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Abstract
In this paper, we use the Banach contraction mapping principle and Leray-Schauder
degree theory to obtain some results of the existence and uniqueness of solution for
a class of fractional boundary value problem with integral and anti-periodic boundary
conditions.
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1 Introduction
Recently, fractional differential equations have been proved to be significance tools in the
fields of economics, science and engineering such as materials and mechanical systems,
control and robotics, etc. (see [–] and the references therein). It is found that fractional
differential equations are applied in modeling for physical phenomena such as fluid flow,
and signal and image processing. Boundary value problems of fractional equations have
been considered in many papers (see [–] and the references therein).

In [], Cababa and Wang considered a fractional boundary value problem with one
integral and two zero initial conditions, the existence of positive solution is obtained by
constructing a proper cone.

In [], Agrawal and Ahmad discussed the following problem:
{

cDqy(t) = f (t, y(t)), t ∈ [, T], T > ,  < q ≤ ,
y() = –y(T), y′() = –y′(T), y′′() = –y′′(T), y′′′() = –y′′′(T).

(.)

They got some existence results via topological degree theory.
In [], Xu researched the following problem:

{
cDqu(t) = f (t, u(t)), t ∈ [, ],  < q < ,
u() = μ

∫ 
 u(s) ds, u′() + u′() = .

(.)

Based on the above work, we are interested in the following fractional differential problem:
{

cDα
+ u(t) = f (t, u(t)), t ∈ [, ],

Dβ

+ u() =
∫ 

 l(s)u(s) ds, u′() + u′() = ,
(.)
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where  < α < ,  ≤ β < , cDα
+ denotes the Caputo fractional derivative, Dβ

+ is
the Riemann-Liouville fractional derivative, f ∈ C([, ] × R, R), l ∈ L[, ] with �( –
β)

∫ 
 l(s) ds < . The existence and uniqueness of solutions for (.) will be derived by

the Banach contraction mapping principle and Leray-Schauder degree theory.
Compared with the previous research problem, question (.) has wider and more gen-

eral boundary conditions. It contains the situations which are in the above papers. It is
necessary to study problem (.).

In the present paper, we present some important lemmas and theorems (in Section ).
Furthermore, we utilize the fixed point theorem and Leray-Schauder degree theory to
study the existence of solutions for boundary value problem (.) (in Section ). At last,
we will give an example to illustrate our main results (in Section ).

2 Preliminaries and relevant lemmas
In this section, we will recall some classic results on fractional calculus. In order to avoid
redundance, as regards the definitions of the Riemann-Liouville fractional integral, the
Riemann-Liouville fractional derivative, and the Caputo fractional derivative, we recom-
mend the reader to refer to [].

Lemma . ([]) Let p > , x(t) ∈ ACn[, ], then

Ip
+

(cDp
+

)
x(t) = x(t) – x() – x′()t –

x′′()
!

t – · · · –
x(n–)()
(n – )!

tn–,

where n is the smallest integer greater than or equal to p.

Lemma . Given h ∈ C(, ),  < α < ,  ≤ β < , l ∈ L[, ] with �( – β)
∫ 

 l(s) ds < ,
then the unique solution of the following problem:

{
cDα

+ u(t) = h(t), t ∈ (, ),
Dβ

+ u() =
∫ 

 l(s)u(s) ds, u′() + u′() = ,
(.)

is given by

u(t) =


�(α)

∫ t


(t – s)α–h(s) ds –

t
�(α – )

∫ 


( – s)α–h(s) ds

–
�( – β)

��(α – β)

∫ 


( – s)α–β–h(s) ds

+
�( – β)

��(α – )�( – β)

∫ 


( – s)α–h(s) ds

+
�( – β)
��(α)

∫ 



(∫ 

s
l(τ )(τ – s)α– dτ

)
h(s) ds

–
�( – β)

��(α – )

∫ 



(∫ 


τ l(τ )( – s)α– dτ

)
h(s) ds,

where � =  – �( – β)
∫ 

 l(s) ds.
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Proof From Lemma ., we can get

u(t) = Iα
+ h(t) + u() + u′()t

=


�(α)

∫ t


(t – s)α–h(s) ds + u() + u′()t.

Then

u′(t) =


�(α – )

∫ t


(t – s)α–h(s) ds + u′(),

by u′() + u′() = , we have

u′() + u′() =


�(α – )

∫ 


( – s)α–h(s) ds + u′() = 

and this yields

u′() = –


�(α – )

∫ 


( – s)α–h(s) ds.

Moreover,

Dβ

+ u(t) = Iα–β

+ h(t) + Dβ

+ u() + Dβ

+ u′()t

=


�(α – β)

∫ t


(t – s)α–β–h(s) ds +

u()t–β

�( – β)
+

u′()t–β

�( – β)
.

From Dβ

+ u() =
∫ 

 l(s)u(s) ds, we have

Dβ

+ u() =


�(α – β)

∫ 


( – s)α–β–h(s) ds +

u()
�( – β)

–


�(α – )�( – β)

∫ 


( – s)α–h(s) ds

=
∫ 


l(s)

[


�(α)

∫ s


(s – τ )α–h(τ ) dτ + u()

–
s

�(α – )

∫ 


( – τ )α–h(τ ) dτ

]
ds,

then

u() =
�( – β)
��(α)

∫ 



(∫ s


(s – τ )α–l(s)h(τ ) dτ

)
ds

–
�( – β)

��(α – )

∫ 



(∫ 


s( – τ )α–l(s)h(τ ) dτ

)
ds

–
�( – β)

��(α – β)

∫ 


( – s)α–β–h(s) ds

+
�( – β)

��(α – )�( – β)

∫ 


( – s)α–h(s) ds,
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which implies that the solution of (.) is

u(t) =


�(α)

∫ t


(t – s)α–h(s) ds –

t
�(α – )

∫ 


( – s)α–h(s) ds

–
�( – β)

��(α – β)

∫ 


( – s)α–β–h(s) ds

+
�( – β)

��(α – )�( – β)

∫ 


( – s)α–h(s) ds

+
�( – β)
��(α)

∫ 



(∫ 

s
l(τ )(τ – s)α– dτ

)
h(s) ds

–
�( – β)

��(α – )

∫ 



(∫ 


τ l(τ )( – s)α– dτ

)
h(s) ds.

This completes the proof. �

Theorem . ([]) Let X be a Banach space, assume that � is an open bounded subset of
X with θ ∈ � and let A : � → X be a completely continuous operator such that

‖Ax‖ ≤ ‖x‖, ∀x ∈ ∂�.

Then A has a fixed point in �.

3 Main results
In this section we will show the existence and uniqueness of solutions for the problem
(.).

Let 
 = 
�(α+) + 

�(α) + �(–β)
��(α–β+) + �(–β)

��(α)�(–β) + �(–β)
��(α+)

∫ 
 l(s) ds + �(–β)

��(α)
∫ 

 l(s) ds.
Now, we introduce the following hypotheses:

(H) f satisfies the Lipschitz condition

∣∣f (t, x) – f (t, y)
∣∣ ≤ L|x – y|, ∀t ∈ [, ], x, y ∈ R.

(H) limu→
f (t,u)

u =  is uniformly respect to t ∈ [, ].
(H) There exist  ≤ c < 



, K > , such that |f (t, u)| ≤ c|u| + K , for t ∈ [, ], u ∈ R.

Let E = C[, ] denote the Banach space endowed with the norm given by ‖u‖ =
max≤t≤ |u(t)|.

Define an operator A : E → E by

(Au)(t) =


�(α)

∫ t


(t – s)α–f

(
s, u(s)

)
ds

–
t

�(α – )

∫ 

o
( – s)α–f

(
s, u(s)

)
ds

–
�( – β)

��(α – β)

∫ 


( – s)α–β–f

(
s, u(s)

)
ds

+
�( – β)

��(α – )�( – β)

∫ 


( – s)α–f

(
s, u(s)

)
ds
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+
�( – β)
��(α)

∫ 



(∫ 

s
l(τ )(τ – s)α– dτ

)
f
(
s, u(s)

)
ds

–
�( – β)

��(α – )

∫ 



(∫ 


τ l(τ )( – s)α– dτ

)
f
(
s, u(s)

)
ds, t ∈ [, ]. (.)

It is easy to prove that the solution for (.) is equivalent to the fixed point of A.

Lemma . If A is defined in (.), then A : E → E is completely continuous.

Proof Obviously, A : E → E is continuous. For any bounded set � ⊂ E, since f (t, u) is
continuous on [, ] × R, there exists a positive constant Q such that |f (t, u(t))| ≤ Q, for all
t ∈ [, ] and u ∈ �. Thus, we can obtain

∣∣(Au)(t)
∣∣ ≤ 

�(α)

∫ t


(t – s)α–∣∣f (s, u(s)

)∣∣ds

+
t

�(α – )

∫ 

o
( – s)α–∣∣f (s, u(s)

)∣∣ds

+
�( – β)

��(α – β)

∫ 


( – s)α–β–∣∣f (s, u(s)

)∣∣ds

+
�( – β)

��(α – )�( – β)

∫ 


( – s)α–∣∣f (s, u(s)

)∣∣ds

+
�( – β)
��(α)

∫ 



(∫ 

s
l(τ )(τ – s)α– dτ

)∣∣f (s, u(s)
)∣∣ds

+
�( – β)

��(α – )

∫ 



(∫ 


τ l(τ )( – s)α– dτ

)∣∣f (s, u(s)
)∣∣ds

≤ Q
[

tα

�(α + )
+

t
�(α)

+
�( – β)

��(α – β + )
+

�( – β)
��(α)�( – β)

+
�( – β)

��(α + )

∫ 


tαl(t) dt +

�( – β)
��(α)

∫ 


tl(t) dt

]

≤ Q
[


�(α + )

+


�(α)
+

�( – β)
��(α – β + )

+
�( – β)

��(α)�( – β)

+
�( – β)

��(α + )

∫ 


l(s) ds +

�( – β)
��(α)

∫ 


l(s) ds

]
= Q
,

which means A� is uniformly bounded.
Furthermore, for  ≤ t < t ≤ , by a simple computation

∣∣(Au)(t) – (Au)(t)
∣∣

=
∣∣∣∣ 
�(α)

∫ t


(t – s)α–f

(
s, u(s)

)
ds –

t

�(α – )

∫ 


( – s)α–f

(
s, u(s)

)
ds

–


�(α)

∫ t


(t – s)α–f

(
s, u(s)

)
ds +

t

�(α – )

∫ 


( – s)α–f

(
s, u(s)

)
ds

∣∣∣∣
=

∣∣∣∣ 
�(α)

{∫ t



[
(t – s)α– – (t – s)α–]f

(
s, u(s)

)
ds +

∫ t

t

(t – s)α–f
(
s, u(s)

)
ds

}
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+
∫ 

 ( – s)α–f (s, u(s)) ds
�(α – )

(t – t)
∣∣∣∣

≤ Q
�(α + )

∣∣tα
 – tα


∣∣ +

Q
�(α)

|t – t|,

which implies that A� is equicontinuous. Thus, by the Arzelà-Ascoli theorem, A : E → E
is completely continuous.

The proof is completed. �

Theorem . Suppose that (H) is satisfied, and L
 < . Then (.) has a unique solution.

Proof Define N = maxt∈[,] |f (t, )|, and select σ ≥ N

–L


, define a closed ball as Bσ = {u ∈
E : ‖u‖ ≤ σ }, from the proof of Lemma ., we derive

∣∣(Au)(t)
∣∣ ≤ 

�(α)

∫ t


(t – s)α–(∣∣f (s, u(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)ds

+
t

�(α – )

∫ 

o
( – s)α–(∣∣f (s, u(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)ds

+
�( – β)

��(α – β)

∫ 


( – s)α–β–(∣∣f (s, u(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)ds

+
�( – β)

��(α – )�( – β)

∫ 


( – s)α–(∣∣f (s, u(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)ds

+
�( – β)
��(α)

∫ 



(∫ 

s
l(τ )(τ – s)α– dτ

)

× (∣∣f (s, u(s)
)

– f (s, )
∣∣ +

∣∣f (s, )
∣∣)ds

+
�( – β)

��(α – )

∫ 



(∫ 


τ l(τ )( – s)α– dτ

)

× (∣∣f (s, u(s)
)

– f (s, )
∣∣ +

∣∣f (s, )
∣∣)ds

≤ (Lσ + N)
[

tα

�(α + )
+

t
�(α)

+
�( – β)

��(α – β + )
+

�( – β)
��(α)�( – β)

+
�( – β)

��(α + )

∫ 


tαl(t) dt +

�( – β)
��(α)

∫ 


tl(t) dt

]

≤ (Lσ + N)
 ≤ σ ,

which means that ‖Au‖ ≤ σ , that is, A(Bσ ) ⊂ Bσ .
In the following, for x, y ∈ E, for each t ∈ [, ], we compute

∣∣(Ax)(t) – (Ay)(t)
∣∣

≤ 
�(α)

∫ t


(t – s)α–(∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣)ds

+
t

�(α – )

∫ 

o
( – s)α–(∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣)ds

+
�( – β)

��(α – β)

∫ 


( – s)α–β–(∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣)ds
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+
�( – β)

��(α – )�( – β)

∫ 


( – s)α–(∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣)ds

+
�( – β)
��(α)

∫ 



(∫ 

s
l(τ )(τ – s)α– dτ

)(∣∣f (s, x(s)
)

– f
(
s, y(s)

)∣∣)ds

+
�( – β)

��(α – )

∫ 



(∫ 


τ l(τ )( – s)α– dτ

)(∣∣f (s, x(s)
)

– f
(
s, y(s)

)∣∣)ds

≤ L
‖x – y‖,

which implies A is a contraction. Thus, from the Banach contraction mapping principle,
A has a unique fixed point, that is, (.) has a unique solution.

The proof is completed. �

Theorem . Suppose that (H) is satisfied, then (.) has at least one solution.

Proof Since limu→
f (t,u)

u =  is uniformly respect to t ∈ [, ], there exist constants ε > 
(ε ≤ 



) and δ >  such that |f (t, u)| ≤ ε|u|, for all  < |u| < δ and  ≤ t ≤ .

Define D = {u ∈ E : ‖u‖ < δ}. Taking any y ∈ ∂D, then ‖y‖ = δ. From the proof of
Lemma ., we know that |(Ay)(t)| ≤ 
ε‖y‖ ≤ ‖y‖, which implies that ‖Ay‖ ≤ ‖y‖. More-
over, from Lemma ., A is completely continuous. Thus, by Theorem ., A has at least
one fixed point, that is, (.) has at least one solution.

The proof is completed. �

Theorem . Suppose that (H) is satisfied, then (.) has at least one solution.

Proof We consider the operator equation

u = Au. (.)

We shall prove that there exists at least one point u ∈ E satisfying (.).
Suppose a ball Bσ ⊂ E and Bσ = {u ∈ E : ‖u‖ < σ}, with radius σ >  calculated later.

We will demonstrate that A : Bσ → E satisfies the condition u 
= λAu, ∀u ∈ ∂Bσ , ∀λ ∈
[, ].

Due to Lemma ., we know that A is completely continuous, then it is not difficult to
know that gλ(u) is also completely continuous, where gλ(u) is defined by

gλ(u) = u – λAu, ∀u ∈ E,λ ∈ [, ].

From the homotopy invariance of the topological degree in Leray-Schauder degree the-
ory, we can see

deg(gλ, Bσ , ) = deg(g, Bσ , ) = deg(g, Bσ , ) = deg(I, Bσ , ) =  
= ,

where I denotes the unit operator.
According to the nonzero property of Leray-Schauder degree, g(u) = u – Au =  for at

least one u ∈ Bσ .
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Assume that u = λAu for some λ ∈ [, ] and u ∈ E, then for t ∈ [, ], similar to proof of
the Lemma ., we have

∣∣u(t)
∣∣ =

∣∣λAu(t)
∣∣ ≤ ∣∣Au(t)

∣∣
≤ (

c‖u‖ + K
)[ 

�(α)

∫ t


(t – s)α– ds +

t
�(α – )

∫ 


( – s)α– ds

+
�( – β)

��(α – β)

∫ 


( – s)α–β– ds +

�( – β)
��(α – )�( – β)

∫ 


( – s)α– ds

+
�( – β)
��(α)

∫ 



(∫ 

S
l(τ )(τ – s)α– dτ

)
ds

+
�( – β)

��(α – )

∫ 



(∫ 


τ l(τ )( – s)α– dτ

)
ds

]
≤ (

c‖u‖ + K
)

.

So ‖u‖ ≤ (c‖u‖ + K)
. This yields

‖u‖ ≤ K


 – c

.

If σ = K

–c
 + , then u 
= λAu, for any u ∈ ∂Bσ , for all λ ∈ [, ]. Thus, equation (.) has

at least one solution in Bσ , that is, problem (.) has at least one solution.
The proof is completed. �

4 Examples
Example . Consider the following boundary value problem:

⎧⎨
⎩

cD


+ u(t) = +u(t) cos u(t)

(+t) , t ∈ (, ),

D


+ u() =

∫ 
 su(s) ds, u′() + u′() = .

(.)

Let α = 
 , β = 

 , l(t) = t, f (t, u) = +u cos u
(+t) . Obviously, f ∈ C([, ] × R, R), l ∈ L[, ],

�( – β)
∫ 

 l(s) ds = �( 
 )

∫ 
 s ds ≈ . < . It is not difficult to calculate that � =  –

�( – β)
∫ 

 l(s) ds ≈ ., 
 = 
�(α+) + 

�(α) + �(–β)
��(α–β+) + �(–β)

��(α)�(–β) + �(–β)
��(α+)

∫ 
 l(s) ds +

�(–β)
��(α)

∫ 
 l(s) ds ≈ ., 



≈ .. Then there exist c = 

 ( ≤ c < 



) and K = 
 ,

such that |f (t, u)| = |+u cos u|
(+t) ≤ c|u| + K . According to Theorem ., we can see that (.)

has at least one solution.
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