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Abstract
The aim of this paper is developing conditions that guarantee the existence of a
solution to a toppled system of differential equations of noninteger order with
fractional integral boundary conditions where the nonlinear functions involved in the
considered system are continuous and satisfy some growth conditions. We convert
the system of differential equations to a system of fixed point problems for
condensing mapping. With the help of techniques of the topological degree theory,
we establish adequate conditions that ensure the existence and uniqueness of
positive solutions to a toppled system under consideration. Moreover, some
conditions are also developed for the Hyers-Ullam stability of the solution to the
system under consideration. Finally, to demonstrate the obtained results, we provide
an example.
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1 Introduction
In last few decades, the area devoted to the study of classical and partial differential equa-
tions of arbitrary order has received much attention due to the fact that they exactly
describe many nonlinear phenomenons in different disciplines of applied sciences like
physics, chemistry, biology, viscoelasticity, control theory, fluid dynamics, hydrodynam-
ics, aerodynamics, computer networking, signal and image processing, and so on. The
interest in the study of differential equations of noninteger order is due to the fact that the
models involve fractional-order derivatives are more realistic and accurate as compared
to the models that involve classical derivatives. For the respective applications, we refer
to [–]. Therefore, researchers study various aspects of the differential equations of ar-
bitrary order. One of the most important area is devoted to the existence theory, which
has been very well studied, and plenty of research articles and books are available on it;
we refer, for example, to [–]. In all these articles, sufficient conditions for the existence
of solutions to the corresponding problems are obtained by using classical fixed point
theory. Using the classical fixed point theory often required stronger conditions, which
shorten the applicability to a small number of applied problems and very particular sys-
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tems of boundary value problems (BVPs). To use less restrictive conditions in order to
extend tools to more classes of BVPs, researchers need to look for some other refined
tools of functional analysis. One of the powerful tools is the degree approach of topol-
ogy. The topological degree method proved to be a dominant tool in the study of many
mathematical models that arise in applied nonlinear analysis. The concerned method, also
called the prior estimate method, has been used by many researchers of mathematics to
study the existence of solutions to both nonlinear ordinary and nonlinear partial differen-
tial equations. Mawhim [] used the aforesaid method coupled with the degree theory of
condensing mapping and showed that, under special assumptions, the problems

⎧
⎨

⎩

u′′(t) + θ (t, u(t), u′(t)) = , t ∈ I = [,π ],

u(t)|t= = u(t)|t=π = ,

and
⎧
⎨

⎩

u′′(t) + θ (t, u(t)) = ,  ≤ t ≤ ,

u(t)|t= = u(t)|t=,

admit solutions. Isaia [], used the technique of degree method to develop some condi-
tions that ensure the existence of solutions to the following nonlinear integral equations:

u(t) = H
(
t, u(t)

)
+

∫ b

a
K

(
t, s, u(s)

)
ds, t ∈ [a, b],

where H : [a, b] ×R →R and K : [a, b] × [a, b] ×R →R are continues functions obeying
some growth conditions.

In the same fashion, with the help of degree theory, Wang et al. [] studied the existence
and uniqueness of solutions to a class of nonlocal Cauchy problems given by

⎧
⎨

⎩

Dqu(t) – θ (t, u(t)) = ,  ≤ t ≤ T ,

u(t)|t= + u = g(u),

where D is the Caputo fractional derivative of order q ∈ (, ], u ∈ R, and θ ∈ ([, T] ×
R,R). The same problem was studied subject to multipoint boundary value problems by
Khan and Shah []

⎧
⎨

⎩

cDqu(t) – θ (t, u(t)) = , q ∈ (, ],  ≤ t ≤ ,

u(t)|t= = g(u), u(t)|t= = h(u) +
∑m–

i= λiu(ηi), λi,ηi ∈ (, ),

where g, h : ([, ],R) → R and θ : [, ] × R → R. In the same line, by using topological
degree theory Shah and Khan [] studied the toppled system with nonlinear conditions
provided as

⎧
⎪⎪⎨

⎪⎪⎩

cDpu(t) – θ(t, u(t), v(t)) = , cDqv(t) – θ(t, u(t), v(t)) = ,  ≤ t ≤ ,

λu(t)|t= – γu(t)|t=η – μu(t)|t= – φ(u) = ,

λv(t)|t= – γv(t)|t=ξ – μv(t)|t= – ψ(v) = ,
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where p, q,η, ξ ∈ (, ) and θ, θ ∈ [, ] × R
 → R, and the nonlocal functions φ,ψ :

[, ] × R → R. Inspired by the aforesaid work, we use the coincidence degree method
to study the following toppled system with fractional integral boundary conditions of the
form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDpu(t) = θ(t, v(t)), t ∈ J = [, ],
cDqv(t) = θ(t, u(t)), t ∈ J = [, ],

u(t)|t= = , u(t)|t= = Iγ

T g(u) = 

(γ )

∫ T
 (T – s)γ –g(u(s)) ds,

v(t)|t= = , v(t)|t= = Iδ
T h(v) = 


(δ)
∫ T

 (T – s)δ–h(v(s)) ds,

()

where p, q, δ,γ ∈ (, ], cD denotes the Caputo fractional derivative, g, h ∈ L[, ] are
boundary functions, and the nonlinear functions θ, θ : J ×R →R. We develop sufficient
conditions for the existence and uniqueness and also study the Hyers-Ullam stability of the
system. The study of stability for fractional-order system is quite recent. There are various
methods available in the literature to study stability, one of which is the Lyapunov method
that suffers from the difficulties of derivation of Lyapunov functions. Another important
method to obtain stability for such a system is the Hyers-Ullam stability introduced by
Ullam [] in , which was answered by Hyers [] in . Wang [] was the first
mathematician who investigated the Hyers-Ullam stability for the impulsive ordinary dif-
ferential equations in . In the same line, he also obtained the aforesaid stability for
the evolution equations []. For more detail about the Hyers-Ullam stability, we refer to
[–]. Urs [], studied the Hyers-Ullam stability to the following system of periodic
boundary value problems:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) – θ(t, u(t)) = θ(t, v(t)),

v′′(t) – θ(t, v(t)) = θ(t, u(t)),

u(t)|t= = u(t)t=T , v(t)t= = v(t)t=T .

We study the Hyers-Ullam stability to the toppled system () under consideration. We also
give an example to verify the applicability of our results.

2 Background materials and auxiliary results
This section is concerned with some basic definitions, important theorems of general cal-
culus, and topological degree theory; see [, , , –].

Definition . The noninteger-order integral of a function θ ∈ L([a, b],R) is provided as

Ip
+θ (t) =



(p)

∫ t

a
(t – s)p–θ (s) ds.

Definition . The noninteger-order derivative in the Caputo sense of a function θ over
the interval [a, b] is defined as

Dp
+θ (t) =



(m – p)

∫ t

a
(t – s)m–p–θ (m)(s) ds,

where m = [p] + , and [p] is the integer part of p.
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Theorem . The general solution to the differential equation of fractional order

Ip[Dpθ (t)
]

= y(t), n –  < q < n,

is given by

Ip[Dpθ (t)
]

= y(t) + c + ct + ct + · · · + cm–tm–

for arbitrary ci ∈R, i = , , , . . . , m – .

The spaces for all continuous functions u, v : [, ] → R are denoted by U = C([, ],R),
V = C([, ],R). Under the topological norms, they are Banach spaces. The respective
norms can be defined as ‖u‖ = sup{|u(t)| :  ≤ t ≤ } and ‖v‖ = sup{|v(t)| :  ≤ t ≤ }.
Moreover, E = U × V is also a Banach space under the norms ‖(u, v)‖ = ‖u‖ + ‖v‖ and
|(u, v)| = max{‖u‖,‖v‖}.

Consider the class of all bounded set of P(E) denoted byB. Then, we review the following
notions of [].

Definition . The Kuratowski measure of noncompactness is the mapping � : B →
(,∞) defined by

�(B) = inf{d >  : B admits a finite cover by sets of diameter ≤ d}

for B ∈ B.

Proposition . The measure defined in Definition . for � satisfies the following char-
acteristics:

(i) For a relative compact B, the Kuratowski measure �(B) = ;
(ii) � is a seminorm, that is, �(λB) = |λ|�(B), λ ∈R, and �(B + B) ≤ �(B) + �(B);

(iii) B ⊂ B yields �(B) ≤ �(B); �(B ∪ B) = sup{�(B),�(B)};
(iv) �(conv B) = �(B);
(v) �(B) = �(B).

Definition . Assume that F :  → U is a bounded and continuous map such that
 ⊂ U . Then F is �-Lipschitz with K ≥  such that

�
(
F(B)

) ≤ K�(B) for all bounded B ⊂ .

Also, F is a strict �-contraction if K < .

Definition . A function F is �-condensing if

�
(
F(B)

)
< �(B) for all bounded B ⊂  with �(B) > .

In other words, �(F(B)) ≥ �(B) yields �(B) = .

We denote the family of all strict �-contractions F :  → U by ϑC�() and the family
of all �-condensing mappings F :  → U by C�().
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Remark  ϑC�() ⊂ C�(), and every F ∈ C�() is �-Lipschitz such that K = .

Further, we recall that F :  → U is Lipschitz in the presence of K >  such that

∥
∥F(u) – F(ū)

∥
∥ ≤ K‖u – ū‖ for all u, ū ∈ .

Also, under the condition K < , F is a strict contraction. We recall the following proposi-
tions in [].

Proposition . The sum of the two operators F,G :  → U is �-Lipschitz with constants
K + K if and only if F,G :  → U are �-Lipschitz with constants K, K, respectively.

Proposition . The mapping F is �-Lipschitz with constant K =  if and only if F :  →
U is compact.

Proposition . The operator F is �-Lipschitz with constant K if and only if F :  → U is
Lipschitz with constant K.

The next theorem of Isaia [] plays an important role in achieving our main result.

Theorem . Let F : E → E be a �-contraction, and

� = {z ∈ E : there exists  ≤ λ ≤  such that z = λFz}.

If � ⊂ E is a bounded set with r >  such that � ⊂ Br(), then the degree

deg
(
I – λF, Br(), 

)
=  for every λ ∈ [, ].

Therefore, F has at least one fixed point (which is the corresponding solution of the consid-
ered system), and the set of the fixed points of F lies in Br().

The following assumptions are needed in the sequel.

(C) The nonlocal functions g , h for x, u, y, v,∈R satisfy

∣
∣g(x) – g(u)

∣
∣ ≤ Kg |x – u|, ∣

∣h(y) – h(v)
∣
∣ ≤ Kh|y – v| with Kg ,Kh ∈ [, ).

(C) With the given constants Cg , Ch, Mg , Mh > , and q ∈ [, ), for u, v ∈R, the nonlocal
functions g , h satisfy the following growth conditions:

∣
∣g(u)

∣
∣ ≤ Cg |u|q + Mg ,

∣
∣h(v)

∣
∣ ≤ Ch|v|q + Mh.

(C) In the presence of constants a, b, Mθ , Mθ , and q ∈ [, ), for u, v ∈R, the nonlinear
functions θ, θ satisfy the following growth conditions:

∣
∣θ(t, v)

∣
∣ ≤ a|v|q + Mθ ,

∣
∣θ(t, u)

∣
∣ ≤ b|u|q + Mθ .
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(C) There exist positive constants Lθ , Lθ such that, for all x, u, y, v ∈R,

∣
∣θ(t, y) – θ(t, v)

∣
∣ ≤ Lθ |y – v|,

∣
∣θ(t, x) – θ(t, u)

∣
∣ ≤ Lθ |x – u|.

3 Main results
The current section is concerned to establish adequate conditions to the toppled sys-
tem ().

Theorem . Let θ : J →R be a p times integrable function. Then the solution of the linear
boundary value problem

Dpu(t) = θ (t), t ∈ J = [, ], p ∈ (, ],

u(t)|t= = , u(t)|t= = Iγ

T g(u) =



(γ )

∫ T


(T – s)γ –g

(
u(s)

)
ds,

()

is provided by

u(t) =



(γ )

∫ T


(T – s)γ –g

(
u(s)

)
ds +

∫ 


Gp(t, s)θ (s) ds, t ∈ [, ], ()

where Gp(t, s) is the Green’s function given by

Gp(t, s) =



(p)

⎧
⎨

⎩

(t – s)p– – t( – s)p–,  ≤ s ≤ t ≤ ,

t( – s)p–,  ≤ s ≤ t ≤ .
()

Proof Applying Ip on Dpu(t) = θ (t), by Theorem . we get

u(t) = c + ct + Ipθ (t), ()

where c, c are real constants. The conditions u(t)t= = , u(t)t= = Iγ

T g(u) yield that c = 
and c = Iγ

T g(u) – Ipθ (). Hence, we get

u(t) = t
[

Iγ

T g(u) – Ipθ ()
]

+ Ipθ (t),

=
t


(γ )

∫ T


(T – s)γ –g

(
u(s)

)
ds –

t

(p)

∫ 


( – s)p–θ (s) ds

+



(p)

∫ t


(t – s)p–θ (s) ds,

which after rearranging can be written as

u(t) =
t


(γ )

∫ T


(T – s)γ –g

(
u(s)

)
ds +

∫ 


Gp(t, s)θ (s) ds. �
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By Theorem . the corresponding toppled system of Hammerstein-type integral equa-
tions to the toppled systems () is provided by

⎧
⎨

⎩

u(t) = t

(γ )

∫ T
 (T – s)γ –g(u(s)) ds +

∫ 
 Gp(t, s)θ(s, v(s)) ds,

v(t) = t

(δ)

∫ T
 (T – s)δ–h(v(s)) ds +

∫ 
 Gq(t, s)θ(s, u(s)) ds,

()

where Gq(t, s) is defined by

Gq(t, s) =



(q)

⎧
⎨

⎩

(t – s)q– – t( – s)q–,  ≤ s ≤ t ≤ ,

t( – s)q–,  ≤ s ≤ t ≤ .
()

Clearly,

max
t∈J

∣
∣Gp(t, s)

∣
∣ =

( – s)p–


(p)
, max

t∈J

∣
∣Gq(t, s)

∣
∣ =

( – s)q–


(q)
, s ∈ J . ()

Define the operators F : U → U , F : V → V by

F(u)(t) =
t


(γ )

∫ T


(T – s)γ –g

(
u(s)

)
ds,

F(v)(t) =
t


(δ)

∫ T


(T – s)δ–h

(
v(s)

)
ds

and G,G : E → E by

G(v)(t) =
∫ 


Gp(t, s)θ

(
s, v(s)

)
ds, G(u)(t) =

∫ 


Gq(t, s)θ

(
s, u(s)

)
ds.

Hence, we have F(u, v) = (F,F)(u, v), G(u, v) = (G,G)(u, v), and T(u, v) = F(u, v) +
G(u, v). So, the equivalent operator equation to the toppled system of Hammerstein-type
integral equations () is given by

(u, v) = T(u, v) = F(u, v) + G(u, v). ()

Thus the solutions of system () are the fixed points of operator equation ().

Theorem . In view of hypotheses (C) and (C), the operator F is Lipschitz and satisfies
the growth condition given by

∥
∥F(u, v)

∥
∥ ≤ CF

∥
∥(u, v)

∥
∥q + MF for all (u, v) ∈ E . ()

Proof Thanks to hypothesis (C), we obtain

∣
∣F(u)(t) – F(ū)(t)

∣
∣ =

∣
∣
∣
∣



(γ )

∫ T


(T – s)γ –[g(u) – g(ū)

]
ds

∣
∣
∣
∣

≤ 

(γ )

∫ T


(T – s)γ –∣∣g(u) – g(ū)

∣
∣ds,
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which implies that
∥
∥F(u) – F(ū)

∥
∥ ≤ Kg‖u – u‖,

where Kg =
KgTγ


(γ + )
∈ [, ).

To obtain growth condition, consider

∣
∣F(u)(t)

∣
∣ =

∣
∣
∣
∣



(γ )

∫ T


(T – s)γ –g

(
u(s)

)
ds

∣
∣
∣
∣ ≤ 


(γ )

∫ T


(T – s)γ –∣∣g

(
u(s)

)∣
∣ds, ()

which implies that

‖Fu‖c ≤ Tγ


(γ + )
[
Cg‖u‖q

c + Mg
]
.

Similarly, we have

‖Fu‖c ≤ Tδ


(δ + )
[
Ch‖v‖q

c + Mh
]
.

Now

∥
∥F(u, v)

∥
∥

c ≤ Tγ


(γ + )
[
Cg‖u‖q

c + Mg
]

+
Tδ


(δ + )
[
Ch‖v‖q

c + Mh
]

≤
(

Tγ


(γ + )
Cg‖u‖q

c +
Tδ


(δ + )
Ch‖v‖q

c

)

+
(

Tγ Mg


(γ + )
+

TδMh


(δ + )

)

≤ CF

[‖u‖q + ‖v‖q
]

+ MF = CF

∥
∥(u, v)

∥
∥q + MF,

where

max

{
Tγ


(γ + )
Cg ,

Tδ


(δ + )
Ch

}

= CF and MF =
Tγ Mg


(γ + )
+

TδMh


(δ + )
. �

Theorem . In view of hypothesis (C), the operator G is continuous and satisfies the
growth condition given by

∥
∥G(u, v)

∥
∥ ≤ �

∥
∥(u, v)

∥
∥q + ϒ for each (u, v) ∈ E , ()

where � = η(a + b), η = max{ 

(p+) , 


(q+) }, ϒ = η(Mθ + Mθ ).

Proof Consider the bounded set Br = {(u, v) ∈ E : ‖(u, v)‖ ≤ r} with a sequence (un, vn)
converging to (u, v) in Br . We have to show that ‖G(un, vn) – G(u, v)‖ →  as n → ∞. Let
us take

∣
∣
(
G(vn) – G(v)

)
(t)

∣
∣ ≤ t


(p)

[∫ t


(t – s)p–∣∣θ

(
s, vn(s)

)
– θ

(
s, v(s)

)∣
∣ds

+
∫ 


( – s)p–∣∣θ

(
s, vn(s)

)
– θ

(
s, v(s)

)∣
∣ds

]

.

The continuity of θ yields that θ(s, vn(s)) → θ(s, v(s)) as n → ∞. Thanks to the Lebesgue
dominated convergence theorem, we have

∫ t
 (t – s)p–|θ(s, vn) – θ(s, v)|ds →  as n → ∞.
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Similarly, the same result can be also proved for the other terms. This implies that

∥
∥G(vn)(t) – G(v)(t)

∥
∥ →  as n → ∞, ()

and in the same way, we can show that

∥
∥G(un)(t) – G(u)(t)

∥
∥ →  as n → ∞. ()

Thus, from () and () it follows that

∥
∥G(un, vn)(t) – G(u, v)(t)

∥
∥ →  as n → ∞.

To compute () for G, using hypothesis (C) and (), we get

∣
∣G(v)(t)

∣
∣ =

∣
∣
∣
∣

∫ 


Gp(t, s)θ

(
s, v(s)

)
ds

∣
∣
∣
∣ ≤ 


(p + )
(
a‖v‖q + Mθ

)

and

∣
∣G(u)(t)

∣
∣ =

∣
∣
∣
∣

∫ 


Gq(t, s)θ

(
s, u(s)

)
ds

∣
∣
∣
∣ ≤ 


(q + )
(
b‖u‖q + Mθ

)
.

Therefore, we get

∥
∥G(u, v)

∥
∥ =

∥
∥G(v)

∥
∥ +

∥
∥G(u)

∥
∥

≤ η
(
a‖v‖q + Mθ

)
+ η

(
b‖u‖q + Mθ

)

≤ η(a + b)
(‖v‖q + ‖u‖q

)
+ η(Mθ + Mθ ) = �

∥
∥(u, v)

∥
∥ + ϒ . �

Theorem . The operator G : E → E is compact and �-Lipschitz with constant zero.

Proof Consider a bounded set D with a sequence {(un, vn)} such that D ⊂ Br ⊆ E . Then,
in view of (), we have

∥
∥G(un, vn)

∥
∥ ≤ �

∥
∥(u, v)

∥
∥ + ϒ for each (u, v) ∈ E ,

which yields that G is bounded. For each (un, vn) ∈ D, we claim that, for any t, t ∈ [, ],

∣
∣Gvn(t) – Gvn(t)

∣
∣ =

∣
∣
∣
∣

∫ 


Gp(t, s)θ

(
s, v(s)

)
ds –

∫ 


Gp(t, s)θ

(
s, v(s)

)
ds

∣
∣
∣
∣

≤
[∫ 


Gp(t, s) –

∫ 


Gp(t, s)

]
∣
∣θ

(
s, v(s)

)∣
∣ds

≤
[

(t – t)

(p)

∫ 


( – s)p– ds

]
(
a‖u‖q + Mθ

)

+



(p)

[∫ t


(t – s)p– ds –

∫ t


(t – s)p– ds

]
(
a‖u‖q + Mθ

)
.
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By simplifying we have

∣
∣Gvn(t) – Gvn(t)

∣
∣ ≤

[
(t – t)

(p + )

+
(tp

 – tp
)


(p + )

]
(
a‖u‖q + Mθ

)
. ()

Similarly,

∣
∣Gun(t) – Gun(t)

∣
∣ ≤

[
(t – t)

(q + )

+
(tq

 – tq
)


(q + )

]
(
b‖v‖q + Mθ

)
. ()

Now, if t → t, the right-hand sides of both () and () tend to . Thus, G, G are
equicontinuous, and therefore G = (G,G) is equicontinuous on D.

Hence, thanks to the Arzelà-Ascoli theorem, G(D) is compact. Also, by Proposition .,
G is �-Lipschitz with constant . �

Theorem . Under hypotheses (C)-(C) with � + CF ≤ , the toppled system () has at
least one solution (u, v) ∈ E . Moreover, the set of the solutions W is bounded in E .

Proof By Theorem ., F is �-Lipschitz with constant CF ∈ [, ), and by Theorem . G

is �-Lipschitz with constant . Therefore, by Proposition ., T is strictly �-condensing
with constant K. Define

B =
{

(u, v) ∈ E : there exists λ ∈ [, ] such that (u, v) = λT(u, v)
}

.

We have to prove that B is bounded in E . Let us consider

∥
∥(u, v)

∥
∥ =

∥
∥�T(u, v)

∥
∥ ≤ ∥

∥T(u, v)
∥
∥ ≤ (∥

∥F(u, v)
∥
∥ +

∥
∥G(u, v)

∥
∥
)

≤ CF

∥
∥(u, v)

∥
∥q + MF + �

∥
∥(u, v)

∥
∥q + ϒ

= (CF + �)
∥
∥(u, v)

∥
∥q + MF + ϒ , where q = max{q, q}.

Clearly, ‖(u, v)‖ is bounded. If not, choose ‖(u, v)‖ = R such that R → ∞ and  < q < .
Then

∥
∥(u, v)

∥
∥ ≤ (CF + �)

∥
∥(u, v)

∥
∥q∥∥(u, v)

∥
∥ + MF + ϒ ,

 ≤ (CF + �)
‖(u, v)‖q

‖(u, v)‖ +
MF + ϒ

‖(u, v)‖ ,

 ≤ (CF + �)Rq

R +
MF + ϒ

R ,

 ≤ (CF + �)
R–q

+
MF + ϒ

R →  as R→ ∞,

which is a contradiction. Thus, B is bounded. Therefore, by Theorem . the operator T
has at least one fixed point, which is the corresponding solution to (), and the set of the
solutions is bounded in E . �
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Theorem . Assume that hypotheses (C)-(C) hold. Then the toppled system () has a
unique solution if and only if � < , where

� =
KgTγ


(γ + )
+

KhTδ


(δ + )
+

Lθ


(p + )
+

Lθ


(q + )
.

Proof Let (u, v) and (ū, v̄) ∈ E be two solutions. Then

∣
∣T(u, v) – T(ū, v̄)

∣
∣ =

∣
∣
[
F(u, v) + G(u, v)

]
–

[
F(ū, v̄) + G(ū, v̄)

]∣
∣

≤ ∣
∣F(u, v) – F(ū, v̄)

∣
∣ +

∣
∣G(u, v) – G(ū, v̄)

∣
∣,

which implies on simplification that

∥
∥T(u, v) – T(ū, v̄)

∥
∥

≤
(

KgTγ


(γ + )
+

KhTδ


(δ + )
+

Lθ


(p + )
+

Lθ


(q + )

)
∥
∥(u, v) – (ū, v̄)

∥
∥,

which in turn implies that
∥
∥T(u, v) – T(ū, v̄)

∥
∥ ≤ �

∥
∥(u, v) – (ū, v̄)

∥
∥. ()

Therefore, the operator T is a contraction. Hence, the uniqueness of a solution to the
toppled system () follows by the Banach fixed point theorem. �

4 Hyers-Ullam stability of toppled system (1)
This section is devoted to the investigation of the Hyers-Ullam stability of our proposed
system. We recall the definition of the Hyers-Ullam stability.

Definition . The system of Hammerstein-type integral equation

⎧
⎨

⎩

u(t) = t

(γ )

∫ T
 (T – s)γ –g(u(s)) ds +

∫ 
 Gp(t, s)θ(s, v(s)) ds,

v(t) = t

(δ)

∫ T
 (T – s)δ–h(v(s)) ds +

∫ 
 Gq(t, s)θ(s, u(s)) ds,

()

is said to be Hyers-Ullam stable if there exist Di >  (i = , , , ) such that, for all λ,λ > 
and for every solution (u∗, v∗) to the system of inequations

⎧
⎨

⎩

|u∗(t) – t

(γ )

∫ T
 (T – s)γ –g(u∗(s)) ds +

∫ 
 Gp(t, s)θ(s, v∗(s)) ds| ≤ λ,

|v∗(t) – t

(δ)

∫ T
 (T – s)δ–h(v∗(s)) ds +

∫ 
 Gq(t, s)θ(s, u∗(s)) ds| ≤ λ,

()

there exists a unique solution (x, y) of () such that

∣
∣x(t) – u∗(t)

∣
∣ ≤ Dλ + Dλ,

∣
∣y(t) – v∗(t)

∣
∣ ≤ Dλ + Dλ.

()

Theorem . Under assumptions (C)-(C), the toppled system () is Hyers-Ullam stable.

Proof Thanks to Theorem . and Definition ., let (x, y) be the exact solution, and
(u∗, v∗) be any other solution of toppled system (). Then from the first equation of ()
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we have

∣
∣x(t) – u∗(t)

∣
∣ ≤

∣
∣
∣
∣

t

(γ + )

∫ T


(T – s)γ –(g(x) – g

(
u∗))ds

+
∫ 


Gp(t, s)

(
θ

(
s, y(s)

)
– θ

(
s, v∗(s)

))
ds

∣
∣
∣
∣

≤ Tγ Kg


(γ + )
∥
∥x – u∗∥∥ +

Lθ


(p + )
∥
∥y – v∗∥∥

≤ Dε + Dε, where D =
Tγ Kg


(γ + )
, D =

Lθ


(p + )
. ()

By the same method we can obtain that

∣
∣y(t) – v∗(t)

∣
∣ ≤ Dε + Dε, where D =

TδKh


(δ + )
, D =

Lθ


(q + )
. ()

Hence, in view of () and (), the toppled system of integral equations () is Hyers-Ullam
stable, and, consequently, the toppled system () is Hyers-Ullam stable. �

5 Example
Example  Consider the following toppled system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cD 
 u(t) = e–t

+t cos |v(t)|, t ∈ [, ],
cD 

 v(t) = e–π t

+t sin |u(t)|, t ∈ [, ],

u(t)|t= = , u(t)t= = 

( 

 )

∫ 


(–s)

 sin(u)
 ds,

v(t)|t= = , v(t)t= = 

( 

 )

∫ 


(–s)

 sin(v)
 ds.

()

Then we obviously see that Cg = Ch = Kg = Kh = 
 , Mg = Mh = Mθ = Mθ = , a = b = Lθ =

Lθ = 
 . It is easy to prove that � = 


√

π
< . Hence, by Theorem . the toppled system

() has a unique solution. Further, it is also straightforward to prove the conditions of
Theorem .. Also, by Theorem . the solution of the toppled system () is Hyers-Ullam
stable.
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(2010)
26. Jung, SM: Hyers-Ulam stability of first order linear differential equations with constant coefficients. J. Math. Anal. Appl.

320, 549-561 (2006)
27. Jung, SM, Rassias, G: Hyers-Ulam stability of Riccati differential equation. Math. Inequal. Appl. 11(4), 777-782 (2008)
28. Urs, C: Coupled fixed point theorems and applications to periodic boundary value problems. Miskolc Math. Notes

14(1), 323-333 (2013)
29. Granas, A, Dugundji, J: Fixed Point Theory. Springer, New York (2003)
30. Deimling, K: Nonlinear Functional Analysis. Springer, New York (1985)
31. Zeidler, E: Nonlinear Functional Analysis an Its Applications I: Fixed Point Theorems. Springer, New York (1986)

http://dx.doi.org/10.1080/01630563.2016.1177547

	Existence and stability of solution to a toppled systems of differential equations of non-integer order
	Abstract
	MSC
	Keywords

	Introduction
	Background materials and auxiliary results
	Main results
	Hyers-Ullam stability of toppled system (1)
	Example
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


