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Abstract
In this paper we study the inverse inhomogeneous penetrable obstacle scattering
problems in a stratified medium. On the basis of the uniqueness and existence of
solutions for the direct scattering by an inhomogeneous penetrable obstacle in a
stratified medium, we first establish an a priori estimate of the solution on some part
of the penetrable interfaces Si (i = 1, 2), which plays an important role in the inverse
scattering problems, and then we prove that both the penetrable interfaces
Si (i = 1, 2) and the refractive index n(x) of the inhomogeneous penetrable obstacle
�2 can be uniquely determined from knowledge of the far-field pattern u∞ (̂x,d)
(̂x,d ∈ S,S is the unit sphere of R3) for an incident plane wave ui(x) = eik1x·d (x ∈ R

3).

Keywords: inverse scattering problems; inhomogeneous penetrable obstacle;
stratified medium; Helmholtz equation

1 Introduction
In this paper, we study the inverse inhomogeneous penetrable obstacle scattering prob-
lems in a stratified medium. In many branches of science and engineering such as radar
and sonar, remote sensing, geophysics, geological exploration, nondestructive testing and
medical imaging, the background medium may be described as a stratified medium rather
than a homogeneous medium. Consequently, one possible model would be an inhomoge-
neous penetrable obstacle buried in a stratified medium. For simplicity and without loss
of generality, in this paper we consider the case where the inhomogeneous penetrable ob-
stacle is buried in a stratified medium with two layers. To be specific, let � ⊂ R

 be a
bounded homogeneous medium with a closed C boundary surface S such that R\�

is divided into two connected domains � and � by a closed C boundary surface S,
where � is an inhomogeneous penetrable obstacle and � is an unbounded homoge-
neous medium.

The problems of scattering by an inhomogeneous penetrable obstacle in a stratified
medium with two layers in R

 can be described as the following Helmholtz equations
with transmission boundary conditions on their interfaces and Sommerfeld radiation con-
dition, that is, the following boundary value problem:

�u(x) + k
 u(x) = , in �, (.)
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�v(x) + k
n(x)v(x) = , in �, (.)

�w(x) + k
w(x) = , in �, (.)

u(x) – v(x) = ,
∂u(x)
∂ν

– λ
∂v(x)
∂ν

= , on S, (.)

v(x) – w(x) = ,
∂v(x)
∂ν

– λ
∂w(x)
∂ν

= , on S, (.)

lim
r→∞ r

[

∂us(x)
∂r

– ikus(x)
]

= , (.)

where r = |x| =
√

x
 + x

 + z, x = (x, x, z) ∈ R
, � = ∂

∂x


+ ∂

∂x


+ ∂

∂z is the Laplacian,
u(x) = u(x, x, z), v(x) = v(x, x, z) and w(x) = w(x, x, z) are the time-harmonic veloc-
ity potentials, ν is the unit outward normal to the penetrable interface Si (i = , ) and
n(x) = n(x, x, z) ∈ C,α(�),  < α < , is the refractive index of an inhomogeneous pen-
etrable obstacle with �[n(x)] > ,�[n(x)] ≥ . Here, the total field u(x) = ui(x) + us(x) is
given as the sum of the unknown scattered wave us(x) = us(x, x, z) which is required to
satisfy the Sommerfeld radiation condition (.) and the incident wave ui(x) = ui(x, x, z),
kj >  (j = , , ) is the wave number given by kj = ωj

cj
(j = , , ) in terms of the frequency

ωj (j = , , ) and the wave speed cj (j = , , ) in the corresponding medium �j (j = , , ).
The distinct wave numbers kj (j = , , ) correspond to the fact that the medium con-
sists of several physically different materials. On the penetrable interfaces Si (i = , ), the
so-called transmission conditions (.)-(.) with two constants λ >  and λ >  are im-
posed, respectively, which represent the continuity of the medium and equilibrium of the
forces acting on them.

For the uniqueness results for inverse scattering by an inhomogeneity with compact sup-
port in a homogeneous medium, see Hähner [], Nachman [], Novikov [], and Ramm
[, ], or see Colton and Kress [], Isakov [], and Kirsch [] for a comprehensive dis-
cussion. In the case when the obstacle is impenetrable, Liu et al. have proved the unique
determination of some inverse scattering problems, see [, ], or see Hähner [], and
when the obstacle is penetrable, some results concerned with the unique determination
of the inverse scattering problems can be found in Athanasiadis and Stratis [], Kirsch and
Päivärinta [], Liu and Zhang [], Nachman, Päivärinta and Teirlilä [], and Yan [].
Moreover, Giorgi, Brignone, Aramini, and Piana [] have presented a hybrid approach,
which merges a qualitative and a quantitative method to optimize the way of exploiting
the a priori information on the background within the inversion procedure, to numeri-
cally solving two-dimensional electromagnetic inverse scattering problems, whereby the
unknown scatterer is hosted by a possibly inhomogeneous background.

The rest of the paper is organized as follows: in Section , we recall the uniqueness and
existence of solutions for the direct scattering by an inhomogeneous obstacle in a stratified
medium, which will be useful in the rest of the paper. In Section , we will establish a priori
estimate of the solution on some part of the penetrable interfaces Si (i = , ), which plays
an important role in the inverse scattering problem. In Section , we will prove that both
the penetrable interfaces Si (i = , ) and the refractive index n(x) of the inhomogeneous
penetrable obstacle � can be uniquely determined from knowledge of the far-field pat-
tern u∞ (̂x, d) (̂x, d ∈ S,S is the unit sphere of R) for an incident plane wave ui(x) = eikx·d .
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2 Preliminaries
In this section, we recall the uniqueness and existence of solutions for the direct scat-
tering by an inhomogeneous obstacle in a stratified medium, which we have addressed
in []. These results will be useful in the rest of the paper. From now on, we assume that
k, k, k,λ,λ are given positive numbers and that k

 is not a Neumann eigenvalue of
�v(x) + k

n(x)v(x) =  in �.
The incident wave fields ui(x) = ui(x, x, z) may be an incident plane wave eikx·d or point

source 	j(·, zj) (j = , ), which will be given below, where d ∈ S is the incident direction,
zj ∈ �j (j = , ). Denote by us(·, d) the scattered field for an incident plane wave ui(·, d)
and by u∞(·, d) the corresponding far-field pattern, and denote by us(·, zj) (j = , ) the
scattered field for an incident point source 	j(·, zj) (j = , ) and by 	∞(·, zj) (j = , ) the
corresponding far-field pattern.

We will look for the solution u(x) ∈ C(�) ∩ C,α(�), v(x) ∈ C(�) ∩ C,α(�) and
w(x) ∈ C(�) ∩ C,α(�) satisfying the following Helmholtz equations with transmission
boundary conditions on their interfaces and Sommerfeld radiation condition, that is, the
following boundary value problem:

�u(x) + k
 u(x) = , in �, (.)

�v(x) + k
n(x)v(x) = , in �, (.)

�w(x) + k
w(x) = , in �, (.)

u(x) – v(x) = f (x),
∂u(x)
∂ν

– λ
∂v(x)
∂ν

= g(x), on S, (.)

v(x) – w(x) = p(x),
∂v(x)
∂ν

– λ
∂w(x)
∂ν

= q(x), on S, (.)

lim
r→∞ r

[

∂us(x)
∂r

– ikus(x)
]

= , (.)

where f (x) ∈ C,α(S), g(x) ∈ C,α(S), p(x) ∈ C,α(S) and q(x) ∈ C,α(S) are given func-
tions from Hölder spaces with  < α < . For the scattering problem, if the incident
field ui(x) = ui(x, x, z) is the incident plane wave eikx·d or the point source 	(·, z)
with z ∈ �, then f (x) = –ui(x), g(x) = – ∂ui(x)

∂ν
, p = , q = , and if the incident field

ui(x) = ui(x, x, z) is the point source 	(·, z) with z ∈ �, then f (x) = ui(x), g(x) =
λλ

∂ui(x)
∂ν

, p(x) = –ui(x), q(x) = –λ
∂ui(x)

∂ν
.

So we can recall the following three lemmas.

Lemma  There exists at most one solution for the Helmholtz equations (.)-(.) with
transmission boundary conditions (.)-(.) and Sommerfeld radiation condition (.),
that is, the boundary value problem (.)-(.).

Proof The proof is analogous to the proof of Theorem  in [] and, hence, is omit-
ted. �

Lemma  There exists a unique solution for the Helmholtz equations (.)-(.) with trans-
mission boundary conditions (.)-(.) and Sommerfeld radiation condition (.), that is,
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the boundary value problem (.)-(.). In particular, such a solution satisfies the estimate

∥

∥u(x)
∥

∥

,α,�
+

∥

∥v(x)
∥

∥

,α,�
+

∥

∥w(x)
∥

∥

,α,�

≤ C
(∥

∥f (x)
∥

∥

,α,S
+

∥

∥g(x)
∥

∥

,α,S
+

∥

∥p(x)
∥

∥

,α,S
+

∥

∥q(x)
∥

∥

,α,S

)

, (.)

for some positive constant C = C(α).

Proof The proof is analogous to the proof of Theorem  in [] and, hence, is omitted. �

Lemma  For the scattering of the incident plane wave ui(·, d) with the incident direction
d ∈ S and the incident point source 	(·, z) from the inhomogeneous penetrable obstacle �,
we have

	∞ (̂x, z) =

⎧

⎨

⎩


π

us(z, –̂x), z ∈ �,
λλ
π

w(z, –̂x), z ∈ �,
(.)

where x̂ = x
|x| ∈ S is the observation direction.

Proof The proof is analogous to the proof of Theorem  in [] and, hence, is omitted. �

3 Results and discussion
In this section, we will establish an a priori estimate of the solution on the penetrable
interfaces Si (i = , ), which plays an important role in the inverse scattering problem.

To prove the next two lemmas, we first need the fundamental solution 	j (j = , , ) to
the Helmholtz equation with wave number kj (j = , , ) given by

	j(x, y) =
eikj|x–y|

π |x – y| , x, y ∈R
, x �= y, j = , , . (.)

Define the single-layer and double-layer potentials˜Si,j (i = , , j = , , ) and ˜Ki,j (i = , , j =
, , ), respectively, by

(˜Si,jφ)(x) �=
∫

Si

	j(x, y)φ(y) ds(y), x ∈R
\Si, i = , , j = , , , (.)

(˜Ki,jφ)(x) �=
∫

Si

∂	j(x, y)
∂ν(y)

φ(y) ds(y), x ∈R
\Si, i = , , j = , , , (.)

and the normal derivative operators ˜K ′
i,j (i = , , j = , , ) and ˜Ti,j (i = , , j = , , ) by

(

˜K ′
i,jφ

)

(x) �=
∂

∂ν(x)

∫

Si

	j(x, y)φ(y) ds(y), x ∈R
\Si, i = , , j = , , , (.)

(˜Ti,jφ)(x) �=
∂

∂ν(x)

∫

Si

∂	j(x, y)
∂ν(y)

φ(y) ds(y), x ∈R
\Si, i = , , j = , , . (.)

These operators restricted on the penetrable interfaces Si (i = , ) will be denoted by Si,j,
Ki,j, K ′

i,j and Ti,j (i = , , j = , , ), respectively. For the proof of the next two lemmas, we
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also need the volume potential

(Vφ)(x) �= k


∫

�

	(x, y)
[

n(y) – 
]

φ(y) dy, x ∈ R
, (.)

and its normal derivative operator denoted by V ′. For mapping properties of these op-
erators in the classical spaces of continuous and Hölder continuous functions, see the
monographs of Colton and Kress [, ].

Let � be the complement of �, that is, �
�= R

\�. Choose a large ball BR centered at
the origin such that � ⊂ BR and let �R = BR\�. Denote by D any of �R, �, �, S or S.
Let x′ ∈ D be an arbitrarily fixed point and denote by the weight space C(D) consisting of
all continuous functions h(x) ∈ C(D\{x′}), such that

lim
x→x′

∣

∣

(

x – x′)h(x)
∣

∣ (.)

exists. It can easily be verified that C(D) is a Banach space equipped with the weighted
maximum norm

∥

∥h(x)
∥

∥

,D
�= sup

x �=x′ ,x∈D

∣

∣

(

x – x′)h(x)
∣

∣. (.)

Let B, B be two small balls with center x() and radii r, r, respectively, satisfying that
x() ∈ S, r < r, B ∩ � = ∅. Now we consider the scattering problem of the incident
point source 	(x, z) with z ∈ B ∩ �. For the proof of the unique determination of the
boundary interface S in the inverse scattering problem in the next section, we first study
the behavior of the solution v on some part of the boundary interface S.

Lemma  Let u(x) ∈ C(�) ∩ C,α(�), v(x) ∈ C(�) ∩ C,α(�) and w(x) ∈ C(�) ∩
C,α(�) be a solution of the boundary value problem (.)-(.) with f (x), g(x), p(x), q(x)
given below, then there exists a constant C >  such that

∥

∥v(x)
∥

∥∞,S\B
+

∥

∥

∥

∥

∂v(x)
∂ν

∥

∥

∥

∥∞,S\B

≤ C
(∥

∥f(x)
∥

∥

,S
+

∥

∥g(x)
∥

∥

,S
+

∥

∥f(x)
∥

∥

,α,S\B

+
∥

∥g(x)
∥

∥

,α,S\B
+

∥

∥p(x)
∥

∥

,α,S
+

∥

∥q(x)
∥

∥

,α,S

+
∥

∥	(x, z)
∥

∥

L(�)

)

, (.)

where f (x) = f(x) = 
λ

	(x, z) – 	(x, z), g(x) = g(x) = ∂	(x,z)
∂ν

– ∂	(x,z)
∂ν

, p(x) = p(x) =
– 

λ
	(x, z), q(x) = q(x) = – ∂	(x,z)

∂ν
and z ∈ B ∩ �.

Proof From [] and [], we look for the unique solution in the form

u(x) = λ(˜K,ϕ)(x) + (˜S,φ)(x), in �, (.)

v(x) = (˜K,ϕ)(x) + (˜S,φ)(x) + λ(˜K,ϕ)(x) + (˜S,φ)(x) + (Vv)(x), in �, (.)

w(x) = (˜K,ϕ)(x) + (˜S,φ)(x), in �, (.)
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with four densities ϕ(x) ∈ C,α(S), φ(x) ∈ C,α(S), ϕ(x) ∈ C,α(S), φ(x) ∈ C,α(S).
Then, from the transmission boundary conditions (.)-(.), we can see that the veloc-
ity potentials u(x), v(x) and w(x) given by (.)-(.) solve the boundary value problem
(.)-(.) if the four mentioned densities satisfy the following system of integral equa-
tions:

λ + 


ϕ(x) +
[

(λK, – K,)ϕ
]

(x) +
[

(S, – S,)φ
]

(x) – (λK,ϕ + S,φ)(x)

– (Vv)(x) = f(x), on S, (.)

–
λ + 


φ(x) + λ

[

(T, – T,)ϕ
]

(x) +
[(

K ′
, – λK ′

,
)

φ
]

(x)

– λ
(

λT,ϕ + K ′
,φ

)

(x) – λ
(

V ′v
)

(x) = g(x), on S, (.)

λ + 


ϕ(x) +
[

(λK, – K,)ϕ
]

(x) +
[

(S, – S,)φ
]

(x) + (K,ϕ + S,φ)(x)

+ (Vv)(x) = p(x), on S, (.)

–
λ + 


φ(x) + λ

[

(T, – T,)ϕ
]

(x) +
[(

K ′
, – λK ′

,
)

φ
]

(x)

+
(

T,ϕ + K ′
,φ

)

(x) + λ
(

V ′v
)

(x) = q(x), on S. (.)

From the integral equations (.) and (.) and by using Theorem . in [], we can
see that ϕ(x) ∈ C,α(S) and ϕ(x) ∈ C,α(S). Define the product space

X �= C,α(�) × C,α(�) × C,α(�) × C,α(S) × C,α(S) × C,α(S) × C,α(S), (.)

then X can be chosen as the solution space of the above system (.)-(.). Assume that
the operator A : X → X is given in the following matrix form:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

   –λ˜K, –˜S,  
 –V  –˜K, –˜S, –λ˜K, –˜S,

     –˜K, –˜S,

 – V
λ+  (λK,–K,)

λ+
(S,–S,)

λ+ – λK,
λ+ – S,

λ+

 – λV ′
λ+  λ(T,–T,)

λ+
(λK ′

,–K ′
,)

λ+
λλT,

λ+
λK ′

,
λ+

 V
λ+  K,

λ+
S,
λ+ – (λK,–K,)

λ+ – (S,–S,)
λ+

 – λV ′
λ+  – T,

λ+ – K ′
,

λ+
λ(T,–T,)

λ+
(λK ′

,–K ′
,)

λ+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence, the above system (.)-(.) can be rewritten in the abbreviated form

(I + A)U(x) = R(x), (.)

where I is the identity operator, U(x) = (u(x), v(x), w(x),ϕ(x),φ(x),ϕ(x),φ(x))T , and

R(x) =
(

, , ,
f(x)
λ + 

, –
g(x)
λ + 

,
p(x)
λ + 

, –
q(x)
λ + 

)T

. (.)
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Also, we define another weighted product space

Y �= C(�R) × C,α(�) × C(�) × C(S) × C(S) × C,α(S) × C,α(S). (.)

From [] and [], we know that all entries of the matrix operator A are compact, hence,
we can easily see that the matrix operator A is compact in the weighted product space Y .
By using Theorem  in [], we know that the operator I + A has a trivial null space in
the weighted product space X. Consequently, by applying the Riesz-Fredholm theory to
the dual system 〈X, Y 〉 with the L bilinear form, we can easily see that the adjoint opera-
tor I + A′ has a trivial null space in the weighted product space Y . Then, by applying the
Riesz-Fredholm theory again to the dual system 〈Y , Y 〉 with the L bilinear form, we can
easily see that the operator I + A has a trivial null space in the weighted product space Y .
Hence, system (.) is uniquely solvable in the weighted product space Y , and the solution
depends continuously on the right-hand side:

∥

∥U(x)
∥

∥


�=

∥

∥u(x)
∥

∥

,�R
+

∥

∥v(x)
∥

∥

,α,�
+

∥

∥w(x)
∥

∥

,�

+
∥

∥ϕ(x)
∥

∥

,S
+

∥

∥φ(x)
∥

∥

,S
+

∥

∥ϕ(x)
∥

∥

,α,S
+

∥

∥φ(x)
∥

∥

,α,S

≤ C
(∥

∥f(x)
∥

∥

,S
+

∥

∥g(x)
∥

∥

,S
+

∥

∥p(x)
∥

∥

,α,S
+

∥

∥q(x)
∥

∥

,α,S

+
∥

∥	(x, z)
∥

∥

L(�)

)

. (.)

In particular, this implies that

∥

∥v(x)
∥

∥∞,S\B
≤ C

(∥

∥f(x)
∥

∥

,S
+

∥

∥g(x)
∥

∥

,S
+

∥

∥p(x)
∥

∥

,α,S
+

∥

∥q(x)
∥

∥

,α,S

+
∥

∥	(x, z)
∥

∥

L(�)

)

. (.)

Let B be a ball of radius r and centered at x() with r < r < r and assume that ρ(x) ∈
C(S) is a function satisfying ρ(x) =  for x ∈ S\B and ρ(x) =  in the neighborhood of
B, ρ(x) ∈ C(S) is another function satisfying ρ(x) =  for x ∈ S\B and ρ(x) =  in
the neighborhood of B.

We rewrite U(x) in the form

U(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u(x)
v(x)
w(x)
ϕ(x)
φ(x)
ϕ(x)
φ(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ(x)u(x)
ρ(x)v(x)

w(x)
ρ(x)ϕ(x)
ρ(x)φ(x)

ϕ(x)
φ(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

( – ρ(x))u(x)
( – ρ(x))v(x)


( – ρ(x))ϕ(x)
( – ρ(x))φ(x)




⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�= Uρ (x) + U–ρ (x), (.)

and for a matrix M, denote Mρ by the same matrix but with its first, second, fourth, and
fifth rows multiplied by ρ(x). Hence, from (.), we have

Uρ (x) = Rρ (x) – Aρ Uρ (x) – Aρ U–ρ (x). (.)
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The mapping operator U(x) → Aρ Uρ (x) is bounded from the weighted product space Y
into the weighted product space X as its kernel vanishes in a neighborhood of the diagonal
element. Moreover, by using Theorems . and . in [], we can see that

∥

∥Aρ U–ρ (x)
∥

∥

,α ≤ C
∥

∥AU–ρ (x)
∥

∥

,α ≤ C
∥

∥U–ρ (x)
∥

∥∞ ≤ C
∥

∥U(x)
∥

∥

, (.)

where the norms ‖U(x)‖,α and ‖U(x)‖∞ are defined as follows: the first, second, fourth,
and fifth components of U(x) are defined by the corresponding norms but its third, sixth,
and seventh components are equipped with C,α(�), C,α(S) and C,α(S) norms, respec-
tively. From (.) and (.), we can see that

∥

∥U(x)
∥

∥

,α
�=

∥

∥u(x)
∥

∥

,α,�R\B
+

∥

∥v(x)
∥

∥

,α,�\B
+

∥

∥w(x)
∥

∥

,α,�

+
∥

∥ϕ(x)
∥

∥

,α,S\B
+

∥

∥φ(x)
∥

∥

,α,S\B
+

∥

∥ϕ(x)
∥

∥

,α,S
+

∥

∥φ(x)
∥

∥

,α,S

≤ C
∥

∥Uρ (x)
∥

∥

,α

≤ C
(∥

∥Rρ (x)
∥

∥

,α +
∥

∥U(x)
∥

∥



)

≤ C
(∥

∥f(x)
∥

∥

,S
+

∥

∥g(x)
∥

∥

,S
+

∥

∥f(x)
∥

∥

,α,S\B
+

∥

∥g(x)
∥

∥

,α,S\B

+
∥

∥p(x)
∥

∥

,α,S
+

∥

∥q(x)
∥

∥

,α,S
+

∥

∥	(x, z)
∥

∥

L(�)

)

. (.)

Then we estimate ‖ϕ(x)‖,α,S\B . Multiplying (.) by ρ(x), using (.), and not-
ing the fact that the integral operators mapping C,α-functions into C,α-functions are
bounded and the fact that ϕ(x) = ρ(x)ϕ(x) + [ – ρ(x)]ϕ(x) and φ(x) = ρ(x)φ(x) + [ –
ρ(x)]φ(x), we can see that

∥

∥ϕ(x)
∥

∥

,α,S\B
≤ ∥

∥ρ(x)ϕ(x)
∥

∥

,α,S

≤ C
(∥

∥ρ(x)
[

(λK, – K,)ϕ
]

(x)
∥

∥

,α +
∥

∥ρ(x)
[

(S, – S,)φ
]

(x)
∥

∥

,α

+
∥

∥ρ(x)λ(K,ϕ)(x)
∥

∥

,α +
∥

∥ρ(x)(S,φ)(x)
∥

∥

,α

+
∥

∥ρ(x)(Vv)(x)
∥

∥

,α +
∥

∥ρ(x)f(x)
∥

∥

,α

)

≤ C
(∥

∥U(x)
∥

∥

 +
∥

∥

[

 – ρ(x)
]

U(x)
∥

∥

,α +
∥

∥ρ(x)f(x)
∥

∥

,α

)

≤ C
(∥

∥U(x)
∥

∥

 +
∥

∥U(x)
∥

∥

,α +
∥

∥f(x)
∥

∥

,α,S\B

)

. (.)

From (.) and (.)-(.), we can establish the following estimate in the spaces of
Hölder continuous functions for (u(x), v(x), w(x),ϕ(x),φ(x),ϕ(x),φ(x)):

∥

∥U(x)
∥

∥

,α
�=

∥

∥u(x)
∥

∥

,α,�R\B
+

∥

∥v(x)
∥

∥

,α,�\B
+

∥

∥w(x)
∥

∥

,α,�

+
∥

∥ϕ(x)
∥

∥

,α,S\B
+

∥

∥φ(x)
∥

∥

,α,S\B
+

∥

∥ϕ(x)
∥

∥

,α,S
+

∥

∥φ(x)
∥

∥

,α,S

≤ C
(∥

∥f(x)
∥

∥

,S
+

∥

∥g(x)
∥

∥

,S
+

∥

∥f(x)
∥

∥

,α,S\B
+

∥

∥g(x)
∥

∥

,α,S\B

+
∥

∥p(x)
∥

∥

,α,S
+

∥

∥q(x)
∥

∥

,α,S
+

∥

∥	(x, z)
∥

∥

L(�)

)

. (.)
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Next, we estimate ‖ ∂v(x)
∂ν

‖,α,S\B . From (.) and the jump relation, we can obtain, on S,

∂v(x)
∂ν

=


φ(x) + (T,ϕ)(x) +

(

K ′
,φ

)

(x) + λ(T,ϕ)(x)

+
(

K ′
,φ

)

(x) +
(

V ′v
)

(x). (.)

From (.) and by using the fact that ϕ(x) = ρ(x)ϕ(x) + [ – ρ(x)]ϕ(x) and φ(x) =
ρ(x)φ(x) + [ – ρ(x)]φ(x) again, we can see that

∥

∥

∥

∥

∂v(x)
∂ν

∥

∥

∥

∥

,α,S\B

≤
∥

∥

∥

∥

[

 – ρ(x)
]∂v(x)

∂ν

∥

∥

∥

∥

,α,S

≤ C
(∥

∥U(x)
∥

∥

 +
∥

∥

[

 – ρ(x)
]

ϕ(x)
∥

∥

,α,S
+

∥

∥

[

 – ρ(x)
]

φ(x)
∥

∥

,α,S

+
∥

∥ϕ(x)
∥

∥

,α,S
+

∥

∥φ(x)
∥

∥

,α,S

)

≤ C
(∥

∥U(x)
∥

∥

 +
∥

∥U(x)
∥

∥

,α

)

. (.)

From the estimate (.) with (.) and (.), we can see that

∥

∥

∥

∥

∂v(x)
∂ν

∥

∥

∥

∥

,α,S\B

≤ C
(∥

∥f(x)
∥

∥

,S
+

∥

∥g(x)
∥

∥

,S
+

∥

∥f(x)
∥

∥

,α,S\B
+

∥

∥g(x)
∥

∥

,α,S\B

+
∥

∥p(x)
∥

∥

,α,S
+

∥

∥q(x)
∥

∥

,α,S
+

∥

∥	(x, z)
∥

∥

L(�)

)

. (.)

It finishes the proof of the lemma. �

Similarly, let B, B be two small balls with center x() and radii r, r, respectively, sat-
isfying that x() ∈ S, r < r, B ∩ � = ∅. Now we consider the scattering problem of the
incident point source 	(x, z) with z ∈ B ∩ �. To prove the unique determination of
the boundary interface S in the inverse scattering problem in the next section, we need
to study the behavior of the solution w on some part of the boundary interface S.

Lemma  Assume that z ∈ B ∩� and u(x) ∈ C(�)∩C,α(�), v(x) ∈ C(�)∩C,α(�)
and w(x) ∈ C(�) ∩ C,α(�) is a solution of the boundary value problem (.)-(.) with
f(x), g(x), p(x), q(x) given below, then there exists a constant C >  such that

∥

∥w(x)
∥

∥∞,S\B
+

∥

∥

∥

∥

∂w(x)
∂ν

∥

∥

∥

∥∞,S\B

≤ C
(∥

∥f(x)
∥

∥

,α,S
+

∥

∥g(x)
∥

∥

,α,S
+

∥

∥p(x)
∥

∥

,S
+

∥

∥q(x)
∥

∥

,S

+
∥

∥p(x)
∥

∥

,α,S\B
+

∥

∥q(x)
∥

∥

,α,S\B

)

, (.)

where f(x) = 
λλ

	(x, z), g(x) = ∂	(x,z)
∂ν

, p(x) = – 
λ

	(x, z), q(x) = – ∂	(x,z)
∂ν

.

Proof Arguing similarly as in the above lemma, in addition to the weighted product space
X, Y , we also consider the weighted product space

Z �= C(�R) × C(�) × C,α(�) × C,α(S) × C,α(S) × C(S) × C(S). (.)
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From [] and [], we know that all entries of the matrix operator A are compact, hence,
we can easily see that the matrix operator A is compact in the weighted product space Z.
By using Theorem  in [], we know that the operator I + A has a trivial null space in
the weighted product space X. Consequently, by applying the Fredholm alternative to the
dual system 〈X, Z〉 with the L bilinear form, we can see that the adjoint operator I + A′

has a trivial null space in the weighted product space Z. Then, by applying the Fredholm
alternative again to the dual system 〈Z, Z〉 with the L bilinear form, we can see that the
operator I + A has a trivial null space in the weighted product space Z. Hence, by using the
Riesz-Fredholm theory, system (.) is uniquely solvable in the weighted product space
Z, and the solution depends continuously on the right-hand side:

∥

∥U(x)
∥

∥


�=

∥

∥u(x)
∥

∥

,�R
+

∥

∥v(x)
∥

∥

,�
+

∥

∥w(x)
∥

∥

,α,�

+
∥

∥ϕ(x)
∥

∥

,α,S
+

∥

∥φ(x)
∥

∥

,α,S
+

∥

∥ϕ(x)
∥

∥

,S
+

∥

∥φ(x)
∥

∥

,S

≤ C
(∥

∥f(x)
∥

∥

,α,S
+

∥

∥g(x)
∥

∥

,α,S
+

∥

∥p(x)
∥

∥

,S
+

∥

∥q(x)
∥

∥

,S

)

. (.)

In particular, this implies that

∥

∥w(x)
∥

∥∞,S\B
≤ C

(∥

∥f(x)
∥

∥

,α,S
+

∥

∥g(x)
∥

∥

,α,S
+

∥

∥p(x)
∥

∥

,S
+

∥

∥q(x)
∥

∥

,S

)

. (.)

Let B be a ball of radius r and centered at x() with r < r < r, and assume that
ρ(x) ∈ C(S) is a function satisfying ρ(x) =  for x ∈ S\B and ρ(x) =  in the neigh-
borhood of B, ρ(x) ∈ C(S) is another function satisfying ρ(x) =  for x ∈ S\B and
ρ(x) =  in the neighborhood of B.

We rewrite U(x) in the form

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u(x)
v(x)
w(x)
ϕ(x)
φ(x)
ϕ(x)
φ(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u(x)
ρ(x)v(x)
ρ(x)w(x)

ϕ(x)
φ(x)

ρ(x)ϕ(x)
ρ(x)φ(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝


( – ρ(x))v(x)
( – ρ(x))w(x)




( – ρ(x))ϕ(x)
( – ρ(x))φ(x)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�= Uρ (x) + U–ρ (x), (.)

and for a matrix N , denote Nρ by the same matrix but with its second, third, sixth, and
seventh rows multiplied by ρ(x). Hence, from (.), we have

Uρ (x) = Rρ (x) – Aρ Uρ (x) – Aρ U–ρ (x). (.)

The mapping operator U(x) → Aρ Uρ (x) is bounded from the weighted product space
Z into the weighted product space X since its kernel vanishes in a neighborhood of the
diagonal element. Moreover, by using theorems . and . in [], we can see that

∥

∥Aρ U–ρ (x)
∥

∥

,α ≤ C
∥

∥AU–ρ (x)
∥

∥

,α ≤ C
∥

∥U–ρ (x)
∥

∥∞ ≤ C
∥

∥U(x)
∥

∥

, (.)
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where the norms ‖U(x)‖,α and ‖U(x)‖∞ are defined as follows: the second, third, sixth,
and seventh components of U(x) are defined by the corresponding norms but its first,
fourth, and fifth components are equipped with C,α(�R), C,α(S) and C,α(S) norms,
respectively. From (.) and (.), we can see that

∥

∥U(x)
∥

∥

,α
�=

∥

∥u(x)
∥

∥

,α,�R
+

∥

∥v(x)
∥

∥

,α,�\B
+

∥

∥w(x)
∥

∥

,α,�\B

+
∥

∥ϕ(x)
∥

∥

,α,S
+

∥

∥φ(x)
∥

∥

,α,S
+

∥

∥ϕ(x)
∥

∥

,α,S\B
+

∥

∥φ(x)
∥

∥

,α,S\B

≤ C
∥

∥Uρ (x)
∥

∥

,α

≤ C
(∥

∥Rρ (x)
∥

∥

,α +
∥

∥U(x)
∥

∥



)

≤ C
(∥

∥f(x)
∥

∥

,α,S
+

∥

∥g(x)
∥

∥

,α,S
+

∥

∥p(x)
∥

∥

,α,S\B
+

∥

∥q(x)
∥

∥

,α,S\B

+
∥

∥p(x)
∥

∥

,S
+

∥

∥q(x)
∥

∥

,S

)

. (.)

Then we estimate ‖ϕ(x)‖,α,S\B . Multiplying (.) by ρ(x), using (.), and not-
ing the fact that the integral operators mapping C,α-functions into C,α-functions are
bounded and the fact that ϕ(x) = ρ(x)ϕ(x) + [ –ρ(x)]ϕ(x) and φ(x) = ρ(x)φ(x) + [ –
ρ(x)]φ(x), we can see that

∥

∥ϕ(x)
∥

∥

,α,S\B
≤ ∥

∥ρ(x)ϕ(x)
∥

∥

,α,S

≤ C
(∥

∥ρ(x)
[

(λK, – K,)ϕ
]

(x)
∥

∥

,α +
∥

∥ρ(x)
[

(S, – S,)φ
]

(x)
∥

∥

,α

+
∥

∥ρ(x)(K,ϕ)(x)
∥

∥

,α +
∥

∥ρ(x)(S,φ)(x)
∥

∥

,α

+
∥

∥ρ(x)(Vv)(x)
∥

∥

,α +
∥

∥ρ(x)p(x)
∥

∥

,α

)

≤ C
(∥

∥U(x)
∥

∥

 +
∥

∥

[

 – ρ(x)
]

U(x)
∥

∥

,α +
∥

∥ρ(x)p(x)
∥

∥

,α

)

≤ C
(∥

∥U(x)
∥

∥

 +
∥

∥U(x)
∥

∥

,α +
∥

∥p(x)
∥

∥

,α,S\B

)

. (.)

From (.) and (.)-(.), we can establish the following estimate in the spaces of
Hölder continuous functions for (u(x), v(x), w(x),ϕ(x),φ(x),ϕ(x),φ(x)):

∥

∥U(x)
∥

∥

,α
�=

∥

∥u(x)
∥

∥

,α,�R
+

∥

∥v(x)
∥

∥

,α,�\B
+

∥

∥w(x)
∥

∥

,α,�\B

+
∥

∥ϕ(x)
∥

∥

,α,S
+

∥

∥φ(x)
∥

∥

,α,S
+

∥

∥ϕ(x)
∥

∥

,α,S\B
+

∥

∥φ(x)
∥

∥

,α,S\B

≤ C
(∥

∥f(x)
∥

∥

,α,S
+

∥

∥g(x)
∥

∥

,α,S
+

∥

∥p(x)
∥

∥

,α,S\B
+

∥

∥q(x)
∥

∥

,α,S\B

+
∥

∥p(x)
∥

∥

,S
+

∥

∥q(x)
∥

∥

,S

)

. (.)

Next, we estimate ‖ ∂w(x)
∂ν

‖,α,S\B . From (.) and the jump relation, we can see that,
on S,

∂w(x)
∂ν

=


φ(x) + (T,ϕ)(x) +

(

K ′
,φ

)

(x). (.)
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From (.), and by using the fact that ϕ(x) = ρ(x)ϕ(x) + [ – ρ(x)]ϕ(x) and φ(x) =
ρ(x)φ(x) + [ – ρ(x)]φ(x) again, we can see that

∥

∥

∥

∥

∂w(x)
∂ν

∥

∥

∥

∥

,α,S\B

≤
∥

∥

∥

∥

[

 – ρ(x)
]∂w(x)

∂ν

∥

∥

∥

∥

,α,S

≤ C
(∥

∥U(x)
∥

∥

 +
∥

∥

[

 – ρ(x)
]

ϕ(x)
∥

∥

,α,S
+

∥

∥

[

 – ρ(x)
]

φ(x)
∥

∥

,α,S

)

≤ C
(∥

∥U(x)
∥

∥

 +
∥

∥U(x)
∥

∥

,α

)

. (.)

From the estimate (.) with (.) and (.), we can see that

∥

∥

∥

∥

∂w(x)
∂ν

∥

∥

∥

∥

,α,S\B

≤ C
(∥

∥f(x)
∥

∥

,α,S
+

∥

∥g(x)
∥

∥

,α,S
+

∥

∥p(x)
∥

∥

,α,S\B
+

∥

∥q(x)
∥

∥

,α,S\B

+
∥

∥p(x)
∥

∥

,S
+

∥

∥q(x)
∥

∥

,S

)

. (.)

It finishes the proof of the lemma. �

4 Conclusions
In this section, we will prove that both the penetrable interfaces Si (i = , ) and the re-
fractive index n(x) of the inhomogeneous penetrable obstacle � can be uniquely deter-
mined from knowledge of the far-field pattern u∞ (̂x, d) (̂x, d ∈ S) for incident plane waves
ui(x) = eikx·d .

4.1 Unique determination of the penetrable interfaces Si (i = 1, 2)
Following the transmission boundary value problems in a homogeneous medium [],
the transmission boundary value problems in an inhomogeneous medium [] and the
inhomogeneous impenetrable obstacle scattering in a stratified medium [], we prove in
this subsection that the penetrable interfaces Si (i = , ) can be uniquely determined by
the far-field pattern u∞ (̂x, d) (̂x, d ∈ S) for incident plane waves ui(x) = eikx·d . To achieve
this, we first give the following two lemmas.

Lemma  Assume that h(x) ∈ L(�), g(x) ∈ C(S), p(x) ∈ C(S), q(x) ∈ C(S), η(x) ∈
C(S) with η(x) �=  and η(x) ≤  on S, then the following boundary value problem has a
unique solution v(x) ∈ C(�) ∩ C(�) and w(x) ∈ C(�) ∩ C(�):

�v(x) + k
n(x)v(x) = h(x), in �, (.)

�w(x) + k
w(x) = , in �, (.)

∂v(x)
∂ν

+ iη(x)v(x) = g(x), on S, (.)

v(x) – w(x) = p(x),
∂v(x)
∂ν

– λ
∂w(x)
∂ν

= q(x), on S. (.)

Moreover, there exists a constant C >  such that

∥

∥v(x)
∥

∥∞,�
≤ C

(∥

∥h(x)
∥

∥

L(�) +
∥

∥g(x)
∥

∥∞,S
+

∥

∥p(x)
∥

∥∞,S
+

∥

∥q(x)
∥

∥∞,S

)

. (.)
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Proof First, we prove the uniqueness of solutions, that is v(x) =  in �, w(x) =  in � if
h(x) =  in �, g(x) =  on S, p(x) = q(x) =  on S. From equations (.)-(.), bound-
ary conditions (.)-(.), noting the assumption that k

 is not a Neumann eigenvalue of
�v(x) + k

n(x)v(x) =  in �, and using Green’s first theorem over � and �, we can see
that

 =
∫

�

{[

�v(x) + k
n(x)v(x)

]

v(x)
}

dx

=
∫

�

[

–
∣

∣∇v(x)
∣

∣

 + k
n(x)

∣

∣v(x)
∣

∣

]dx +
∫

S

v(x)
∂v(x)
∂ν

ds –
∫

S

v(x)
∂v(x)
∂ν

ds

=
∫

�

[

–
∣

∣∇v(x)
∣

∣

 + k
n(x)

∣

∣v(x)
∣

∣

]dx

– i
∫

S

η(x)
∣

∣v(x)
∣

∣

 ds – λ

∫

S

w(x)
∂w(x)
∂ν

ds

=
∫

�

[

–
∣

∣∇v(x)
∣

∣

 + k
n(x)

∣

∣v(x)
∣

∣

]dx – i
∫

S

η(x)
∣

∣v(x)
∣

∣

 ds

– λ

∫

�

[∣

∣∇w(x)
∣

∣

 + �w(x) · w(x)
]

dx

=
∫

�

[

–
∣

∣∇v(x)
∣

∣

 + k
n(x)

∣

∣v(x)
∣

∣

]dx – i
∫

S

η(x)
∣

∣v(x)
∣

∣

 ds

– λ

∫

�

[∣

∣∇w(x)
∣

∣

 – k

∣

∣w(x)
∣

∣

]dx. (.)

By taking the imaginary part of the above equation (.), we can see that v(x) =  on some
part � of S since η(x) �= , η(x) ≤  on S, λ >  is a given number and �[n(x)] ≥ .
From the boundary condition (.), we can see that ∂v(x)

∂ν
= –iη(x)v(x) =  on some

part � of S. Therefore, by using Holmgren’s uniqueness theorem [], we can see that
v(x) =  in �. By using the transmission boundary conditions (.), we have w(x) =  in
�.

Then we prove the existence of solutions. To achieve this, we introduce the volume po-
tential

(

V �h
)

(x) �=
∫

�

	(x, y)h(y) dy, x ∈ �, (.)

from Theorem . [], we know this is a bounded operator V � : L(�) → H(�). Now
we seek a solution in the form

v(x) = –
(

V �h
)

(x) +
[

˜S,(ϕ + ϕ)
]

(x) + λ
[

˜K,(φ + φ)
]

(x)

+
[

˜S,(ψ + ψ)
]

(x) +
(

V �v
)

(x), in �, (.)

w(x) =
[

˜K,(φ + φ)
]

(x) +
[

˜S,(ψ + ψ)
]

(x), in �, (.)

with six densities ϕ(x) ∈ C(S), ϕ(x) ∈ H 
 (S), φ(x) ∈ C(S), φ(x) ∈ H 

 (S), ψ(x) ∈
C(S), ψ(x) ∈ H 

 (S). From the jump conditions, we can see that the potentials v(x), w(x)
given by (.) and (.) solve the boundary value problem (.)-(.) if the six mentioned



Zhan and Liu Boundary Value Problems  (2017) 2017:18 Page 14 of 18

densities satisfy the following system of integral equations:



ϕ(x) +

[(

K ′
, + iηS,

)

ϕ
]

(x) + λ
[

(T, + iηK,)(φ + φ)
]

(x)

+
[(

K ′
, + iηS,

)

(ψ + ψ)
]

(x) = g(x), on S, (.)



ϕ(x) +

[(

K ′
, + iηS,

)

ϕ
]

(x) =
∂(V �h – V �v)(x)

∂ν
+ iη(x)

(

V �h – V �v
)

(x),

on S, (.)

λ + 


φ(x) +
[

S,(ϕ + ϕ)
]

(x) +
[

(λK, – K,)φ
]

(x) +
[

(S, – S,)ψ
]

(x) = p(x),

on S, (.)

λ + 


φ(x) +
[

(λK, – K,)φ
]

(x) +
[

(S, – S,)ψ
]

(x) =
(

V �h – V �v
)

(x),

on S, (.)

–
λ + 


ψ(x) +

[

K ′
,(ϕ + ϕ)

]

(x) + λ
[

(T, – T,)φ
]

(x)

+
[(

K ′
, – λK ′

,
)

ψ
]

(x) = q(x), on S, (.)

–
λ + 


ψ(x) +

[(

K ′
, – λK ′

,
)

ψ
]

(x) + λ
[

(T, – T,)φ
]

(x)

=
∂(V �h – –V �v)(x)

∂ν
, on S. (.)

Next, we look for a solution (v(x), w(x),ϕ(x),ϕ(x),φ(x),φ(x),ψ(x),ψ(x)) ∈ W to the
above system of eight integral equations, where W is a weighted product space defined as
follows:

W �= C(�) × C(�) × C(S) × H

 (S) × C(S) × H


 (S) × C(S) × H


 (S). (.)

By using the uniqueness of solutions to the problem and standard arguments, we can easily
see that this system has at most one solution in the weighted product space W . Thus, by
using the Riesz-Fredholm theory, we can easily obtain the existence of solutions to the
boundary value problem with the estimate:

∥

∥v(x)
∥

∥∞,�
≤ C

(

∥

∥

(

V �h
)

(x)
∥

∥∞,�
+

∥

∥

∥

∥

∂(V �h)(x)
∂ν

+ iη(x)
(

V �h
)

(x)
∥

∥

∥

∥

H

 (S∪S)

+
∥

∥g(x)
∥

∥∞,S
+

∥

∥p(x)
∥

∥∞,S
+

∥

∥q(x)
∥

∥∞,S

)

≤ C
(∥

∥h(x)
∥

∥

L(�) +
∥

∥g(x)
∥

∥∞,S
+

∥

∥p(x)
∥

∥∞,S
+

∥

∥q(x)
∥

∥∞,S

)

, (.)

for some constant C > . It finishes the proof of the lemma. �

Lemma  Assume that h(x) ∈ L(�), q(x) ∈ C(S), η(x) ∈ C(S) with η(x) �=  and
η(x) ≤  on S, then the following boundary value problem has a unique solution w(x) ∈
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C(�) ∩ C(�):

�w(x) + k
w(x) = h(x), in �, (.)

∂w(x)
∂ν

+ iη(x)w(x) = q(x), on S. (.)

Furthermore, there exists a constant C >  such that
∥

∥w(x)
∥

∥∞,�
≤ C

(∥

∥h(x)
∥

∥

L(�) +
∥

∥q(x)
∥

∥∞,S

)

. (.)

Proof The proof is analogous to part of the proof of Lemma . in [] and, hence, is
omitted. �

So we can obtain our first result as follows.

Theorem  Assume that λ �= , λ �= , let S,˜S be two penetrable interfaces and let �, ˜�

be two penetrable obstacles for the corresponding scattering problem. If the far-field pat-
terns u∞ (̂x, d) (̂x, d ∈ S) of the scattered fields for the same incident plane wave ui(x) = eikx·d

coincide at a fixed frequency for every incident direction d ∈ S and the observation direction
x̂ ∈ S, then S =˜S, S =˜S.

Proof Using Lemmas , , , , and , and arguing analogously to part of the proof of
Theorem . in [], we can easily prove the uniqueness result. �

4.2 Unique determination of the refractive index n(x) of the inhomogeneous
penetrable obstacle �2

In this subsection, we will prove a uniqueness theorem for reconstructing the refractive in-
dex n(x) of the inhomogeneous penetrable obstacle � from the far-field pattern u∞ (̂x, d)
(̂x, d ∈ S) for incident plane waves ui(x) = eikx·d . To do this, we need the following two
lemmas: one is the completeness result, the other is the orthogonality relation.

Lemma  Assume that k
 is not a Neumann eigenvalue of �v(x) + k

n(x)v(x) =  in �,
then the set { ∂v(x,d)

∂ν
|d ∈ S} of normal derivatives of the fields v(x, d) are complete in L(S),

where the fields v(x, d) correspond to incident plane waves ui(x) = eikx·d , d ∈ S is the inci-
dent direction.

Proof Denote � by the complement of �, that is, �
�= R

\�. Choose a large ball BR

centered at the origin such that � ⊂ BR and such that k
 is not a Dirichlet eigenvalue of

�u(x) + k
 u(x) =  in BR, then, from Theorem . in [], we know that the restriction to

∂BR of the set of plane waves ui(x) = eikx·d are complete in L(∂BR). Therefore, we just
need to prove that the operator II : L(∂BR) → L(S) has a dense range IIϕ(x) = ∂v(x)

∂ν
,

where v(x) solves the boundary value problem (.)-(.) and ϕ(x) is the boundary data
of the following interior Dirichlet problem:

�ui(x) + k
 ui(x) =  in BR, ui(x) = ϕ(x) on ∂BR. (.)

By using Green’s formulas, we can see that the L-adjoint II ′ of II is given by

II ′φ(x) �=
{

∂û(x)
∂ν

–
∂ũ(x)
∂ν

}

∣

∣

∣

∂BR
, φ(x) ∈ L(S), (.)
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where (̂u(x), v̂(x)) solves

�û(x) + k
 v̂(x) = , in �, (.)

�̂v(x) + k
n(x)̂v(x) = , in �, (.)

û(x) – v̂(x) = φ(x),
∂û(x)
∂ν

– λ
∂ v̂(x)
∂ν

= , on S, (.)

lim
r→∞ r

(

∂û(x)
∂r

– ikû(x)
)

= , (.)

and ũ(x) is a solution of the following interior Dirichlet problem:

�ũ(x) + k
 ũ(x) =  in BR, ũ(x) = û(x) on ∂BR. (.)

We only have to prove that II ′ is injective. Let II ′φ(x) = , then we know that ∂û(x)
∂ν

= ∂ũ(x)
∂ν

and û(x) = ũ(x) on ∂BR. Define

ṽ(x) =

⎧

⎨

⎩

û(x), in R
\BR,

ũ(x), in BR.
(.)

Then, from [], we know that ṽ(x) is an entire solution to the Helmholtz equation �̃v(x) +
k

 ṽ(x) =  in R
 satisfying the radiation condition (.), so it must vanish identically

in R
. Therefore, û(x) =  in R

\BR. By using the unique continuation principle, we can
see that û(x) =  in �. From the transmission conditions (.), Holmgren’s uniqueness
theorem and by noting the assumption that k

 is not a Neumann eigenvalue of �v(x) +
k

n(x)v(x) =  in �, we can see that v̂(x) =  in � and, hence, ∂ v̂(x)
∂ν

= v̂(x) =  on S. It
finishes the proof of the lemma. �

Lemma  Assume that the far-field patterns u∞ (̂x, d) (̂x, d ∈ S) for the refractive indices
n(x) and ñ(x) coincide, then, for any solution v(x) ∈ C(�) ∩ C(�) of �v(x) + k

n(x)v(x) =
 in � and any solution ṽ(x) ∈ C(�) ∩ C(�) of �̃v(x) + k

 ñ(x)̃v(x) =  in �, we have
the following orthogonality relation:

∫

�

[

n(x) – ñ(x)
]

v(x)̃v(x) dx = . (.)

Proof First, we prove (.) for the special case v(x) = v(x, d), d ∈ S. By using Rellich’s
lemma and Holmgren’s uniqueness theorem, we can see that v(x, d) = ṽ(x, d) and ∂v(x,d)

∂ν
=

ṽ(x,d)
∂ν

on S. By using Green’s first theorem and the equations satisfied by v(x, d) and ṽ(x, d),
we can see that

∫

�

[

n(x) – ñ(x)
]

v(x, d)̃v(x) dx

= –


k


∫

�

[

�v(x, d) + k
 ñ(x)v(x, d)

]

ṽ(x) dx

= –


k


∫

�

{

�
[

v(x, d) – ṽ(x, d)
]

+ k
 ñ(x)

[

v(x, d) – ṽ(x, d)
]}

ṽ(x) dx
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= –


k


∫

�

[

v(x, d) – ṽ(x, d)
][

�̃v(x) + k
 ñ(x)̃v(x)

]

dx

= . (.)

Then we have to prove that any general case v(x) can be approximated by functions
v(x, d) in L(�), where d ∈ S. If not, that is, the set {v(x, d)|d ∈ S} is not dense in L(�)
sense in {v́(x) ∈ C(�)|�v́(x) + k

n(x)v́(x) =  in �}. Then, from the Hahn-Banach theo-
rem, we see that there exists an f(x) ∈ L(�) such that

∫

�

f(x)v(x, d) dx = , (.)

for v(x, d) with all d ∈ S, but for some v́(x) ∈ {v́(x) ∈ C(�)|�v́(x) + k
n(x)v́(x) =  in �},

∫

�

f(x)v́(x) dx �= . (.)

Assume that v̀(x) ∈ H(�) is a solution to the following interior Neumann problem:

�v̀(x) + k
n(x)v̀(x) = f(x) in �,

∂ v̀(x)
∂ν

=  on S. (.)

From (.) and (.), and by using Green’s first theorem, we can see that

 =
∫

�

f(x)v(x, d) dx =
∫

�

[

�v̀(x) + k
n(x)v̀(x)

]

v(x, d) dx

=
∫

S

v̀(x)
∂v(x, d)

∂ν
ds. (.)

From Lemma , we know that v̀(x) =  on S. Therefore, by using Green’s first theorem, we
can see that

∫

�

f(x)v́(x) dx =
∫

�

[

�v̀(x) + k
n(x)v̀(x)

]

v́(x) dx

=
∫

�

[

�v́(x) + k
n(x)v́(x)

]

v̀(x) dx = , (.)

which contradicts (.). It finishes the proof of the lemma. �

So we can obtain our second result as follows.

Theorem  Assume that the penetrable interfaces Si (i = , ) are known and k
 is not

a Neumann eigenvalue of �v(x) + k
n(x)v(x) =  in �, then the refractive index n(x) of

the inhomogeneous penetrable obstacle � can be uniquely determined from the far-field
pattern u∞ (̂x, d) (̂x, d ∈ S) for incident plane waves ui(x) = eikx·d .

Proof By using the completeness result of Lemma  and the orthogonality relation of
Lemma , we can easily prove the uniqueness result. �
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