

≤ C
(∫ t



∫ t


dr dr

∫
R

Gα(r, z; t, x)�(r, r; z, z)Gα(r, z; t, x) dz dz

) p
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= C
(∫ t



∫ t


|r – r|H– dr dr

∫
R

|z – z|H–

· Gα(r, z; t, x)Gα(r, z; t, x) dz dz

) p


≤ C
(∫ t



∫ t


|r – r|H–∥∥Gα(r, ·; t, x)

∥∥
L


H (R)

∥∥Gα(r, ·; t, x)
∥∥

L


H (R)
dr dr

) p


≤ C
(∫ T



(∥∥Gα(r, ·; t, x)
∥∥

L


H (R)

) 
H dr

)pH

≤ C < +∞ (.)

by Propositions ., ., and (.). Similarly, by the Hölder inequality we get

�p,n(t, x) ≤ C
(∫ t



∫
R

∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy ds
)p–

·
∫ t



∫
R

(
E
∣∣f (s, y, un(s, y)

)∣∣p)∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy ds

≤ C
∫ t



∫
R

∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy ds

+ C
∫ t



∫
R

E
∣∣un(s, y)

∣∣p
∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy ds

≤ C
∫ t



∫
R

∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy ds

+ C
∫ t


sup
y∈R

E
∣∣un(s, y)

∣∣p ds
∫
R

∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy. (.)

Denote gx(t – s) =
∫
R

| ∂Gα

∂y (s, y; t, x)|dy, Dx = {z ∈R | |x – z| < (t – s)


(+α) }, and

G,α(s, y; t, x) := (t – s)– 
 e– |x–y|

C(t–s) + (t – s)– 
 ,

G,α(s, y; t, x) := (t – s)– 
 e– |x–y|

C(t–s) +
t – s

|x – y|+α

for all t > s >  and x, y ∈ R. It follows from (.), (.), and (.) that

sup
x∈R

E
∣∣un+(t, x)

∣∣p ≤ C +
∫ t


gx(t – s) ds +

∫ t


sup
y∈R

E
∣∣un(s, y)

∣∣pgx(t – s) ds

and
∫
R

∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy ≤
∫
Dx

∣∣∣∣∂G,α

∂y
(s, y; t, x)

∣∣∣∣dy +
∫
Dx

∣∣∣∣∂G,α

∂y
(s, y; t, x)

∣∣∣∣dy

=
∫
Dx

∣∣∣∣(t – s)– 
 e– |x–y|

C(t–s)

(
–

|x – y|
C(t – s)

)∣∣∣∣dy

+
∫
Dx

∣∣∣∣(t – s)– 
 e– |x–y|

C(t–s)

(
–

|x – y|
C(t – s)

)
– ( + α)

t – s
|x – y|+α

∣∣∣∣dy

≤ C|t – s|– 
 . (.)
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Combining this with Lemma  in Dalang [], we get

sup
n∈N

sup
t∈[,T],x∈R

E
∣∣un(t, x)

∣∣p < +∞.

Step II. We prove that {un(t, x)}n∈N converges in Lp(�) for any p ≥ . For n ≥ , we have

E
(∣∣un+(t, x) – un(t, x)

∣∣p)
= E

(∣∣∣∣
∫ t



∫
R

∂Gα

∂y
(s, y; t, x)f

(
s, y, un(s, y)

)
dy ds

–
∫ t



∫
R

∂Gα

∂y
(s, y; t, x)f

(
s, y, un–(s, y)

)
dy ds

∣∣∣∣
p)

≤ C
∫ t



(∫
R

∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy
)

E
∣∣un(s, y) – un–(s, y)

∣∣p ds

≤ C
∫ t



(∫
R

∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy
)

sup
y∈R

E
∣∣un(s, y) – un–(s, y)

∣∣p ds

and

sup
y∈R

E
∣∣u(s, y) – u(s, y)

∣∣p ≤ Cp
(
E
∣∣u(s, y)

∣∣p + E
∣∣u(s, y)

∣∣p) < +∞.

Combining this with Gronwall’s inequality, we get
∑
n∈N

sup
t∈[,T],x∈R

E
(∣∣un+(t, x) – un(t, x)

∣∣p) < +∞,

which implies that {un(t, x)}n≥ is a Cauchy sequence in Lp(�). Define

u(t, x) := lim
n→+∞ un(t, x)

in Lp(�). Then we have

sup
t∈[,T],x∈R

E
∣∣u(t, x)

∣∣p < +∞

for each (t, x) ∈ [, T] ×R. Taking n → +∞ in Lp(�) for (.), we see that {u(t, x) : (t, x) ∈
[, t] ×R} satisfies (.).

Step III. We prove the uniqueness of the solution. Let u and û be the two mild solutions
of (.), then

E
(∣∣u(t, x) – û(t, x)

∣∣p)
= E

(∣∣∣∣
∫ t



∫
R

∂Gα

∂y
(s, y; t, x)f

(
s, y, u(s, y)

)
dy ds

–
∫ t



∫
R

∂Gα

∂y
(s, y; t, x)f

(
s, y, û(s, y)

)
dy ds

∣∣∣∣
p)

≤ C
∫ t



(∫
R

∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy
)

E
∣∣u(s, y) – û(s, y)

∣∣p ds

≤ C
∫ t


sup
y∈R

E
∣∣u(s, y) – û(s, y)

∣∣p
∫
R

∣∣∣∣∂Gα

∂y
(s, y; t, x)

∣∣∣∣dy ds.
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It follows from Gronwall’s inequality that

sup
t∈[,T],x∈R

E
∣∣u(t, x) – û(t, x)

∣∣p = 

for all T > . Thus, we have completed the proof of the theorem. �

4 Hölder regularity and p-variation of the solution
In this section we expound and prove the next theorem, which gives the Hölder regularity
of the solution u = {u(t, x), (t, x) ∈ [, T] ×R} to (.).

Theorem . Let H, H ∈ ( 
 , ) and α ∈ (, ). Under Assumptions  and , the solution

u(t, x) has a continuous version which is γ -Hölder continuous in t with γ ∈ (,ϑ) and
ν-Hölder continuous in x with ν ∈ (,ϑ), where

ϑ := min

{
θ


,

H – 


+
H



}
, ϑ := min{θ , H}.

In order to show that the theorem holds we need two lemmas.

Lemma . We have

∫
R

(∣∣∣∣∂Gα

∂t
(r, z; t, x)

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ
) 

H
dz ≤ C(t – r)


 – θ+

H (.)

for all  < r < t ≤ T , x ∈R and θ ∈ (, ). Moreover, when  < θ < H–
 + H

 , we have also

∫ t



(∫
R

(∣∣∣∣∂Gα

∂t
(r, z; t, x)

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ
) 

H
dz

) H
H

dr ≤ C (.)

for all t ∈ [, T] and x ∈R.

Proof Given t > r and z ∈R. Recall that Dx = {y ∈R | |x – y| < (t – r)


(+α) },

∫
R

(∣∣∣∣∂Gα

∂t
(r, z; t, x)

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ
) 

H
dz

≤
∫
Dz

∣∣∣∣∂G,α

∂t
(r, z; t, x)

∣∣∣∣
θ
H ∣∣G,α(r, z; t, x)

∣∣ –θ
H dz

+
∫
Dz

∣∣∣∣∂G,α

∂t
(r, z; t, x)

∣∣∣∣
θ
H ∣∣G,α(r, z; t, x)

∣∣ –θ
H dz

≡ A
,,,(t, r, x) + A

,,,(t, r, x)

for all  < r < t ≤ T and x ∈R. Clearly, we have

A
,,,(t, r, x)

=
∫
Dz

∣∣∣∣– 


(t – r)– 
 e– C|x–z|

t–r + (t – r)– 


C|x – z|
(t – r) e– C|x–z|

t–r –



(t – r)– 


∣∣∣∣
θ
H
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· ∣∣(t – r)– 
 e– C|x–z|

t–r + (t – r)– 

∣∣ –θ

H dz

≤ (t – r)– θ
H

– –θ
H

∫
Dz

∣∣∣∣e– C|x–z|
t–r +

|x – z|
t – r

e– C|x–z|
t–r + 

∣∣∣∣
θ
H ∣∣e– C|x–z|

t–r + 
∣∣ –θ

H dz

≤ C(t – r)– θ
H

– –θ
H

∫
Dz

dz ≤ C(t – r)


(+α) – +θ
H

by the fact xe–x ≤  and

A
,,,(t, r, x)

=
∫
Dz

∣∣∣∣– 


(t – r)– 
 e– |x–z|

C(t–r) + (t – r)– 


|x – z|
C(t – r)

e– |x–z|
C(t–r) +


|x – z|+α

∣∣∣∣
θ
H

·
∣∣∣∣(t – r)– 

 e– |x–z|
C(t–r) +

t – r
|x – z|+α

∣∣∣∣
–θ
H

dz

≤ C(t – r)– θ
H

– –θ
H

∫
Dz

∣∣∣∣e– |x–z|
C(t–r) + |x – z|e– |x–z|

C(t–r) +
(t – r)/

|x – z|+α

∣∣∣∣
θ
H

·
∣∣∣∣e– |x–z|

C(t–r) +
(t – r)/

|x – z|+α

∣∣∣∣
–θ
H

dz

≤ C(t – r)– θ
H

– –θ
H

∫
Dz

(
e– C(x–z)

t–r + |x – z|
θ
H e– C(x–z)

t–r +
(t – r)

θ
H

|x – z|
θ(+α)

H

)
dz

≤ C(t – r)– θ
H

– –θ
H

(
(t – r)


 + (t – r)


 + θ

H + (t – r)


(+α)
)

≤ C(t – r)– θ
H

– –θ
H

+ 
 = C(t – r)


 – +θ

H

for all t > r >  and x ∈ R. Thus, we have introduced (.) and hence (.) follows. �

Lemma . For all t > r ≥ ,  < θ < H, and x, z ∈R, we have

∫
R

(∣∣∣∣∂Gα

∂x
(r, z; t, x)

∣∣∣∣
θ

· ∣∣Gα(r, z; t, x)
∣∣–θ

) 
H

dz ≤ C(t – r)

 – +θ

H (.)

and

∫ T



(∫
R

(∣∣∣∣∂Gα

∂x
(r, z; t, x)

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ
) 

H
dz

) H
H

dr ≤ C. (.)

Proof Given t > r and z ∈R. Recall that Dz = {x ∈R | |x – z| < (t – r)


(+α) }. Then we have

∫
R

(∣∣∣∣∂Gα

∂x
(r, z; t, x)

∣∣∣∣
θ

· ∣∣Gα(r, z; t, x)
∣∣–θ

) 
H

dz

≤
∫
Dz

∣∣∣∣∂G,α

∂x
(r, z; t, x)

∣∣∣∣
θ
H ∣∣G,α(r, z; t, x)

∣∣ –θ
H dz
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+
∫
Dz

∣∣∣∣∂G,α

∂x
(r, z; t, x)

∣∣∣∣
θ
H ∣∣G,α(r, z; t, x)

∣∣ –θ
H dz

≡ A
,,(t, r, x) + A

,,(t, r, x).

Clearly, we have

A
,,(t, r, x) = C

∫
Dz

∣∣∣∣(t – r)–e– C|x–z|
t–r × |x – z|√

t – r

∣∣∣∣
θ
H

· ∣∣(t – r)– 
 e– C|x–z|

t–r + (t – r)– 

∣∣ –θ

H dz

≤ C(t – r)


(+α) – +θ
H

by the fact |x|e–x ≤ C for all x ∈R, and

A
,,(t, r, x) =

∫
Dz

∣∣∣∣(t – r)– 
 e– C|x–z|

t–r

(
–

C|x – z|
t – r

)
– ( + α)

t – r
|x – z|+α

∣∣∣∣
θ
H

·
∣∣∣∣(t – r)– 

 e– C|x–z|
t–r +

t – r
|x – z|+α

∣∣∣∣
–θ
H

dz

≤ C(t – r)– θ
H

– –θ
H

∫
Dz

∣∣∣∣|x – z|e– C|x–z|
t–r +

(t – r)/

|x – z|+α

∣∣∣∣
θ
H

·
∣∣∣∣e– C|x–z|

t–r +
(t – r)/

|x – z|+α

∣∣∣∣
–θ
H

dz

≤ C(t – r)– θ
H

– –θ
H

(
(t – r)

θ
H

+ 
 + (t – r)

θ
H

+ 
(+α) – θ(+α)

H(+α)
)

≤ C(t – r)

 – +θ

H

for all  < θ < H. Thus, we have proved the estimate (.) and (.). �

Proof of Theorem . We shall divide the proof into two steps.
Step . We first consider the temporal case. Denote

A
(t, s, x) :=

∫
R

[
Gα(, y; t, x) – Gα(, y; s, x)

]
ϑ(y) dy,

A
(t, s, x) :=

∫ t



∫
R

Gα(r, y; t, x)W (dy, dr) –
∫ s



∫
R

Gα(r, y; s, x)W (dy, dr),

A
(t, s, x) :=

∫ t



∫
R

∂Gα

∂y
(r, y; t, x)f

(
r, y, u(r, y)

)
dy dr

–
∫ s



∫
R

∂Gα

∂y
Gα(r, y; t, x)f

(
r, y, u(r, y)

)
dy dr

for all x ∈R and  ≤ s < t ≤ T . Then we have

∣∣u(t, x) – u(s, x)
∣∣ ≤ ∣∣A

(t, s, x)
∣∣ +

∣∣A
(t, s, x)

∣∣ +
∣∣A

(t, s, x)
∣∣
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for all x ∈ R and  ≤ s < t ≤ T . By Hölder’s inequality, the semigroup property and (.),
we have

E
∣∣A

(t, s, x)
∣∣p

= E
∣∣∣∣
∫
R

[
Gα(, z; t – s, y)Gα(, y; s, x)

]
ϑ(z) dy dz –

∫
R

Gα(, y; s, x)ϑ(y) dy
∣∣∣∣
p

= E
∣∣∣∣
∫
R

Gα(, z; t – s, )
∫
R

Gα(, y; s, x)
(
ϑ(y – z) – ϑ(y)

)
dy dz

∣∣∣∣
p

≤ C
∫
R

∣∣Gα(, z; t – s, )
∣∣ ∫

R

Gα(, y; s, x)E
∣∣ϑ(y – z) – ϑ(y)

∣∣p dy dz

≤ C
∫
R

∣∣Gα(, y; s, x)
∣∣dy

∫
R

∣∣Gα(, z; t – s, )
∣∣|z|pθ dz

with pθ < α. Some elementary calculations can show that

∫
R

∣∣Gα(, y; s, x)
∣∣dy ≤ C

(∫
R

s– 
 e– |x–y|

Cs dy +
∫
R

s– 
 ∧ s

|x – y|+α
dy

)

≤ C + C
∫ ∞


s– 

 ∧ s
y+α

dy ≤ C + Cs– 
 + 

(+α)

and
∫
R

∣∣Gα(, z; t – s, )
∣∣|z|pθ dz = C

∫
R

(t – s)– 
 e– z

C(t–s) |z|pθ dz

+ C
∫
R

(
(t – s)– 

 ∧ t – s
|z|+α

)
|z|pθ dz

≤ C(t – s)
pθ
 + C(t – s)– 

 + (+pθ )
(+α) ,

which gives

E
∣∣A

(t, s, x)
∣∣p ≤ C(t – s)

pθ
 . (.)

Let now us estimate the term A
(t, s, x). Denote

A
,(t, s, x) :=

∫ s



∫
R

(
Gα(r, z; t, x) – Gα(r, z; s, x)

)
W (dz, dr),

A
,(t, s, x) :=

∫ t

s

∫
R

Gα(r, z; t, x)W (dz, dr)

for all x ∈R and  ≤ s < t ≤ T . We then have

∣∣A
(t, s, x)

∣∣ ≤ ∣∣A
,(t, s, x)

∣∣ +
∣∣A

,(t, s, x)
∣∣

for all x ∈R and  ≤ s < t ≤ T . Moreover, for every θ ∈ (, ) we let

A
,,(t, s, x) :=

∥∥∣∣Gα(·, ·; t, x) – Gα(·, ·; s, x)
∣∣θ ∣∣Gα(·, ·; t, x)

∣∣–θ∥∥
H,

A
,,(t, s, x) :=

∥∥∣∣Gα(·, ·; t, x) – Gα(·, ·; s, x)
∣∣θ ∣∣Gα(·, ·; s, x)

∣∣–θ∥∥
H
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with x ∈R and  ≤ s < t ≤ T . Then we have

E
∣∣A

,(t, s, x)
∣∣p ≤ C

∥∥Gα(·, ·; t, x) – Gα(·, ·; s, x)
∥∥p
H

= C
(∥∥∣∣Gα(·, ·; t, x) – Gα(·, ·; s, x)

∣∣θ ∣∣Gα(·, ·; t, x) – Gα(·, ·; s, x)
∣∣–θ∥∥

H
) p



≤ C
(∣∣A

,,(t, s, x)
∣∣ +

∣∣A
,,(t, s, x)

∣∣) p


for all x ∈ R and  ≤ s < t ≤ T . But, by using (.), Proposition ., Lemma ., and the
mean-value theorem, we see that there is an ξ between s and t such that

∣∣A
,,(t, s, x)

∣∣
=

∥∥∥∥
∣∣∣∣∂Gα

∂t
(·, ·; ξ , x)

∣∣∣∣
θ

|t – s|θ
∣∣Gα(·, ·; t, x)

∣∣–θ
∥∥∥∥



H

= |t – s|θ

∫ t



∫ t


dr dr

∫
R

∫
R

∣∣∣∣∂Gα

∂t
(r, z; ξ , x)

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ

· �H (r, r; z, z)
∣∣∣∣∂Gα

∂t
(r, z; ξ , x)

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ dz dz

≤ C|t – s|θ

(∫ T



(∫
R

(∣∣∣∣∂Gα

∂t
(r, z; t, x)

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ
) 

H
dz

) H
H

dr
)H

≤ C|t – s|θ

for all  < θ < H–
 + H

 . Similarly, one can prove that

∣∣A
,,(t, s, x)

∣∣ ≤ C|t – s|θ .

It follows that

E
∣∣A

,(t, s, x)
∣∣p ≤ C|t – s|pθ (.)

for all θ ∈ (,ϑ). On the other hand, we have

∫ t

s

∫ t

s
dr dr

∫
R

Gα(r, z; t, x)�(r, r; z, z)Gα(r, z; t, x) dz dz

=
∫ t

s

∫ t

s
|r – r|H– dr dr

∫
R

|z – z|H–

· Gα(r, z; t, x)Gα(r, z; t, x) dz dz dr dr

≤ C
∫ t

s

∫ t

s
|r – r|H–∥∥Gα(r, ·; t, x)

∥∥
L


H (R)

∥∥Gα(r, ·; t, x)
∥∥

L


H (R)
dr dr

≤ C
(∫ t

s

(∥∥Gα(r, ·; t, x)
∥∥

L


H (R)

) 
H dr

)H

≤ C|t – s|(H+H–) (.)

for all x ∈R and  ≤ s < t ≤ T , which gives

E
∣∣A

,(t, s, x)
∣∣p = E

∣∣∣∣
∫ t

s

∫
R

Gα(r, z; t, x)W (dr, dz)
∣∣∣∣
p

≤ C|t – s| p
 (H+H–) (.)
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for all x ∈R and  ≤ s < t ≤ T by (.). Combining this with (.), we get

E
∣∣A

(t, s, x)
∣∣p ≤ C|t – s|pθ (.)

for θ ∈ (,ϑ).
Finally, by the Hölder inequality, Assumption , Theorem ., and (.), we have

E
(∣∣A

,(t, s, x)
∣∣p)

:= E
∣∣∣∣
∫ s


dr

∫
R

∂Gα

∂y
(r, y; s, x)

[
f
(
r + t – s, y, u(r + t – s, y)

)
– f

(
r, y, u(r, y)

)]
dy

∣∣∣∣
p

≤ C
(∫ s


dr

∫
R

∂Gα

∂y
(r, y; s, x) dy

)p– ∫ s


dr

∫
R

∂Gα

∂y
(r, y; s, x)

· E
∣∣f (r + t – s, y, u(r + t – s, y)

)
– f

(
r, y, u(r, y)

)∣∣p dy

≤ C
(

|t – s|p +
∫ s


sup
y∈R

E
∣∣u(r + t – s, y) – u(r, y)

∣∣p dr
)

(.)

and

E
(∣∣A

,(t, s, x)
∣∣p) :=

∣∣∣∣
∫ t–s


dr

∫
R

∂Gα

∂y
(r, y; t, x)f

(
r, y, u(r, y)

)
dy

∣∣∣∣
p

≤ C
(∫ t–s


dr

∫
R

∂Gα

∂y
(r, y; s, x) dy

)p–

×
∫ t–s


dr

∫
R

∂Gα

∂y
(r, y; t, x)E

∣∣f (r, y, u(r, y)
)∣∣p dy

≤ C|t – s|p
(

 + sup
(t,x)∈[,T]×R

E
∣∣u(t, x)

∣∣p
)

≤ C|t – s|p (.)

for all x ∈R and  ≤ s < t ≤ T . It follows that

E
∣∣A

(t, s, x)
∣∣p = E

∣∣∣∣
∫ t



∫
R

∂Gα

∂y
(r, y; t, x)f

(
r, y, u(r, y)

)
dy dr

–
∫ s



∫
R

∂Gα

∂y
Gα(r, y; t, x)f

(
r, y, u(r, y)

)
dy dr

∣∣∣∣
p

≤ C
(
E
∣∣A

,(t, s, x)
∣∣p + E

∣∣A
,(t, s, x)

∣∣p)
≤ C

(
|t – s|p +

∫ s


sup
y∈R

E
∣∣u(r + t – s, y) – u(r, y)

∣∣p dr
)

(.)

for all x ∈R and  ≤ s < t ≤ T .
Thus, we have obtained the desired estimate

E
∣∣u(t, x) – u(s, x)

∣∣p ≤ C
(
E
∣∣A

(t, s, x)
∣∣p + E

∣∣A
(t, s, x)

∣∣p + E
∣∣A

(t, s, x)
∣∣p)

≤ C
(

|t – s|pθ + |t – s|pθ

+ |t – s|p +
∫ s


sup
y∈R

E
∣∣u(r + t – s, y) – u(r, y)

∣∣p dr
)
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for all x ∈R and  ≤ s < t ≤ T , which implies that

E
∣∣u(t, x) – u(s, x)

∣∣p ≤ C
(

|t – s|pν +
∫ s


sup
y∈R

E
∣∣u(r + t – s, y) – u(r, y)

∣∣p dr
)

for all x ∈ R and  ≤ s < t ≤ T by taking ν ∈ min{θ , θ}. This shows the Hölder continuity
in time variables t by Gronwall’s inequality.

Step . We consider the spatial case. For all t ∈ [, T] and x, y ∈ R, we need to estimate
the following expressions:

A
 (t, x, y) :=

∣∣∣∣
∫
R

[
Gα(, z; t, x) – Gα(, z; t, y)

]
ϑ(z) dz

∣∣∣∣,
A

(t, x, y) :=
∣∣∣∣
∫ t



∫
R

[
Gα(r, z; t, x) – Gα(r, z; t, y)

]
W (dz, dr)

∣∣∣∣
A

(t, x, y) :=
∣∣∣∣
∫ t



∫
R

[
∂Gα

∂z
(r, z; t, x) –

∂Gα

∂z
(r, z; t, y)

]
f
(
r, z, u(r, z)

)
dz dr

∣∣∣∣.
We have

E
∣∣A

 (t, x, y)
∣∣p ≤ sup

z∈R
E
∣∣ϑ(z + x – y) – ϑ(z)

∣∣p ·
∣∣∣∣
∫
R

Gα(, z; t, x) dz
∣∣∣∣
p

≤ |x – y|pθ (.)

for all t ∈ [, T] and x, y ∈R by Assumption . Denote

A
,(t, x, y) :=

∥∥∣∣Gα(·, ·; t, x) – Gα(·, ·; t, y)
∣∣θ ∣∣Gα(·, ·; t, x)

∣∣–θ∥∥
H,

A
,(t, x, y) :=

∥∥∣∣Gα(·, ·; t, x) – Gα(·, ·; t, y)
∣∣θ ∣∣Gα(·, ·; t, y)

∣∣–θ∥∥
H

for all t ≥  and x, y ∈ R. Then we have

E
∣∣A

(t, x, y)
∣∣p = C

∥∥∣∣Gα(·, ·; t, x) – Gα(·, ·; t, y)
∣∣θ ∣∣Gα(·, ·; t, x) – Gα(·, ·; t, y)

∣∣–θ∥∥p
H

≤ C
(
A

,(t, x, y) + A
,(t, x, y)

)p.

Similar to Step I, by using (.), Proposition ., Lemma ., and the mean-value theorem,
one can see that

A
,(t, x, y) =

∥∥∥∥
∣∣∣∣∂Gα

∂x
(·, ·; t, ξ )

∣∣∣∣
θ

|x – y|θ
∣∣Gα(·, ·; t, x)

∣∣–θ
∥∥∥∥
H

≤ C|x – y|θ

(∫ T



∫ T



∫
R

∣∣∣∣∂Gα

∂x
(r, z; t, ξ )

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ

× �H (r, r; z, z)

·
∣∣∣∣∂Gα

∂x
(r, z; t, ξ )

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ dz dz dr dr

) 


≤ C|x – y|θ

(∫ T



(∫
R

(∣∣∣∣∂Gα

∂x
(r, z; t, x)

∣∣∣∣
θ ∣∣Gα(r, z; t, x)

∣∣–θ
) 

H
dz

) H
H

dr
)H

≤ C|x – y|θ
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for all θ < H. Similarly, one can also prove

A
,(t, x, y) ≤ C|x – y|θ

for all θ < H. It follows that

E
∣∣A

(t, x, y)
∣∣p ≤ C|x – y|pθ (.)

for all θ < H. Finally, we consider the term |A
(t, x, y)|. By the Hölder inequality, Assump-

tion , and (.), we have

E
∣∣A

(t, x, y)
∣∣p

= E
∣∣∣∣
∫ t


dr

∫
R

[
∂Gα

∂z
(r, z; t, x) –

∂Gα

∂z
(r, z; t, y)

]
f
(
r, z, u(r, z)

)
dz

∣∣∣∣
p

≤ C
∫ t


dr

∫
R

∣∣∣∣∂Gα

∂z
(r, z; t, y)

∣∣∣∣E∣∣f (r, z + x – y, u(r, z + x – y)
)

– f
(
r, z, u(r, z)

)∣∣p dz

≤ C
∫
R

dz
∣∣∣∣∂Gα

∂z
(r, z; t, y)

∣∣∣∣
∫ t



(
|x – y|p + sup

z∈R
E
∣∣u(r, z + x – y) – u(r, z)

∣∣p
)

dr

≤ C
(

t|x – y|p +
∫ t


sup
z∈R

E
∣∣u(r, z + x – y) – u(r, z)

∣∣p dr
)

. (.)

Combining this with (.) and (.), we have

E
∣∣u(t, x) – u(t, y)

∣∣p ≤ C
(
E
∣∣A

 (t, x, y)
∣∣p + E

∣∣A
(t, x, y)

∣∣p + E
∣∣A

(t, x, y)
∣∣p)

≤ C
(

|x – y|pθ + t|x – y|p +
∫ t


sup
z∈R

E
∣∣u(r, z + x – y) – u(r, z)

∣∣p dr
)

for all  < θ < H. Thus, we have proved the Hölder continuity in space variables x by
Gronwall’s inequality. �

As an immediate result of the above theorem, we see that the quadratic variation is
zero. At the end of this section, we give the p-variation of the solution. For convenience
we consider the following special equation:

{
∂ū
∂t = �αū + ∂W

∂t ∂x ,
ū(, x) = , x ∈R.

(.)

As in Section , the solution of (.) can be written in mild form as

ū(t, x) =
∫ t



∫
R

Ḡα(s, y; t, x)W (ds, dy), (.)

where Ḡα(s, y; t, x) stands for the heat kernel of �α . It follows from Chen et al. [] that

Ḡα(s, y; t, x) ≤ C
(

(t – s)– 
α ∧ t – s

|x – y|+α

)
(.)

for all  ≤ s < t, x, y ∈R and some constant C ≥ .
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Lemma . Let ū be the solution of (.). Then, for all  < s < t, we have

E
∣∣ū(s, x) – ū(t, x)

∣∣ ≤ C|t – s|η, (.)

where η ∈ (, αH+H–
α

).

Proof Similar to the proof of Step  of Theorem . and Lemma ., when η ∈ (, αH+H–
α

),
we obtain

E
∣∣ū(t, x) – ū(s, x)

∣∣ = E
∣∣∣∣
∫ t



∫
R

Ḡα(r, y; t, x)W (dy, dr) –
∫ s



∫
R

Ḡα(r, y; s, x)W (dy, dr)
∣∣∣∣


≤ E
∣∣∣∣
∫ s



∫
R

(
Ḡα(r, z; t, x) – Ḡα(r, z; s, x)

)
W (dz, dr)

∣∣∣∣


+ E
∣∣∣∣
∫ t

s

∫
R

Ḡα(r, z; t, x)W (dz, dr)
∣∣∣∣


≤ Cp,η
(∥∥∣∣Ḡα(·, ·; t, x) – Ḡα(·, ·; s, x)

∣∣η · ∣∣Ḡα(·, ·; t, x)
∣∣–η∥∥

H

+
∥∥∣∣Ḡα(·, ·; t, x) – Ḡα(·, ·; s, x)

∣∣η · ∣∣Ḡα(·, ·; s, x)
∣∣–η∥∥

H
)

+ C
(∫ t



(∥∥Ḡα(r, ·; t, x)
∥∥

L


H (R)

) 
H ds

)H

≤ C|t – s|η.

This completes the proof. �

For T > , let τn = { = t < t < · · · < tn = T} be a partition of [, T] such that the mesh
size |�n| = maxj |tj – tj–| →  (n → ∞). Recall that a process Y = {Yt ;  ≤ t < ∞} is of
bounded p-variation with p ≥  on the interval [, T] if the limit of

V p
n (Y ; T) :=

n–∑
j=

|Ytj+ – Ytj |p,

exists in L(�), as n → ∞, We denote by V p(Y ; T) the p-variation on [, T].
We new consider p-variations of the solution to the fractional heat equation (.).

Theorem . Let (ū(t, x), t ∈ [, T], x ∈ R) be given by (.). For H ∈ ( 
 , ), and H = 

 ,
we have

V p(ū(·, x); T
)

= ,

if p > α
αH– for all x ∈R.

Proof By Lemma ., we have

E
(
V p(ū(t, x); T

))
= E

( n–∑
i=

∣∣ū(ti+, x) – ū(ti, x)
∣∣p

)

=
n–∑
i=

E
∣∣ū(ti+, x) – ū(ti, x)

∣∣p
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≤
n–∑
i=

(
E
∣∣ū(ti+, x) – ū(ti, x)

∣∣) p


≤ C
n–∑
i=

|ti+ – ti|
p(αH–)

α ,

which shows that t → ū(t, x) has p-variation  when p > α
αH– for all x ∈ R. This com-

pletes the proof. �

5 Existence of the density
In this part, we will focus to prove the absolute continuity of the distribution of solution
{u(t, x) : (t, x) ∈ [, T] ×R} given in Section  by using Malliavin calculus.

Proposition . Under the assumptions in Theorem ., if the function (t, x, z) → f (t, x, z)
and its partial derivatives of order  are bounded, then u(t, x) ∈D

, and

Dr,vu(t, x) = Gα(r, v; t, x) +
∫ t

τ

∫
R

∂Gα

∂y
(s, y; t, x)

∂f
∂z

(
s, y, u(s, y)

)
Dr,vu(s, y) dy ds

for all  ≤ r ≤ t ≤ T and x, v ∈R.

Proof By approximating we can introduce the theorem. Let un(t, x) satisfy the next equa-
tion:

u(t, x) =
∫
R

Gα(, y; t, x)ϑ(y) dy,

un+(t, x) = u(t, x) +
∫ t



∫
R

Gα(s, y; t, x)W (ds, dy) (.)

+
∫ t



∫
R

∂Gα

∂y
(s, y; t, x)f

(
s, y, un(s, y)

)
dy ds

for all n = , , , . . . . Then un(t, x) ∈ Dh and it satisfies

Dhun(t, x) =
〈
Gα(·, ·; t, x), h

〉
H +

∫ t



∫
R

∂Gα

∂y
(s, y; t, x)

· ∂f
∂z

(
s, y, un–(s, y)

)
Dhun–(s, y) dy ds.

for each n ∈ N and h ∈H (see the argument in Zhang and Zheng []). Since

lim
n→+∞ un = u

in Lp, there is a random field u(h)(t, x) such that

lim
n→+∞ Dhun(t, x) = u(h)(t, x)

uniformly on (t, x) ∈ [, T] ∈R, and

u(h)(t, x) =
〈
Gα(·, ·; t, x), h

〉
H +

∫ t


ds

∫
R

∂Gα

∂y
(s, y; t, x)

∂f
∂z

(
s, y, u(s, y)

)
u(h)(s, y) dy.
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It follows from the closeness of the operator Dh that Dhu(t, x) = u(h)(t, x), u(t, x) ∈Dh, and

Dhu(t, x) =
〈
Gα(·, ·; t, x), h

〉
H

+
∫ t


ds

∫
R

∂Gα

∂y
(s, y; t, x)

∂f
∂z

(
s, y, u(s, y)

)
Dhu(s, y) dy (.)

for all  ≤ t ≤ T and x ∈R. Now, we claim that u(t, x) ∈D
,. By (.), we have

E
∣∣Dhn u(t, x)

∣∣

= E
∣∣∣∣〈Gα(·, ·; t, x), hn

〉
H +

∫ t


ds

∫
R

∂Gα

∂y
(s, y; t, x)

∂f
∂z

(
s, y, u(s, y)

)
Dhn u(s, y) dy

∣∣∣∣


≤ C
〈
Gα(·, ·; t, x), hn

〉
H + C

∫ t


ds

∫
R

(
∂Gα

∂y
(s, y; t, x)

)

E
(
Dhn u(s, y)

) dy (.)

for all  ≤ t ≤ T , x ∈R and {hn, n ≥ } ⊂H. Set

Kl(t) = sup
x∈R

l∑
n=

E
∣∣Dhn u(t, x)

∣∣

for all  ≤ t ≤ T . Then we have

Kl(t) ≤ CE
∫ t


ds

∫
R

(
∂Gα

∂y
(s, y; t, x)

)

Kl(s) dy + C
∥∥Gα(·, ·; t, x)

∥∥
H

≤ C + C
∫ t


(t – s)– 

 – α
 Kl(s) ds

for all t ∈ [, T] by (.) and Cauchy’s inequality, where we have used the fact that

∫
R

(
∂Gα

∂y
(s, y; t, x)

)

dy ≤ C|t – s|– 
 – α



for all s, t ∈ [, T] and x ∈ R. It follows from Gronwall’s inequality that

Kl(t) ≤ CeCT– 
 – α

 .

Letting l → +∞, we get

sup
x∈R

E
∞∑

n=

∣∣Dhn u(t, x)
∣∣ < +∞,

which shows that u(t, x) ∈D
, for all  ≤ t ≤ T and x ∈R.

Finally, let us calculate the derivative Du(t, x) for all (t, x) ∈ [, T] × R. Since u(t, x) is
Ft-adapted, by Proposition . there exists a measurable function Dr,vu(t, x) ∈ H such
that Dr,vu(t, x) =  if r > t and for any h ∈H,

Dhu(t, x) =
〈
Du(t, x), h

〉
H (.)
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for all  ≤ t ≤ T and x ∈R. From (.), (.), and the Fubini theorem, it follows that

〈
Du(t, x), h

〉
H

=
〈
Gα(·, ·; t, x), h

〉
H +

∫ t


ds

∫
R

∂Gα

∂y
(s, y; t, x)

∂f
∂z

(
s, y, u(s, y)

)
Dhu(s, y) dy

=
〈
Gα(·, ·; t, x), h

〉
H +

∫ t


ds

∫
R

∂Gα

∂y
(s, y; t, x)

∂f
∂z

(
s, y, u(s, y)

)〈
Du(s, y), h

〉
H dy

=
〈
Gα(·, ·; t, x), h

〉
H +

∫ t


ds

∫
R

∂Gα

∂y
(s, y; t, x)

∂f
∂z

(
s, y, u(s, y)

)
dy

·
∫ s



∫ s


dr dr′

∫
R

Dr,vu(s, y)h
(
r′, z′)�H

(
r, r′; v′, z′)dv′ dz′

=
〈
Gα(·, ·; t, x), h

〉
H +

∫ t



∫ t


dr dr′

∫
R

h
(
r′, z′)�H

(
r, r′; v′, z′)dv′ dz′

·
∫ t

r
ds

∫
R

∂Gα

∂y
(s, y; t, x)

∂f
∂z

(
s, y, u(s, y)

)
dy

for (t, x) ∈ [, T] ×R. Thus, we have proved the desired formula,

Dr,vu(t, x) = Gα(r, v; t, x) +
∫ t

r
ds

∫
R

∂Gα

∂y
(s, y; t, x)

∂f
∂z

(
s, y, u(s, y)

)
Dr,vu(s, y) dy

for all  ≤ r ≤ t, x, v ∈ R, and the theorem follows. �

Theorem . Under the assumptions of Theorem . and assuming the function f and its
partial derivatives of order  to be bounded, the distribution of the random variable u(t, x)
is absolutely continuous with respect to the Lebesgue measure for all (t, x) ∈ [, T] ×R.

For proving Theorem ., we will make use of the following lemma.

Lemma . Let t >  and  < r < t. Denote

Jr(s, y) =
∫ t

t–r
dl

∫
R

E
∣∣Dl,vu(s, y)

∣∣ dv

for s ∈ [t – r, t] and y ∈R. Then we have

sup
(s,y)∈[t–r,t]×R

Jr(s, y) < Cr
α–

 . (.)

Proof Let  < r < t and s ∈ [t – r, t]. Then we have

sup
(s,y)∈[,t]×R

Jr(s, y) < +∞

by the proof of Proposition .. Denote

Jr,(s, y) :=
∫ s

t–r

∫
R

∣∣Gα(v, z; s, y)
∣∣ dz dv,
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Jr,(s, y) :=
∫ s

t–r
dl

∫
R

dv E
∣∣∣∣
∫ s

l
dr

∫
R

∂Gα

∂y
(r, z; s, y)

· ∂f
∂z

(
r, z, u(r, z)

)
Dl,vu(r, z) dz

∣∣∣∣


for s ∈ [t – r, t] and y ∈R. Then, by (.) and (.), we have

Jr(s, y) ≤ 
(
Jr,(s, y) + Jr,(s, y)

)
for s ∈ [t – r, t] and y ∈R. By some elementary calculations one can show that

Jr,(s, y) ≤ C
∫ t

t–r
dl

∫
R

(
|s – l|–e– C|y–v|

|s–l| +
(

|s – l|– 
 ∧ |s – l|

|y – v|+α

)

+|s – l|– 
 e– C|y–v|

|s–l|
(

|s – l|– 
 ∧ |s – l|

|y – v|+α

))
dv ≤ Cr

α–
 (.)

and

Jr,(s, y) ≤ C
∫ s

t–r
sup
z∈R

Jr(r, z) dr ≤ Cr
α–

 + C
∫ s

t–r
sup
z∈R

Jr,(r, z) dr

for s ∈ [t – r, t] and y ∈R. Thus, (.) follows from Gronwall’s inequality. �

Proof of Theorem . Let (t, x) ∈ [, T] ×R. We will adopt a technical argument proposed
by Cardon-Weber []. By Proposition ., we need only to prove

∥∥Du(t, x)
∥∥
H > 

almost surely. Recall that the statement ‖Du(t, x)‖H >  is equivalent to the statement
‖Du(t, x)‖L([,T]×R) > . Thus, we need only to introduce ‖Du(t, x)‖L([,T]×R) >  almost
surely. For  < r < t and x ∈ R, we denote

�(t, x, r) =
∫ t

t–r

∫
R

∣∣Gα(v, z; t, x)
∣∣ dz dv

and

�(t, x, r) =
∫ t

t–r
dl

∫
R

dv
∣∣∣∣
∫ t

l
dr

∫
R

∂Gα

∂z
(r, z; t, x)

∂f
∂z

(
r, z, u(r, z)

)
Dl,vu(r, z) dz

∣∣∣∣.
It follows from (.) that

∫ t


dl

∫
R

∣∣Dl,vu(t, x)
∣∣ dv ≥ C

(
�(t, x, r) – �(t, x, r)

)
(.)

for all  < r < t and x ∈ R.
Now, let us to estimate �(t, x, r) and �(t, x, r). Similar to the proof of (.), one can see

that

�(t, x, r) = Cr
α–

 . (.)



Xia and Yan Boundary Value Problems  (2017) 2017:7 Page 23 of 24

By (.) and Lemma ., one can also see that

E
∣∣�(t, x, r)

∣∣ ≤
∫ t

t–r
dr

∫
R

dz
∂Gα

∂z
(t – r; x, z)E

(∫ r

t–r

∫
R

∣∣Dr,zu(r, z)
∣∣ dz dr

)

≤ Cr
α–



∫ t

t–r
dr

∫
R

∂Gα

∂z
(t – r; x, z) dz ≤ Crα–

for  < r < t and x ∈R. Combining this with (.), (.), and (.), we get

P
(∫ t



∫
R

∣∣Dv,zu(t, x)
∣∣ dz dv > 

)

≥ sup
r∈(,r]

P
(
C

(
�(t, x, r) – �(t, x, r)

)
> 

)
≥ sup

r∈(,r]
P
(
�(t, x, r) ≤ C�(t, x, r)

)

≥  – C inf
r∈(,r]

{


r α–


E
∣∣�(t, x, r)

∣∣} ≥  – C inf
r∈(,r]

r
α–

 = 

for all r > , and the theorem follows. �
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