
Luo and Teng Boundary Value Problems  (2017) 2017:6 
DOI 10.1186/s13661-016-0739-8

R E S E A R C H Open Access

An optimized SPDMFE extrapolation
approach based on the POD technique for 2D
viscoelastic wave equation
Zhendong Luo1* and Fei Teng2

*Correspondence: zhdluo@163.com
1School of Mathematics and
Physics, North China Electric Power
University, No. 2, Bei Nong Road,
Changping District, Beijing, 102206,
China
Full list of author information is
available at the end of the article

Abstract
An optimized splitting positive definite mixed finite element (SPDMFE) extrapolation
approach based on proper orthogonal decomposition (POD) technique is developed
for the two-dimension viscoelastic wave equation (2DVWE). The errors of the
optimized SPDMFE extrapolation solutions are analyzed. The implement procedure
for the optimized SPDMFE extrapolation approach is offered. Some numerical
simulations have verified that the numerical conclusions are accordant with
theoretical ones. This implies that the optimized SPDMFE extrapolation approach is
viable and valid for solving 2DVWE.
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1 Introduction
In this article, we study the following two-dimensional viscoelastic wave equation
(DVWE).

Problem I For  < t < T , find u that satisfies
⎧
⎪⎨

⎪⎩

utt – ε�ut – γ�u = f , in �,
u(x, y, t) = ψ(x, y, t), on ∂�,
u(x, y, ) = ψ(x, y), ut(x, y, ) = ψ(x, y), in �,

()

where � ⊂ R is a bounded convex polygonal domain with the boundary ∂�, utt = ∂u/∂t,
ut = ∂u/∂t, ε and γ are two positive coefficients, f (x, y, t), ψ(x, y, t), ψ(x, y), and ψ(x, y) are
all given functions, and T is the final time. For convenience and without losing universality,
we assume that ψ(x, y, t) = ψ(x, y) = ψ(x, y) =  and ε = γ =  in the following discussion.

The main motivation and physical background of DVWE () are the modeling of the
wave propagation and vibration phenomena in the viscoelastic matter (see, e.g., [, ]). Al-
though there have been several numerical methods for DVWE (see, e.g., [–]), the split-
ting positive definite mixed finite element (SPDMFE) approach in [] is one of most novel
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ones for dealing with DVWE because it cannot only keep away from the restriction of the
Brezzi-Babuška inequality and simultaneously find an unknown function (displacement)
and its gradient (stress), but it can also ensure that the full discrete SPDMFE formulation
is positive definite and robust. Reference [] has established a new SPDMFE formulation
that includes fewer degrees of freedom than those and is different from that in [], but
it still includes lots of degrees of freedom. Hence, a major key issue is how to lessen the
degrees of freedom for the new SPDMFE formulation in [] so as to reduce the calculat-
ing load and the operation time in the numerical computation as well as obtain a desired
accurate SPDMFE solution.

Many reports have proven that the proper orthogonal decomposition (POD) technique
is one of the most valid approaches lessening the degrees of freedom (i.e., unknowns) of
numerical models for the time-dependent PDEs and alleviating the truncated error ac-
cumulation in the calculating course (see [–]). In fact, the POD technique offers an
orthogonal basis to the given data, i.e., offers an optimal low order approximation to the
given data.

Though some optimized numerical formulations based on the POD technique for the
time-dependent PDEs were presented (see [–]), these optimized formulations utilize
all classical numerical solutions on the whole time interval [, T] to formulate the POD
bases and the optimized models, before recomputing the solutions on the same time in-
terval [, T], which actually belongs to the repeated calculations on the same time interval
[, T].

In order to eliminate those unrewarding repeated computations in the reduced-order
finite element (FE) methods based on the POD technique, several reduced-order extrap-
olation FE methods based on the POD technique for hyperbolic equations, Sobolev equa-
tions, and the non-stationary parabolized Navier-Stokes equations have successfully been
proposed by Luo et al. since  (see [–]). Nevertheless, as far as we know, there
is not any article treating that the optimized SPDMFE extrapolation approach based on
the POD technique for DVWE is set up or the implement procedure for the optimized
SPDMFE extrapolation approach is offered. Therefore, in this article, we set up the op-
timized SPDMFE extrapolation approach based on the POD technique for DVWE and
offer the error estimates for the optimized SPDMFE extrapolation solutions and the im-
plement procedure for the optimized SPDMFE extrapolation approach. We adopt some
numerical simulations to verify that the optimized SPDMFE extrapolation approach is
viable and valid for dealing DVWE, too.

The rest of the article is as follows. Section  sets up the classical SPDMFE formula-
tion for DVWE and extracts the snapshots. In Section , we construct the POD bases
and build the optimized SPDMFE extrapolation approach containing very few unknowns
but having the desired accuracy for DVWE. In Section , we offer the error estimates
for the optimized SPDMFE extrapolation solutions and the implement procedure for the
optimized SPDMFE extrapolation approach. In Section , we adopt some numerical sim-
ulations to verify that the numerical conclusions are accordant with theoretical ones, val-
idating the feasibility and efficiency of the optimized SPDMFE extrapolation approach for
finding the numerical solutions of DVWE. Section  offers main conclusions.

2 Classical SPDMFE formulation and formulation of snapshots
The Sobolev spaces used in the following belong to standard (see []). The natural inner
product in [L(�)]d (d = , , ) is denoted by (·, ·) and the norms all are represented by
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‖ · ‖. The divergence space used in this context is defined by

W = H(div;�) =
{

q ∈ L(�); div q ∈ L(�)
}

with norm ‖q‖W = [‖q‖
 + ‖div q‖

]/. Let U = L(�). Put p = ∇u. Then it follows from
Problem I that utt = – div(pt + p) + f and ptt = –∇(utt) = ∇ div(pt) + ∇ div(p) – ∇f . Thus,
the splitting positive definite mixed weak formulation for Problem I may be expressed by
the following.

Problem II Find (u, p) ∈ U × W that satisfies, for any t ∈ (, T),

⎧
⎪⎨

⎪⎩

(utt , v) + (div pt , v) + (div p, v) = (f , v), ∀v ∈ U ,
(ptt , q) + (div pt , div q) + (div p, div q) = (f , div q), ∀q ∈ W,
u(x, y, ) = ut(x, y, ) = , p(x, y, ) = pt(x, y, ) = 0, (x, y) ∈ �.

()

The following result for Problem II has been proved in [] or can be proved by using the
same technique as that in [].

Theorem  If f ∈ L(, T ; L(�)), then for Problem II there exists a unique solution (u, p) ∈
U × W that satisfies

‖pt‖
 + ‖div pt‖

L(L) + ‖div p‖
 ≤ ‖f ‖

L(L),

‖ut‖
 ≤ ( + T)‖f ‖

L(L) exp(T),
()

where ‖ · ‖W m,r (W l,r ) is the norm in W m,r (, T ; W m,r (�)) or W m,r (, T ; W m,r (�)) ( ≤
r, r ≤ ∞).

Let N represent a positive integer, k = T/N the time step increment, and gn the semi-
discrete approximation for g(x, y, tn) with respect to time at t = tn. Write

gn, 
 =

gn+ + gn–


, ∂̄tgn =

gn+ – gn

k
, ∂̄t ∂̄tgn =

gn+ – gn + gn–

k .

Thus, the splitting positive definite semi-discrete model about time t for Problem I may
be expressed in the following.

Problem III Find (un+, pn+) ∈ U × W ( ≤ n ≤ N – ) such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∂̄t ∂̄tun, v) + (div(∂̄tpn + ∂̄tpn–), v) + (div pn, 
 , v) = (f (tn), v), ∀v ∈ U ,

(∂̄t ∂̄tpn, q) + (div(∂̄tpn + ∂̄tpn–), div q) + (div pn, 
 , div q)

= (f (tn), div q), ∀q ∈ W,
u = u = , p = p = 0, (x, y) ∈ �.

()

Existence, uniqueness, stability, and convergence (error estimates) of solutions of Prob-
lem III have been provided in [] or can be proved by using the same technique as that in
[].
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Theorem  Under the assumptions of Theorem , Problem III there exist a unique set of
solutions (un, pn) ∈ U × W ( ≤ n ≤ N ) that satisfy

∥
∥un∥∥

 +
∥
∥pn∥∥

 +
∥
∥div pn∥∥

 ≤ C̃‖f ‖L∞(L), ()

where C̃ = (T + 
√

T +
√

T +
√

T) is a constant. And if the solutions (u, p) ∈
H(, T ; U) × [H(, T ; U) ∩ H(, T ; H(�))] for Problem II, then we have

∥
∥p(tn) – pn∥∥

 +
∥
∥div

(
p(tn) – pn)∥∥

 +
∥
∥u(tn) – un∥∥

 ≤ Ck,  ≤ n ≤ N , ()

where C used in the following represents a generic positive real number that is only reliant
on ‖u‖H(L), ‖p‖H(L), and ‖p‖H(H), namely ‖f ‖H(L), but is not reliant on the time step
k and the next spatial mesh parameters h and may be different at their occurrences.

Let �h = {K} denote a quasi consistent triangulation of � with h = max hK , here hK in-
dicates the diameter of the element K ∈ �h (see [] or []). Take the FE spaces of U and
W as follows:

Uh = {vh ∈ U ; vh|K ∈ Pm(K),∀K ∈ �h}, Wh = {τ h ∈ W;τ h|K ∈ PK ,∀K ∈ �h}, ()

where m is a positive integer, Pm(K) the mth polynomials space on K , and PK the R-T
space of degree ≤ m on K (see [, , ]). Then the SPDMFE formulation for Problem I
may be stated as follows.

Problem IV Find (un+
h , pn+

h ) ∈ Uh × Wh ( ≤ n ≤ N – ) that satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∂̄t ∂̄tun
h, vh) + (div(∂̄tpn

h + ∂̄tpn–
h ), vh) + (div p

n, 


h , vh) = (f (tn), vh), ∀vh ∈ Uh,

(∂̄t ∂̄tpn
h, qh) + (div(∂̄tpn

h + ∂̄tpn–
h ), div qh) + (div p

n, 


h , div qh)
= (f (tn), div qh), ∀qh ∈ Wh,

u
h = u

h = , p
h = p

h = 0, (x, y) ∈ �.

()

Existence, uniqueness, stability, and convergence (error estimate) of solutions to Prob-
lem IV have been provided in [] or can be proved by using the same technique as that in
[].

Theorem  Under the assumptions of Theorems  and , Problem IV has only a set of
solutions {(un

h, pn
h) :  ≤ n ≤ N} ⊂ Uh × Wh that satisfy

∥
∥un

h
∥
∥

 +
∥
∥pn

h
∥
∥

 +
∥
∥div pn

h
∥
∥

 ≤ C̃‖f ‖L∞(L),  ≤ n ≤ N , ()

where C̃ is the same as that in (), which shows that the solutions of Problem IV are
stable and continuously reliant on the given functions f (x, y, t), ψ(x, y), and ψ(x, y)
when they are nonzero. Moreover, when the solution (u, p) ∈ W ,∞(, T ; Hm+(�)) ×
W ,∞(, T ; Hm+(�)) for Problem II, the errors between the solution u(t) to Problem I
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and the solutions un
h to Problem IV satisfy the following estimates:

∥
∥p(tn) – pn

h
∥
∥

 +
∥
∥div

(
p(tn) – pn

h
)∥
∥

 +
∥
∥u(tn) – un

h
∥
∥

 ≤ C(f )
(
k + hm+),

 ≤ n ≤ N , ()

where C(f ) is a constant that is only reliant on f and T but not reliant on h and k.

Remark  If only the coefficients ε and γ , the functions f (x, y, t), ψ(x, y, t), ψ(x, y), and
ψ(x, y), and k and h are designated, we could obtain an ensemble of solutions {(un

h, pn
h) :

 ≤ n ≤ N} from Problem IV.

3 Formulations of the POD bases and the optimized SPDMFE extrapolation
approach

We extract the first L solutions (ui
h(x, y), pi

h(x, y)) ( ≤ i ≤ L) (usually, L � N , say, L = ,
N = ) from the solution set {(un

h, pn
h) :  ≤ n ≤ N} of Problem IV in Section  as the

snapshots. Let V i = (ui
h, pi

h)T ( ≤ i ≤ L),

V = span{V, V, . . . , VL}, ()

and {ϕj}l
j= represent a set of standard orthogonal basis of V with l = dimV (l ≤ L). Thus,

the elements V i can indicate as follows:

V i =
l∑

j=

(V i,ϕj)Ũϕj,  ≤ i ≤ L. ()

The above Ũ = U × W and (V i,ϕj)Ũ = (ui
h,ϕuj) + (pi

h,ϕpj) + (div pi
h, divϕpj), while ϕuj and

ϕpj are the orthonormal bases associated with u and p, separately.

Definition  The POD approach is just to find a set of standard orthogonal basis {ϕi :  ≤
i ≤ l} that meet

min
{ϕj}d

j=


L

L∑

i=

∥
∥
∥
∥
∥

V i –
d∑

j=

(V i,ϕj)Ũϕj

∥
∥
∥
∥
∥



Ũ

()

and

(ϕui,ϕuj) = δij, (ϕpi,ϕpj)W = δij, i = , , . . . , d, j = , , . . . , i, ()

where ‖V i‖
Ũ

= ‖ui
h‖

 +‖pi
h‖

 +‖div pi
h‖

. A set of solutions {ϕj :  ≤ j ≤ d} for the formulas
() and () are referred as a set of POD bases with rank d.

Now, we make up a correlation matrix A = (Aij)L×L ∈ RL×L associated with the snapshots
{V i}L

i= via Aij = (V i, V j)Ũ/L. Because A is a semi-definite positive matrix having the rank l,
the solution of () and () can be sought. Further, we have the following results (see, e.g.,
[] or []).
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Proposition  Let λ ≥ λ ≥ · · · ≥ λl >  indicate the positive eigenvalues for the matrix
A and v, v, . . . , vl be the corresponding standard orthogonal eigenvectors. Thus, a POD
basis with rank d ≤ l is obtained by

ϕi =
√
λi

L∑

j=

(vi)jV j =
√
λi

(V, V, . . . , VL)vi,  ≤ i ≤ d, ()

where (vi)j ( ≤ j ≤ L) indicates the jth component of the standard orthogonal eigenvectors
vi. In addition, we obtain the error formula


L

L∑

i=

∥
∥
∥
∥
∥

V i –
d∑

j=

(V i,ϕj)Ũϕj

∥
∥
∥
∥
∥



Ũ

=
l∑

j=d+

λj. ()

Let Ud = span{ϕu,ϕu, . . . ,ϕud} and Wd = span{ϕp,ϕp, . . . ,ϕpd}. For any uh ∈ Uh, define
the L-operator Pd : Uh → Ud as follows:

(
Pduh, vd

)
= (uh, vd), ∀vd ∈ V d. ()

Then, because Pd is bounded, there exists an extension Ph: U → Uh of Pd that meets
Ph|Uh = Pd : Uh → Ud and, for each u ∈ V , Ph meets (see [])

(
Phu – u, vh

)
= , ∀vh ∈ Uh. ()

For any ph ∈ Wh, define div-operator ρd : Wh → Wd denoted by

(
ρdph, qd

)
+

(
divρdph, div qd

)
= (ph, qd) + (div ph, div qd), ∀qd ∈ Wd. ()

Similarly, because ρd is bounded, there exists an extension ρh: W → Wh of ρd that meets
ρh|Wh = ρd : Wh → Wd and, for each p ∈ W , ρh meets (see [])

(
ρhp, qh

)
+

(
divρhp, div ph

)
= (p, qh) + (div p, div qh), ∀qh ∈ Wh. ()

Thanks to () and (), the operators Ph and ρh are well defined and bounded (see []
or [])

∥
∥Phu

∥
∥

 ≤ ‖u‖, ∀u ∈ U , ()
∥
∥ρhp

∥
∥

 +
∥
∥div

(
ρhp

)∥
∥

 ≤ C‖p‖W , ∀p ∈ W. ()

Further, we have the following lemma.

Lemma  The above operators Pd and ρd ( ≤ d ≤ l) meet (see [, ])


L

L∑

i=

∥
∥ui

h – Pdui
h
∥
∥

 ≤ Ch
l∑

j=d+

λj, ()
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L

L∑

i=

[∥
∥pi

h – ρdpi
h
∥
∥

 +
∥
∥div

(
pi

h – ρdpi
h
)∥
∥



] ≤ Ch
l∑

j=d+

λj, ()

where (ui
h, pi

h) ∈ V ( ≤ i ≤ L) are the solutions to Problem V. Moreover, we have (see [,
])

∥
∥u – Phu

∥
∥

 ≤ Chm+‖u‖m+, ∀u ∈ Hm+(�), ()
∥
∥p – ρhp

∥
∥

 +
∥
∥div

(
p – ρhp

)∥
∥

 ≤ Chm+‖p‖m+, ∀p ∈ Hm+(�). ()

By means of Ud and Wd , the optimized SPDMFE extrapolation approach based on the
POD technique is set up as follows.

Problem V Find (un
d, pn

d) ∈ Ud × Wd that meets

⎧
⎪⎨

⎪⎩

pn
d = ρdpn

d =
∑d

j=[(pn
d,ϕpj)ϕpj + (div pn

d, divϕpj)ϕpj],  ≤ n ≤ L;

(∂̄t ∂̄tpn
d, qd) + (div(∂̄tpn

d + ∂̄tpn–
d ), div qd) + (div p

n, 


d , div qd)
= (f (tn), div qd), ∀qd ∈ Wd, L ≤ n ≤ N – ;

⎧
⎪⎨

⎪⎩

un
d = Pdun

h =
∑d

j=(un
h,ϕuj)ϕuj,  ≤ n ≤ L;

(∂̄t ∂̄tun
d, vd) + (div(∂̄tpn

d + ∂̄tpn–
d ), vd) + (div p

n, 


d , vd) = (f (tn), vd),
∀vd ∈ Ud, L ≤ n ≤ N – .

Let un
d = αn

 ϕu + αn
ϕu + · · · + αn

dϕud and pn
d = βn

 ϕp + βn
 ϕp + · · · + βn

dϕpd . Thus, by
means of Green’s formula, Problem V may be restated as follows:

Problem VI Find (αn
 ,αn

 , . . . ,αn
d ,βn

 ,βn
 , . . . ,βn

d )T ∈ Rd ( ≤ n ≤ N ) that meet

⎧
⎪⎨

⎪⎩

βn
j = (pn

h,ϕpj) + (div pn
h, divϕpj),  ≤ j ≤ d,  ≤ n ≤ L;

∑d
i= βn+

i aij =
∑d

i= βn
i (ϕpi,ϕpj) –

∑d
i= βn–

i bij + (f (tn), divϕpj),
 ≤ j ≤ d, L ≤ n ≤ N – ;

⎧
⎪⎨

⎪⎩

αn
j = (un

h,ϕuj),  ≤ j ≤ d,  ≤ n ≤ L;
αn+

j = αn
j – αn–

j + .
∑d

i= k[( – k)βn–
i – (k + )βn+

i ](divϕpi,ϕuj)
+ (f (tn),ϕuj),  ≤ j ≤ d, L ≤ n ≤ N – ,

where aij = (ϕpi,ϕpj) + k(k + )(divϕpi, divϕpj)/ and bij = (ϕpi,ϕpj) + k(k – )(divϕpi,
divϕpj)/ ( ≤ i, j ≤ d).

Remark  Supposing that �h is a quasi consistent regular triangulation and Uh and Wh

are, separately, the spaces of piecewise linear polynomials and polynomial vectors, the
number of whole degrees of freedom (unknowns) for Problem IV has Nh (Nh is the num-
ber of vertices of all triangles in �h), whereas the number of the whole degrees of freedom
for Problem V only has d (d � l ≤ L � N ). For scientific engineering problems in the real
world, the number Nh of vertices of all triangles in �h is more than tens of thousands, even
more than a hundred million, but d is only the number of the first few main eigenvalues so
that it is very small (say, in Section , d = , but Nh =  ×  ×  ×  =  × ). There-
fore, Problem V is the optimized SPDMFE extrapolation model with very few degrees of
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freedom based on POD approach for Problem I. Especially, it has no repeated computa-
tion and only employs the first few L given solutions of Problem IV to obtain n > L other
solutions. This implies that Problem V completely differs from the majority of existing
reduced-order models (see, e.g., [–]).

4 Error estimates and implement procedure of algorithm
In the following, we employ the SPDMFE approach to deduce the error estimates of so-
lutions to Problem V and offer the implemented procedure for the optimized SPDMFE
extrapolation approach.

4.1 Error analysis of solutions to Problem V
The results of existence, uniqueness, and stability as regards the solutions to Problem V
are as follows.

Theorem  Under the assumptions of Theorems  to , Problem V exist only a set of solu-
tions {(un

d, pn
d) :  ≤ n ≤ N} ⊂ Ud × Wd that meets the following stability:

∥
∥un

d
∥
∥

 +
∥
∥div pn

d
∥
∥

 +
∥
∥pn

d
∥
∥

 ≤ C(f ),  ≤ n ≤ N , ()

where C(f ) is a constant that is only reliant on f and T but not reliant on h and k.

Proof When n = , , . . . , L, it follows from the first and third equations that there exist a
unique series of solutions (un

d, pn
d) ∈ Ud × Wd (n = , , . . . , L) to Problem V. By Theorem 

and ()-(), we obtain

∥
∥un

d
∥
∥

 +
∥
∥div pn

d
∥
∥

 +
∥
∥pn

d
∥
∥



=
∥
∥Pdun

h
∥
∥

 +
∥
∥divρdpn

h
∥
∥

 +
∥
∥ρdpn

h
∥
∥



≤ ∥
∥un

h
∥
∥

 +
∥
∥div pn

h
∥
∥

 +
∥
∥pn

h
∥
∥

 ≤ C(f ), n = , , . . . , L. ()

When L +  ≤ n ≤ N , define a(u, v) = (u, v), F(v) = (un
d – un–

d + k div pn–
d / – k div pn+

d / –
k div pn–

d / – k div pn+
d / + kf (tn), v), A(p, q) = (p, q) + [k(div p, div q) + k(div p, div q)]/,

and F(q) = (pn
d – pn–

d + k div pn–
d / – k div pn–

d / + kf (tn), div q). Then the fourth and
second equations in Problem V are restated as follows:

{
A(pn+

d , qd) = F(q), ∀qd ∈ Wd, L ≤ n ≤ N – ,
pL–

d = ρdpL–
h , pL

d = ρdpL
h, (x, y) ∈ �,

()

{
a(un+

d , vd) = F(vd), ∀vd ∈ Ud, L ≤ n ≤ N – ,
uL–

d = PduL–
h , uL

d = PduL
h, (x, y) ∈ �.

()

It is obvious that, for given k, pn–
d , pn

d , and f (tn), F(q) is a continuous linear functional on
Wd . Since A(p, p) = (p, p) + [k(div p, div p) + k(div p, div p)]/ ≥ α(‖p‖

 + ‖div p‖
) (where

α = min{, (k + k)/}), A(p, q) on W × W is positive definite. And it is obvious that A(p, q)
is a continuous bilinear functional on W × W , therefore it follows by the Lax-Milgram
theorem (see [] or []) that for equation () there exist only a set of solutions {pn

d :
L +  ≤ n ≤ N}, independent of equation (). It is obvious that a(u, v) is a continuous
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positive definite bilinear functional on Ud ×Ud and F(v) is a continuous linear functional
on Ud for given un

d , un–
d , pn–

d , pn+
d , and f (tn), too. Thus, it follows still by means of the Lax-

Milgram theorem (see [] or []) that for equation () there exist only a set of solutions
{un

d : L +  ≤ n ≤ N}.
By choosing qd = pn+

d –pn–
d in equation () and adopting Hölder inequality and Cauchy

inequality, we have

∥
∥pn+

d – pn
d
∥
∥

 –
∥
∥pn

d – pn–
d

∥
∥

 +
k

∥
∥div

(
pn+

d – pn–
d

)∥
∥



+
k


(∥
∥div pn+

d
∥
∥

 –
∥
∥div pn–

d
∥
∥



) ≤ k∥∥f (tn)
∥
∥

 +
k


∥
∥div

(
pn+

d – pn–
d

)∥
∥

. ()

Note that if k = O(h) or k = O(h), it follows by Theorem  and Taylor’s formula that ‖pL
d –

pL–
d ‖ ≤ C(f )(k + hm+) ≤ C(f )k. Simplifying () and then summing from L to n yield

∥
∥pn+

d – pn
d
∥
∥

 + k∥∥div pn+
d

∥
∥

 + k∥∥div pn
d
∥
∥

 + k
n∑

i=L

∥
∥div

(
pi+

d – pi–
d

)∥
∥



≤ k
n∑

i=

∥
∥f (ti)

∥
∥

 +
k


∥
∥div pL–

d
∥
∥

 +
k


∥
∥div pL

d
∥
∥

 +
∥
∥pL

d – pL–
d

∥
∥



≤ (
T + C̃)k‖f ‖

L∞(L) + C(f )k ≤ C(f )k. ()

Further, it follows that

∥
∥div pn

d
∥
∥

 ≤ C(f ), L +  ≤ n ≤ N ()

and

∥
∥pn+

d
∥
∥

 –
∥
∥pn

d
∥
∥

 ≤ ∥
∥pn+

d – pn
d
∥
∥

 ≤ C(f )k. ()

Summing from L to n –  for () and employing () yield

∥
∥pn

d
∥
∥

 ≤ C(f )nk +
∥
∥pL

d
∥
∥

 ≤ C(f ), L +  ≤ n ≤ N . ()

Choosing vd = un+
d – un

d in () and employing the Hölder and Cauchy inequalities yield

∥
∥un+

d – un
d
∥
∥



≤ ∥
∥un

d – un–
d

∥
∥



∥
∥un+

d – un
d
∥
∥

 +
k

∥
∥div

(
pn+

d – pn–
d

)∥
∥



∥
∥un+

d – un
d
∥
∥



+
k


∥
∥div

(
pn+

d + pn–
d

)∥
∥



∥
∥un+

d – un
d
∥
∥

 +
k


∥
∥f (tn)

∥
∥



∥
∥un+

d – un
d
∥
∥

. ()

Note that if k = O(h) or k = O(h), it follows by Theorem  and Taylor’s formula that ‖uL
d –

uL–
d ‖ ≤ C(f )(k + hm+) ≤ C(f )k. Simplifying () and then summing from L to n and
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employing () and () yield

∥
∥un+

d – un
d
∥
∥

 ≤ ∥
∥uL

d – uL–
d

∥
∥

 + k
n∑

i=

∥
∥div

(
pi+

d – pi–
d

)∥
∥



+ k
n∑

i=L

∥
∥div

(
pi+

d + pi–
d

)∥
∥

 + k
n∑

L=

∥
∥f (ti)

∥
∥

 ≤ C(f )k. ()

Applying the triangle inequality to () yields

∥
∥un+

d
∥
∥

 –
∥
∥un

d
∥
∥

 ≤ C(f )k. ()

Summing from L to n –  for () and employing () yields

∥
∥un

d
∥
∥

 ≤ ∥
∥uL

d
∥
∥

 + C(f ) ≤ C(f ). ()

Combining () with (), (), and () yields (), which accomplishes the demonstra-
tion of Theorem . �

For the solutions for Problem V, we have the following error estimates.

Theorem  Under the assumptions of Theorems  to , if f ∈ W ,∞(, T ; Hm(�)), then the
errors between the solution u(t) to Problem I and the solutions un

h to Problem V satisfy the
following estimate formulas:

∥
∥u(tn) – un

d
∥
∥

 +
∥
∥p(tn) – pn

d
∥
∥



≤ C
(
k + hm+) + C

√
L

(

k
l∑

i=d+

λj

)/

,  ≤ n ≤ L; ()

∥
∥u(tn) – un

d
∥
∥

 +
∥
∥p(tn) – pn

d
∥
∥

 +
∥
∥div

(
p(tn) – pn

d
)∥
∥



≤ C
(
k + hm+) + C

√
L

(

k
l∑

i=d+

λj

)/

, L +  ≤ n ≤ N . ()

Proof When  ≤ n ≤ L, it follows from Lemma  that

∥
∥un – un

d
∥
∥

 +
∥
∥pn – pn

d
∥
∥

 ≤ C
√

L

(

k
l∑

i=d+

λj

)/

,  ≤ n ≤ L. ()

It follows () from () and Theorem .
When L ≤ n ≤ N , let en = un

h – un
d and En = pn

h – pn
d . Choosing vh = vn

d and qh = qd in
Problem IV yields the following error equations:

(
En+ – En + En–, qd

)
+

k

(
div En+ – div En–, div qd

)

+
k


(
div En+ + div En–, div qd

)
= , ∀qd ∈ Wd, L ≤ n ≤ N – ; ()
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(
en+ – en + en–, vd

)
+

k

(
div En+ – div En–, vd

)

+ k(div En+ + div En–, vd
)

= , ∀ ∈ vd ∈ Ud, L ≤ n ≤ N – . ()

Let σ n = pn
h –ρdpn

h and θn = ρdpn
h –pn

d . It follows by (), (), and the Hölder and Cauchy
inequalities that

∥
∥θn+ – θn∥∥

 –
∥
∥θn – θn–∥∥

 +
k

∥
∥div

(
θn+ – θn–)∥∥



+
k


(∥
∥div θn+∥∥

 –
∥
∥div θn–∥∥



)

=
(
θn+ – θn + θn–, θn+ – θn–) +

k

(
div

(
θn+ – θn–), div

(
θn+ – θn–))

+
k


(
div

(
θn+ + θn–), div

(
θn+ – θn–))

=
(

En+ – En + En–, θn+ – θn–) +
k

(
div

(
En+ – En–), div

(
θn+ – θn–))

+
k


(
div

(
En+ + En–), div

(
θn+ – θn–)) –

(
σ n+ – σ n + σ n–, θn+ – θn–)

–
k

(
div

(
σ n+ – σ n–), div

(
θn+ – θn–)) –

k


(
div

(
σ n+ + σ n–), div

(
θn+ – θn–))

= –
(
σ n+ – σ n + σ n–, θn+ – θn–) +

k

(
σ n+ – σ n–, θn+ – θn–)

+
k


(
σ n+ + σ n–, θn+ – θn–)

≤ (∥
∥σ n+ – σ n + σ n–∥∥



)∥
∥θn+ – θn–∥∥



+
k

(∥
∥σ n+ – σ n–∥∥



)∥
∥θn+ – θn–∥∥



+
k


(∥
∥σ n+∥∥

 +
∥
∥σ n–∥∥



)∥
∥θn+ – θn–∥∥

. ()

Note that ‖θn+ – θn–‖ ≤ ‖θn+ – θn‖ + ‖θn – θn–‖ and ‖θn+ – θn–‖ ≤ ‖θn+‖ +
‖θn–‖ ≤ C(‖div θn+‖ + ‖div θn–‖). We have from Taylor’s formula and Lemma 
‖σ n+ – σ n + σ n–‖ ≤ C(k + khm+) and ‖σ n+ – σ n–‖ ≤ C(k + khm+). Thus, sim-
plifying () yields

∥
∥θn+ – θn∥∥

 –
∥
∥θn – θn–∥∥

 +
k

(∥
∥div θn+∥∥

 –
∥
∥div θn–∥∥



)

+
k


(∥
∥div θn+∥∥

 –
∥
∥div θn–∥∥



)

≤ ∥
∥θn+ – θn∥∥

 –
∥
∥θn – θn–∥∥

 +
k

∥
∥div θn+ – div θn–∥∥



+
k


(∥
∥div θn+∥∥

 –
∥
∥div θn–∥∥



) ≤ Ck(hm+ + k). ()
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If k ≤ , summing from L to n for () and employing Lemma  and () yield

∥
∥θn+ – θn∥∥

 +
k

(∥
∥div θn+∥∥

 +
∥
∥div θn∥∥



)
+

k


∥
∥div θn+∥∥



≤ k
(∥
∥div θL∥∥

 +
∥
∥div θL–∥∥



)
+ C(n – L)k(hm+ + k)

≤ C(n – L)k(hm+ + k) + Ck
√

L

(

k
l∑

i=d+

λj

)/

.

()

Applying the triangle inequality to () yields

∥
∥θn+∥∥

 –
∥
∥θn∥∥

 ≤ C(n – L)k(hm+ + k) + Ck
√

L

(

k
l∑

i=d+

λj

)/

. ()

Summing from L to n –  for () and employing Lemma  and () yield

∥
∥θn+∥∥

 ≤ ∥
∥θL∥∥

 + C(n – L)k(hm+ + k) + Ck(n – L – )
√

L

(

k
l∑

i=d+

λj

)/

≤ C
(
hm+ + k) + Ck(n – L)

√
L

(

k
l∑

i=d+

λj

)/

. ()

It follows from () and () that

∥
∥θn∥∥

 +
∥
∥div θn∥∥

 ≤ C
(
hm+ + k) + C

√
L

(

k
l∑

i=d+

λj

)/

. ()

Let � n = un
h – Pdun

h and ωn = Pdun
h – un

d . By () and (), we obtain

(
ωn+ – ωn + ωn–,ωn+ – ωn)

=
(
en+ – en + en–,ωn+ – ωn) –

(
� n+ – � n + � n–,ωn+ – ωn)

= –
k

(
div

(
En+ – En–),ωn+ – ωn) –

k


(
div

(
En+ + En–),ωn+ – ωn). ()

Applying the Hölder and Cauchy inequalities to () yields

∥
∥ωn+ – ωn∥∥

 ≤ ∥
∥ωn – ωn–∥∥



∥
∥ωn+ – ωn∥∥



+
k

∥
∥div

(
En+ – En–)∥∥



∥
∥ωn+ – ωn∥∥



+
k


∥
∥div

(
En+ + En–)∥∥



∥
∥ωn+ – ωn∥∥

. ()
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Simplifying () and then summing from L to n yield

∥
∥ωn+ – ωn∥∥

 ≤ k
n∑

i=

∥
∥div

(
σ i+ – σ i–)∥∥

 + k
n+∑

i=

∥
∥div

(
σ i+ + σ i–)∥∥



+ k
n∑

i=

∥
∥div

(
θ i+ – θ i–)∥∥

 + k
n+∑

i=

∥
∥div

(
θ i+ + θ i–)∥∥

. ()

Note that it follows from Taylor’s formula and Lemma  that ‖div(σ i+ – σ i–)‖ ≤ Ck +
Ckhm+ and summing from L to n for () yields k

∑n
i= ‖div(θ i+ –θ i–)‖ ≤ Ck(hm+ + k).

Thus, it follows from () and () that

∥
∥ωn+ – ωn∥∥

 ≤ Ck
(
hm+ + k) + Ck

√
L

(

k
l∑

i=d+

λj

)/

. ()

Applying the triangle inequality to () yields

∥
∥ωn+∥∥

 –
∥
∥ωn∥∥

 ≤ Ck
(
hm+ + k) + Ck

√
L

(

k
l∑

i=d+

λj

)/

. ()

Summing from L to n –  for () and employing Lemma  and () yield

∥
∥ωn∥∥

 ≤ ∥
∥ωL∥∥

 + Cnk
(
hm+ + k) + Cnk

√
L

(

k
l∑

i=d+

λj

)/

≤ C
(
hm+ + k) + C

√
L

(

k
l∑

i=d+

λj

)/

. ()

Combining () with (), Lemma , and Theorem  yields (), which accomplishes the
proof of Theorem . �

Remark  The error formulas in Theorem  express that L cannot be too large so
that

√
L <  (usually taken as L = ). In this case, if m =  and h = O(k), the error

k +
√

L(k
∑l

i=d+ λj)/ is optimized, it offers the suggestions to determine the number
d of POD bases and the number L of the snapshots, i.e., as long as choosing L that meets√

L <  and (k
∑l

i=d+ λj)/ = O(k), then it is theoretically ensured that the solutions to
Problem V have the k-order convergent accuracy.

4.2 The implement procedure of the optimized SPDMFE extrapolation approach
The implement procedure of the optimized SPDMFE extrapolation approach includes the
following seven steps.
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Step  For the given ε, γ , ψ(x, y, t), ψ(x, y), ψ(x, y), f (x, y, t), k, and h meeting k = O(h),
by solving the following classical SPDMFE model at the first L (

√
L < ) steps:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(u
h, vh) = (ψ(x, y), vh), ∀vh ∈ Vh; (u

h, vh) = (ψ(x, y), vh), ∀vh ∈ Vh;
(p

h, qh) = (∇ψ(x, y), qh), ∀qh ∈ Wh; (p
h, qh) = (∇ψ(x, y), qh), ∀qh ∈ Wh;

(∂̄t ∂̄tun
h, vh) + ε(div(∂̄tpn

h + ∂̄tpn–
h ), vh) + γ (div p

n, 


h , vh) = (f (tn), vh), ∀vh ∈ Uh,

(∂̄t ∂̄tpn
h, qh) + ε(div(∂̄tpn

h + ∂̄tpn–
h ), div qh) + γ (div p

n, 


h , div qh)
= (f (tn), div qh), ∀qh ∈ Wh, n = , , . . . , L,

we obtain the snapshots V i = (ui
h, pi

h) ( ≤ i ≤ L).

Step  Compile the correlation matrix A = (Aij)L×L, where Aij = [(ui
h, uj

h) + (pi
h, pj

h) +
(div pi

h, div pj
h)]/L.

Step  Find the eigenvalues λ ≥ λ ≥ · · · ≥ λl >  (l = dim{(un
h, pn

h) :  ≤ n ≤ L}) and asso-
ciated with eigenvectors vj = (aj

, aj
, . . . , aj

L)T ( ≤ j ≤ l) of the matrix A.

Step  Determine the number d of POD bases that meets
∑l

j=d+ λj ≤ k.

Step  Obtain the POD bases (ϕuj,ϕpj) =
∑L

i= aj
i(ui

h, pi
h)/

√
Lλj ( ≤ j ≤ d).

Step  By settling the following optimized SPDMFE extrapolation model which only has
d degrees of freedom at each time level

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βn
j = (pn

h,ϕpj) + (div pn
h, divϕpj),  ≤ j ≤ d,  ≤ n ≤ L;

aij = (ϕpi,ϕpj) + .k(kγ + ε)(divϕpi, divϕpj),
bij = (ϕpi,ϕpj) + .k(kγ – ε)(divϕpi, divϕpj),  ≤ i, j ≤ d,
∑d

i= βn+
i aij = 

∑d
i= βn

i (ϕpi,ϕpj) –
∑d

i= βn–
i bij + (f (tn), divϕpj),

 ≤ j ≤ d, L ≤ n ≤ N – ;
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αn
j = (un

h,ϕuj),  ≤ j ≤ d,  ≤ n ≤ L;
αn+

j = αn
j – αn–

j + (f (tn),ϕuj)
+ .

∑d
i= k[(ε – kγ )βn–

i – (k + ε)βn+
i ](divϕpi,ϕuj),

 ≤ j ≤ d, L ≤ n ≤ N – ,

we obtain (αn
 ,αn

 , . . . ,αn
d ,βn

 ,βn
 , . . . ,βn

d )T ∈ Rd ( ≤ n ≤ N ). Further, we obtain the opti-
mized SPDMFE extrapolation solutions (un

d, pn
d) = (αn

 ϕu + αn
ϕu + · · · + αn

dϕud,βn
 ϕp +

βn
 ϕp + · · · + βn

dϕpd) ( ≤ n ≤ N ).

Step  If ‖(un–
d , pn–

d ) – (un
d, pn

d)‖U×W ≥ ‖(un
d, pn

d) – (un+
d , pn+

d )‖U×W (L ≤ n ≤ N – ), then
(un

d, pn
d) ( ≤ n ≤ N ) are the solutions for Problem V satisfying the desirable accuracy. Else,

namely, if ‖(un–
d , pn–

d ) – (un
d, pn

d)‖U×W < ‖(un
d, pn

d) – (un+
d , pn+

d )‖U×W (L ≤ n ≤ N – ), let
V i = (ui

d, pi
d) (i = n – L – , n – L – , . . . , n – ) and return to Step .

Remark  Though Problem V is theoretically ensured with k-order accuracy (if k =
O(h)), due to the truncated error accumulation in the computing process, the compu-
tational accuracy exceeds the real requirement. Therefore, in order to obtain the desired
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Figure 1 The change rate of eigenvalues λj (j = 1, 2, . . . , 20).

accurate numerical solutions, it is best to add Step , namely if the computing accuracy is
unsatisfied, the desired accurate numerical solutions are obtained by renewing the snap-
shots and the POD bases.

5 Some numerical simulations
In the following, we offer some numerical simulations for confirming that the numeri-
cal conclusions are accordant with theoretical ones and validating the feasibility and effi-
ciency of the optimized SPDMFE extrapolation approach for finding numerical solutions
of DVWE.

We chose an irregular computational domain as follows: � = ([, ] × [, ]) ∪ ([.,
.] × [, .]) cm, set f (x, y, t) =  and ψ(x, y, t) = ψ(x, y) = ψ(x, y) that satisfy, for  ≤
t ≤ T ,

ψ(x, y, t) = ψ(x, y) = ψ(x, y) =

⎧
⎪⎨

⎪⎩

 – x, if (x, y) ∈ [., ] × [, ],
., if (x, y) ∈ [., .] × [, .],
., others.

Thus, ψ(x, y) and ψ(x, y) all were almost everywhere derivable on �̄ and their first-order
partial derivatives were almost everywhere zero on �̄. Therefore, we defined p(x, y, ) =
pt(x, y, ) = ∇ψ(x, y) = 0 in �.

We first partitioned the field �̄ into × squares with edge length �x = �y = –.
Next, we linked the diagonal of the square in the same direction, partitioning each square
into two triangles. Finally, by locally refining meshes so that the scale of the meshes on
[., .] × [, .] and nearby (x, ) ( ≤ x ≤ ) were one-third of the meshes nearby
(x, ) ( ≤ x ≤ ), we obtained the triangularization �h. Thus, h =

√
 × –. We chose

the time step as k = – so that k = O(h) is satisfied. We chose the MFE spaces Uh and Wh

as the piecewise linear polynomials and polynomial vectors, separately.
First, we found the first  solutions (un

h, pn
h, pn

h) ( ≤ n ≤ ) for Problem IV as the
snapshots and computed the eigenvalues and eigenvectors, where the change rate of eigen-
values is expressed in Figure . When d =  and k = –, we obtained (k/ ∑

j= λj)/ ≤
 × –, which implied that we only needed to take five POD bases and this was also
accordant with the change rate of eigenvalues. Thus, the optimized SPDMFE extrapola-
tion approach (Problem V) at each time level included only  ×  =  degrees of freedom,
whereas the classical SPDMFE formulation (Problem IV) contained more than ××

degrees of freedom. Therefore, the optimized SPDMFE extrapolation approach (Prob-
lem V) could not only lessen the calculation load and spare the operation time in the
computing course, but it could also alleviate the truncated error accumulation. When we
solved the optimized SPDMFE extrapolation approach (Problem V) including five POD



Luo and Teng Boundary Value Problems  (2017) 2017:6 Page 16 of 20

Figure 2 The contour plot of optimized SPDMFE
solution un

d at t = 2.

Figure 3 The contour plot of classical SPDMFE
solution un

h at t = 2.

Figure 4 The 3D image of optimized SPDMFE solution pn
1d at t = 2.

bases, according to the seven steps of the implement procedure of the optimized SPDMFE
extrapolation approach in Section ., we found that the optimized SPDMFE extrapola-
tion approach at t =  still converges without updating the POD bases. The optimized
solution obtained from the optimized SPDMFE extrapolation approach (Problem V) is
depicted graphically in Figures , , and , separately. We found the numerical solutions
un

h and pn
h ≡ (pn

h, pn
h) by means of the classical SPDMFE method (Problem IV) when t = ,

depicted graphically in Figures , , and , separately. The charts in Figures , , and  are
very similar to those in Figures , , and , separately, but the optimized SPDMFE extrapo-
lation solutions were computed with higher efficiency than the classical SPDMFE solution
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Figure 5 The 3D image of classical SPDMFE solution pn
1d at t = 2.

Figure 6 The 3D image of optimized SPDMFE solution pn
2d at t = 2.

Figure 7 The 3D image of classical SPDMFE solution pn
2d at t = 2.

because the degrees of freedom of the optimized SPDMFE extrapolation approach (Prob-
lem V) are much fewer than those of the classical SPDMFE formulation.

Figure  expresses the relative errors between  solutions (un
d, pn

d) ≡ (un
d, pn

d, pn
d) of the

optimized SPDMFE extrapolation approach with  different POD bases and the solutions
(un

h, pn
h) ≡ (un

h, pn
h, pn

h) of the classical SPDMFE method at t = , respectively. This implied
that when the numbers of POD bases was larger than five, the errors do not exceed  ×
–. Therefore, the numerical errors above are accordant with theoretical ones.
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Figure 8 When t = 2, the relative errors between
solutions of Problem V with different number of
POD bases for a group of 20 snapshots and the
classical SPDMFE formulation Problem IV with
piecewise first degree polynomial polynomials
and piecewise first degree vectors.

Table 1 RMSEs between the usual POD SPDMFE and optimized SPDMFE extrapolation
solutions

N = 50 N = 100 N = 150 N = 200

u 1.48E–4 2.24E–4 3.37E–4 4.68E–4
p1 1.12E–4 2.35E–4 3.64E–4 4.72E–4
p2 1.38E–4 2.23E–4 3.36E–4 4.82E–4

Table 2 CORCOEs between the usual POD SPDMFE and optimized SPDMFE extrapolation
solutions

N = 50 N = 100 N = 150 N = 200

u 1.57E–4 2.38E–6 2.46E–8 2.59E–9
p1 1.46E–4 2.35E–6 2.65E–8 2.71E–9
p2 1.43E–4 2.24E–6 2.58E–8 2.86E–9

In order to quantify the efficiency of the optimized SPDMFE extrapolation approach,
we compare the root mean square errors (RMSE) and the correlation coefficients (COR-
COE) between the usual POD SPDMFE solutions with five POD bases (formulated by
all  SPDMFE solutions on  ≤ t ≤ ) and the optimized SPDMFE extrapolation so-
lutions with five POD bases (formulated only by the first  SPDMFE solutions) at t =
., ., ., and . (i.e., N = , , , and ), respectively. RMSE and CORCOE are,
respectively, obtained by the following formulas:

RMSE(rN ) =

√
√
√
√ 

N

N∑

n=

∣
∣r̃n

d – rn
d
∣
∣, r = u, p, p, N = , , , ;

CORCOE(rN ) =
∑N

n=(r̃n
d – ¯̃rn

d)(rn
d – r̄n

d)
√

∑N
n=(r̃n

n – ¯̃rn
d) ∑N

n=(rn
d – r̄n

d)
,

r = u, p, p, N = , , , ,

where r̃d
n (r = u, p, p) are the usual POD SPDMFE solutions, rn

dj the optimized SPDMFE
extrapolation solutions, and r̄n

d the mean.
Tables  and  are, respectively, RMSEs and CORCOEs between the usual POD SPDMFE

solutions and the optimized SPDMFE extrapolation solutions at t = ., ., ., and .
(i.e., N = , , , and ) with five POD bases. Table  shows that the numerically
computed RMSEs are consistent with theoretical errors even if they increase with time
step numbers. Table  also shows that the CORCOEs of the numerical solutions for two
cases of the usual POD SPDMFE solutions and the optimized SPDMFE extrapolation solu-
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tions get smaller and smaller with time increasing, which is reasonable since the optimized
SPDMFE extrapolation approach only took the first  SPDMFE solutions as snapshots.
However, the RMSEs are within the tolerance range. Therefore, the optimized SPDMFE
extrapolation approach is an improvement over the usual POD SPDMFE model.

By comparing the classical SPDMFE method with the optimized SPDMFE extrapolation
approach containing five bases in implementing the numerical simulations when t = , we
found that the classical FD scheme at each time level has more than  ×  ×  degrees of
freedom and requires about  minutes computing time on a ThinkPad E PC, whereas
the RMSEs with five POD bases at each time level only involves  ×  degrees of freedom
and the corresponding time is about  seconds on the same PC, i.e., the computing time
of the classical SPDMFE method is about  times that of the optimized SPDMFE ex-
trapolation approach with five POD bases. We also showed that the optimized SPDMFE
extrapolation approach can greatly reduce the accumulation of the truncated error in the
process, diminish the calculation load, save time of calculations, and improve the accuracy
of the numerical solutions.

6 Conclusions and perspective
In this article, the optimized SPDMFE extrapolation approach based on the POD tech-
nique for DVWE has been set up, the error estimates between the classical SPDMFE
solutions and the optimized SPDMFE extrapolation solutions and the implement proce-
dure for the optimized SPDMFE extrapolation approach have been offered. A numerical
example has validated the correctness of the theoretical conclusions, which has expressed
that the optimized SPDMFE extrapolation approach is a further development and im-
provement over the existing methods (see, e.g., [–]).

Our future work in this field will aim at developing the optimized SPDMFE extrapolation
approach, applying it to several more complicated real-world engineering problems.
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