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Abstract
In this paper, we study the multiplicity of solutions for the following
nonhomogeneous p-Kirchhoff elliptic equation:

(
a + λ

(∫

RN
(|∇u|p + |u|p)dx

)m)
(–�pu + |u|p–2u) = f (u) + h(x), x ∈R

N , (.)

with a,λ,m > 0 and 1 < p < N. By variational methods we prove that problem (0.1)
admits at least two solutions under appropriate assumptions on f (u) and h(x). The
main difficulty to overcome is the lack of an a priori bound for Palais-Smale sequence.
Motivated by Jeanjean (Proc. R. Soc. Edinb., Sect. A 129:787-809, 1999), we use a
cut-off functional to obtain a bounded (PS) sequence. Also, if f (u) = |u|q–2u,
p < q <min{p(m + 1),p∗ = pN

N–p }, and h(x) = 0, then we prove that problem (0.1) has at
least one nontrivial solution for any λ ∈ (0,λ∗] and has no nontrivial weak solutions
for any λ ∈ (λ∗, +∞).

Keywords: p-Kirchhoff elliptic equation; bounded potential; variational methods;
mountain pass lemma

1 Introduction
In this paper, we are interested in the multiplicity of solutions to the following nonhomo-
geneous p-Kirchhoff elliptic problem:

(
a + λ

(∫

RN

(|∇u|p + |u|p)dx
)m)(

–�pu + |u|p–u
)

= f (u) + h(x), x ∈R
N , (.)

where �pu = div(|∇u|p–∇u) is the p-Laplacian operator, and the nontrivial function h(x)
can be seen as a perturbation term. Problem (.) is a generalization of the model intro-
duced by Kirchhoff []. More precisely, Kirchhoff proposed the model given by the equa-
tion

ρtt –
(

P

h
+

E
L

∫ L


u

x dx
)

uxx = ,  < x < L, t > , (.)
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which takes into account the changes in length of string produced by transverse vibration.
The parameters in (.) have the following meaning: L is the length of the string, h is the
area of cross-section, E is the Young modulus of material, ρ is the mass density, and P is
the initial tension.

The equation

ρtt – M
(‖∇u‖


)
�u = f (x, u), x ∈ �, t > , (.)

generalizes equation (.), where M : R+ → R is a given function, � is a domain of RN .
The stationary counterpart of (.) is the Kirchhoff-type elliptic equation

–M
(‖∇u‖


)
�u = f (x, u), x ∈ �, t > . (.)

Some classical and interesting results on Kirchhoff-type elliptic equations can be found,
for example, in [–].

Particularly, Li et al. [] considered the Kirchhoff-type problem

(
a + λ

(∫

RN

(|∇u| + b|u|)dx
))

(–�u + bu) = f (u), x ∈R
N , (.)

where N ≥ , with constants a, b >  and λ ≥  under the following assumptions:

(H) f ∈ C(R+,R+), |f (t)| ≤ C( + tq–) for all t ∈R
+ = [, +∞) and some q ∈ (, ∗), where

∗ = N
N– for N ≥ ;

(H) limt→
f (t)

t = ; limt→+∞ f (t)
t = +∞.

It is easy to see that f (u) = |u|q–u,  < q < , and N =  satisfy these conditions. They
obtained that there exists λ >  such that, for any λ ∈ [,λ), problem (.) has at least
one positive solution in W ,(RN ). The λ depends on f , a, b, the Sobolev constant, and
several test functions in []; it is not very clear whether the the existence of solutions for
(.) still holds for large λ > . Recently, Chen et al. [] studied the existence of positive
solutions to the p-Kirchhoff problem

⎧⎪⎪⎨
⎪⎪⎩

(a + λ(
∫
RN (|∇u|p + b|u|p) dx)τ )(–�pu + b|u|p–u)

= |u|m–u + μ|u|q–u, x ∈ R
N ,

u(x) > , x ∈R
N , u(x) ∈ W ,p(RN ),

(.)

where a, b > , τ ,λ ≥ , μ ∈R, and  < p < N . By the Nehari manifold method, they proved
that problem (.) admits at least a positive ground state solution for any λ >  when p(τ +
) < q < m < p∗ = pN

N–p . However, does the existence of solutions for (.) still hold for any
λ >  when p < q < p(τ + ) and μ = ? This is a interesting problem. In this paper, we
answer positively this question. More interesting results for Kirchhoff-type problems can
be found in [, , –, –].

In the present paper, we are ready to extend the analysis to the nonhomogeneous p-
Kirchhoff-type equation of (.) in R

N with the nonlinearity f (u) satisfying the following
conditions:
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(F) f ∈ C(R+,R+), |f (t)| ≤ C(tp– + tq–) for all t ∈ R
+ and some q ∈ (p, p∗), where p∗ =

pN/(N – p),  < p < N ;
(F) limt→+

f (t)
tp– = ;

(F) limt→+∞ f (t)
tp– = +∞.

In addition, we suppose that the nontrivial and nonnegative function h(x) ≡ h(|x|) ∈
C(RN ) ∩ Lp′ (RN ) satisfies

(H) there exists ξ (x) ∈ Lp′ (RN ) ∩ W ,∞(RN ) such that
∣∣∇h(x) · x

∣∣ ≤ ξp′
(x), ∀x ∈ R

N , (.)

with p′ = p
p– .

We will use the Ekeland variational principle [] and a version of the mountain pass
theorem in [] to study the existence of multiple solutions of problem (.) in R

N . It is well
known that an important technical condition to get a bounded (PS) sequence is the follow-
ing Ambrosetti-Rabinowitz-type condition (AR): there exists θ > p such that  < θF(s) ≤
sf (s) for s > . The loss of (AR) condition renders variational techniques more delicate.
Inspired by [, ], we use a cut-off functional and obtain a bounded (PS) sequence.

In order to state our main result, we introduce some Sobolev spaces and norms. Let
W ,p(RN ) be the usual Sobolev space with the norm

‖u‖ =
(∫

RN
|∇u|p + |u|p dx

) 
p

,  < p < ∞. (.)

We denote by ‖ · ‖q the usual Lq(RN ) norm. Then it well known that the embedding
W ,p(RN ) ↪→ Lq(RN ) is continuous for q ∈ (p, p∗] and there exists a constant Sq such that

‖u‖q ≤ Sq‖u‖, ∀u ∈ W ,p(
R

N)
. (.)

Let X = W ,p
r (RN ) be the subspace of W ,p(RN ) containing only the radial functional. Then

by the Lemma . in [] we have that the embedding X ↪→ Lq(RN ) is compact for q ∈
(p, p∗).

A function u ∈ X is said to be a weak solution of (.) if for all v ∈ X,

(
a + λ‖u‖pm)∫

RN

(|∇u|p–∇u∇v + |u|p–uv
)

dx =
∫

RN

(
f (u) + h

)
v dx. (.)

Let I(u) : X →R be the energy functional associated with problem (.) defined by

I(u) =
a
p
‖u‖p +

λ

p(m + )
‖u‖p(m+) –

∫

RN

(
F(u) + hu

)
dx, (.)

where F(u) =
∫ u

 f (s) ds. It is easy to see that the functional I ∈ C(X,R) and its Gateaux
derivative is given by

I ′(u)v =
(
a + λ‖u‖pm)∫

RN

(|∇u|p–∇u∇v + |u|p–uv
)

dx

–
∫

RN

(
f (u) + h

)
v dx, ∀v ∈ X. (.)

Clearly, we see that a weak solution of (.) corresponds to a critical point of the functional.
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The main result in this paper is as follows.

Theorem . Let (F)-(F) and (H) hold. Then, there exist λ, m̃ >  such that, for any
λ ∈ [,λ), (.) has at least two nontrivial solutions in X when ‖h‖p′ < m̃.

Furthermore, consider h(x) =  and f (x, u) = |u|q–u, p < q < min{p(m + ), p∗}, that is,

(
a + λ

(∫

RN

(|∇u|p + |u|p)dx
)m)(

–�pu + |u|p–u
)

= |u|q–u, x ∈R
N . (.)

We can now state the second main result.

Theorem . Let a >  and p < q < min{p(m + ), p∗}. Then there exists λ∗ >  such that
problem (.) has at least one nontrivial solution for any λ ∈ (,λ∗] and has no nontrivial
weak solutions for any λ ∈ (λ∗, +∞).

Remark . In [], Chen and Zhu considered the case p < p(m + ) < q < p∗. They proved
that problem (.) admits at least one positive solution for any λ > .

2 Proof of Theorem 1.1
In this section, we first establish some properties of the functional I and then prove The-
orem .. Throughout the paper, we denote by C or Ci s positive constants that may vary
from line to line and are not essential to the problem.

Lemma . If assumptions (F)-(F) hold and h(x) ∈ Lp′ (RN ), then there exist ρ,α, m > 
such that I(u) ≥ α >  with ‖u‖ = ρ and ‖h‖p′ < m.

Proof It follows from (F)-(F) that

F(s) ≤ ε|s|p + Cε|s|q, ∀s ∈R, (.)

with ε > . By the Hölder inequality we have
∣∣∣∣
∫

RN
hu dx

∣∣∣∣ ≤ S–
q ‖h‖p′ ‖u‖ ≤ ε‖u‖p + Cε‖h‖p′

p′ . (.)

Thus,

I(u) ≥ a
p
‖u‖p – ε‖u‖p – Cε‖u‖q – ε‖u‖p – Cε‖h‖p′

p′

≥ a
p

‖u‖p – C‖u‖q – C‖h‖p′
p′ , (.)

where ε = ε = a
p , C, C are some positive constants. Let

z(t) =
a

p
tp – Ctq, t ≥ . (.)

We see that there exists ρ >  such that maxt≥ z(t) = z(ρ) ≡ m > . Then it follows from
(.) that there exists α >  such that I(u) ≥ α with ‖u‖ = ρ and ‖h‖p′ < m. This ends the
proof of Lemma .. �
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We denote by Br the open ball in X centered at the origin with radius r. By Ekland’s
variational principle [] we get the following lemma, which implies that there exists a
function u such that I ′(u) =  and I(u) <  if ‖h‖p′ is small.

Lemma . Let assumptions (F)-(F) hold, and h(x) ∈ Lp′ (RN ), h(x) �≡ , with ‖h‖p′ < m.
Then there exists a function u ∈ X such that

I(u) = inf
{

I(u) : u ∈ Bρ

}
< , (.)

and u is a nontrivial weak solution of problem (.).

Proof Choose a function φ ∈ C
(RN ) such that

∫
RN h(x)φ(x) dx > . Then

I(tφ) ≤ a
p

tp‖φ‖p +
λ

p(m + )
tp(m+)‖φ‖p(m+) – t

∫

RN
h(x)φ dx <  (.)

for small t >  and thus for any open ball Bκ ⊂ X such that –∞ < cκ = infBκ
I(u) < . Thus,

cρ = inf
u∈Bρ

I(u) <  and inf
u∈∂Bρ

I(u) > , (.)

where ρ is given in Lemma .. Let εn ↓  be such that

 < εn < inf
u∈∂Bρ

I(u) – inf
u∈Bρ

I(u). (.)

Then, by Ekland’s variational principle [] there exists {un} ⊂ Bρ such that

cρ ≤ I(un) < cρ + εn (.)

and

I(un) < I(u) + εn‖un – u‖ for all u ∈ Bρ , un �= u. (.)

Then, it follows from (.)-(.) that

I(un) < cρ + εn ≤ inf
u∈Bρ

I(u) + εn < inf
u∈∂Bρ

I(u). (.)

So un ∈ Bρ , and we now consider the function F : Bρ →R given by

F(u) = I(u) + εn‖un – u‖, u ∈ Bρ . (.)

Then (.) shows that F(un) < F(u), u ∈ Bρ , un �= u, and thus un is a strict local minimum
of F . Moreover,

t–(F(un + tv) – F(un)
) ≥  for small t > ,∀v ∈ B. (.)
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Hence,

t–(I(un + tv) – I(un)
)

+ εn‖v‖ ≥ . (.)

Passing to the limit as t → +, it follows that

I ′(un)v + εn‖v‖ ≥ , ∀v ∈ B. (.)

Replacing v in (.) by –v, we get

–I ′(un)v + εn‖v‖ ≥ , ∀v ∈ B, (.)

so that ‖I ′(un)‖ ≤ εn. Therefore, there is a sequence {un} ∈ Bρ such that I(un) → cρ < 
and I ′(un) →  in X∗ as n → ∞. In the following, we will prove that {un} has a convergent
subsequence in X. Indeed, since ‖un‖ < ρ , by the reflexivity of X and compact embedding
X ↪→ Lq for all q ∈ (p, p∗), passing to a subsequence, we can assume that

un ⇀ u, in X; un → u, Lq(
R

N)
; un → u, a.e. in R

N . (.)

By (.) we can get

(
I(un) – I(u)

)′(un – u) = Pn + Qn + Kn, (.)

where

Pn =
(
a + λ‖un‖pm)∫

RN

(|∇un|p–∇un – |∇u|p–∇u
)∇(un – u)

+
(|un|p–un – up–

 u
)
(un – u) dx,

Qn = λ
((‖un‖pm – ‖u‖pm))∫

RN
|∇u|p–∇u∇(un – u)

+ |u|p–u(un – u) dx,

Kn =
∫

RN

(
f (un) – f (u)

)
(un – u) dx.

(.)

It is clear that

(
I(un) – I(u)

)′(un – u) →  as n → ∞. (.)

By (F) and (F), for any ε > , there exists Cε >  such that

∣∣f (t)
∣∣ ≤ ε|t|p– + Cε|t|q–, t ∈R. (.)

Hence,

|Kn| =
∣∣∣∣
∫

RN

(
f (un) – f (u)

)
(un – u) dx

∣∣∣∣

≤ ε
(‖un‖p– + ‖u‖p–)‖un – u‖ + Cε

(‖un‖q–
q + ‖u‖q–

q
)‖un – u‖q

→  as n → ∞. (.)
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Define the linear function g : X →R by

g(ω) =
∫

RN
|∇u|p–∇u∇ω + |u|p–uω dx. (.)

Noticing that |g(ω)| ≤ ‖u‖p–‖ω‖, we can deduce that g is continuous on X. Using un ⇀

u in X, we have

g(un – u) =
∫

RN
|∇u|p–∇u∇(un – u) + |u|p–u(un – u) dx

→  as n → ∞. (.)

Since ‖un‖ < ρ , we deduce that |Qn| →  as n → ∞.
Combining the above results, we have |Pn| →  as n → ∞, Then, using the standard

inequalities in R
N

〈|x|p–x – |y|p–y, x – y
〉 ≥ Cp|x – y|p, p ≥ ,

〈|x|p–x – |y|p–y, x – y
〉 ≥ Cp|x – y|p

|x| + |y|–p ,  > p > ,
(.)

where 〈·, ·〉 denotes the scalar product in R
N , we can show that un → u in X. Thus, u is

a nontrivial weak solution of problem (.). The proof is completed. �

Next, we prove that problem (.) has a mountain-pass-type solution. To overcome the
difficulty of finding a bounded (PS) sequence for the associated functional I , motivated by
[, ], we use a cut-off function ψ ∈ C

(R+) that satisfies

ψ(t) = , ∀t ∈ [, ];  ≤ ψ ≤ , ∀t ∈ (, );

ψ(t) ≡ , ∀t ∈ [, +∞);
∥∥ψ ′∥∥∞ ≤ ,

(.)

and study the following modified functional IT defined by

IT (u) =
a
p
‖u‖p +

λ

p(m + )
ηT (u)‖u‖p(m+) –

∫

RN

(
F(u) + hu

)
dx, u ∈ X, (.)

where T >  and ηT (u) = ψ( ‖u‖p

Tp ). For T >  sufficiently large and λ sufficiently small, we
will prove that there exists a critical point ũ of IT such that ‖ũ‖ ≤ T , and so ũ is also a
critical point of I . For this purpose, we use the following theorem given in [].

Lemma . (see[]) Let X be a Banach space with norm ‖ · ‖X , and K ⊂R
+ be an interval.

Consider the family of C functionals on X

Iμ(u) = A(u) – μB(u), μ ∈ K , (.)

with B nonnegative and either A(u) → ∞ or B(u) → ∞ as ‖u‖X → ∞ and Iμ() = . For
any μ ∈ K , we set

�μ =
{
γ ∈ (

C[, ], X
)

: γ () = , Iμ
(
γ ()

)
< 

}
. (.)
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If for any μ ∈ K , the set �μ is nonempty, and

cμ = inf
γ∈�μ

max
t∈[,]

Iμ
(
γ (t)

)
> , (.)

then, for almost every μ ∈ K , there is a sequence {un} ⊂ X such that (i) {un} is bounded;
(ii) Iμ(un) → cμ; (iii) I ′

μ(un) →  in X–.

In our case,

A(u) =
a
p
‖u‖p +

λ

p(m + )
ηT (u)‖u‖p(m+), B(u) =

∫

RN

(
F(u) + hu

)
dx. (.)

So the perturbed functional we study is

IT
μ (u) =

a
p
‖u‖p +

λ

p(m + )
ηT (u)‖u‖p(m+) – μ

∫

RN

(
F(u) + hu

)
dx, (.)

and

(
IT
μ (u)

)′v = M̂
(‖u‖)

∫

RN

(|∇u|p–∇u∇v + |u|p–uv
)

dx – μ

∫

RN

(
f (u) + h

)
v dx, (.)

where M̂(‖u‖) = (a + ληT (u)‖u‖pm + λ
(m+)Tp η′

T (u)‖u‖p(m+)). The following lemmas,
Lemma . and Lemma ., imply that IT

μ satisfies the conditions of Lemma ..

Lemma . Let (F)-(F) hold, Then �μ �= ∅ for all μ ∈ [ 
 , ].

Proof Choose β(x) ∈ C
(RN ) with β(x) ≥  in R

N , ‖β‖ = , and supp(β) ⊂ BR for some
R > . By (F) we have that, for any C >  with C/

∫
BR

βp dx > a/p, there exists C > 
such that

F(t) ≥ C|t|p – C, t ∈R
+. (.)

Then, for tp > Tp,

IT
μ (tβ) =

a
p
‖tβ‖p +

λ

p(m + )
ψ

(‖tβ‖p

Tp

)
‖tβ‖p(m+) – μ

∫

RN

(
F(tβ) + htβ

)
dx

=
a
p
‖tβ‖p – μ

∫

RN

(
F(tβ) + htβ

)
dx ≤

(
a
p

–
C



∫

BR

βp dx
)

tp + C. (.)

It follows that we can choose t >  large enough such that IT
μ (tβ) < . The proof is com-

pleted. �

Lemma . Let (F)-(F) hold. Then there exists a constant c >  such that cμ ≥ c >  for
all μ ∈ [ 

 , ] if ‖h‖p′ < m.

Proof Similarly as in the proof of Lemma ., we can show that, for every μ ∈ [ 
 , ], there

exists c >  such that IT
μ (u) ≥ c with ‖u‖ = ρ̃ and ‖h‖p′ < m. Fix μ ∈ [ 

 , ] and γ ∈ �μ. By
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the definition of �μ, ‖γ ()‖ > ρ̃ . By the continuity we deduce that there exists tγ ∈ (, )
such that ‖γ (tγ )‖E = ρ̃ . Therefore, for any μ ∈ [ 

 , ],

cμ = inf
γ∈�μ

max
t∈[,]

IT
μ

(
γ (t)

) ≥ inf
γ∈�μ

IT
μ

(
γ (tγ )

) ≥ c > , (.)

which completes the proof. �

Lemma . For any μ ∈ [ 
 , ] and a > m+( m+

m+ )λTpm, each bounded (PS) sequence of the
functional IT

μ admits a convergent subsequence.

Proof By Lemmas .-., we obtain that, for a.e. μ ∈ [/, ], there is a bounded sequence
{un} in X that satisfies

IT
μ (un) → cμ,

(
IT
μ (un)

)′ →  in X∗, and sup
n

‖un‖ < T . (.)

Since the embedding X ↪→ Lq(RN ) is compact for q ∈ (p, p∗), passing to a subsequence, we
can assume that

un ⇀ u, in X; un → u, Lq(
R

N)
; un → u, a.e. in R

N . (.)

By (.) we can get

(
IT
μ (un) – IT

μ (u)
)′(un – u) = An + Bn + μCn, (.)

where

An = M̂(un)
∫

RN

(|∇un|p–∇un – |∇u|p–∇u
)∇(un – u)

+
(|un|p–un – up–u

)
(un – u) dx,

Bn =
(
M̂(un) – M̂(u)

)∫

RN
|∇u|p–∇u∇(un – u) + |u|p–u(un – u) dx,

Cn =
∫

RN

(
f (un) – f (u)

)
(un – u) dx.

(.)

It is clear that

(
IT
μ (un) – IT

μ (u)
)′(un – u) →  as n → ∞. (.)

An analogous argument as in (.) and (.) gives us that

Bn →  and Cn →  as n → ∞. (.)

Combining the above results and a > m+( m+
m+ )λTpm, we have that |An| →  as n → ∞.

Then, using a standard equality ([], Lemma .), we can show that un → u in X. The proof
is completed. �
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Lemma . Assume (F)-(F) and a > m+( m+
m+ )λTpm. Then, for almost every μ ∈ [ 

 , ],
there exist uμ ∈ X \ {} such that (IT

μ )′(uμ) =  and IT
μ (uμ) = cμ with ‖h‖p′ < m.

Proof It follows from Lemmas .-. that, for every μ ∈ [ 
 , ], there exists a bounded

sequence {uμ
n } ⊂ X such that

IT
μ

(
uμ

n
) → cμ and

(
IT
μ

)′(uμ
n
) →  as n → ∞.

By Lemma . we can suppose that uμ ∈ X and uμ
n → uμ in X. The proof is completed. �

According to Lemma ., there exists a sequence {μn} ⊂ [ 
 , ] with μn →  and {un} ⊂ X

as n → ∞ such that IT
μn (un) = cμn , (IT

μn )′(un) = , and un is a positive solution of

M̂
(‖u‖)(–�pu + |u|p–u

)
= μn

(
f (u) + h(x)

)
. (.)

In the following, to obtain ‖un‖ < T , we establish an identity that extends the Kazin-
Pohozav identity in ([], Thm. .) with p = .

Lemma . Assume that f (x, u) : RN ×R
 →R

 is a Carethéodary function, u ∈ C
loc(RN )

is a solution of

⎧⎨
⎩

–�pu + f (x, u) =  in R
N ,

u(x) →  as → ,
(.)

∂u
∂xi

∈ Lp(RN ), i = , , . . . , and F(x, u), F(x, u) ∈ L(RN ). Then

N – p
p

∫

RN
|∇u|p dx +

∫

RN

(
NF(x, u) + F(x, u)

)
dx = , (.)

where F(x, u) =
∫ u

 f (x, s) ds and F(x, u) =
∑N

i= xi
∂F(x,u)

∂xi
.

Proof Multiplying equation (.) by x · ∇u and integrating over the ball BR, we obtain

∫

BR

f (x, u)x · ∇u dx =
∫

BR

div
(|∇u|p–∇u

)
x · ∇u dx. (.)

Then

∫

BR

f (x, u)x · ∇u dx =
N∑

i=

∫

BR

xif (x, u)
∂u
∂xi

dx

=
N∑

i=

∫

BR

(
∂

∂xi

(
xiF(x, u)

)
–

(
F(x, u) + xi

∂F(x, u)
∂xi

))
dx

=
N∑

i=

∫

∂BR

F(x, u)xini ds –
∫

BR

(
NF(x, u) + F(x, u)

)
dx

= R
∫

∂BR

F(x, u) ds –
∫

BR

(
NF(x, u) + F(x, u)

)
dx, (.)
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where ni are the components of the unit outward normal to ∂BR, and ds is an area element.
On the other hand, integrating by parts, we obtain

∫

BR

div
(|∇u|p–∇u

)
x · ∇u dx

=
N∑
j=

∫

BR

∂

∂xj

(
|∇u|p– ∂u

∂xj

) N∑
i=

xi
∂u
∂xi

dx

=
N∑
j=

∫

BR

(
∂

∂xj

(
|∇u|p– ∂u

∂xj

N∑
i=

xi
∂u
∂xi

)
– |∇u|p– ∂u

∂xj

(
∂

∂xj

N∑
i=

xi
∂u
∂xi

))
dx

=
∫

∂BR

|∇u|p– ∂u
∂n

x · ∇u ds –
∫

BR

|∇u|p dx

–
∫

BR

N∑
j=

|∇u|p–

( N∑
i=

xi
∂u

∂xi ∂xj

∂u
∂xj

)
dx. (.)

On BR, we have ∇u = ∂u
n · �n = ∂u

∂n
x
R and

∫

∂BR

|∇u|p– ∂u
∂n

x · ∇u dx = R
∫

∂BR

|∇u|p ds. (.)

Further, we have

∫

BR

N∑
j=

|∇u|p–

( N∑
i=

xi
∂u

∂xi ∂xj

∂u
∂xj

)
dx

=

p

N∑
i=

∫

BR

(
∂

∂xi

(
xi|∇u|p) – |∇u|p

)
dx

=
R
p

∫

∂BR

|∇u|p ds –
N
p

∫

BR

|∇u|p dx. (.)

Therefore, we obtain

R
∫

∂BR

(
F –

(
 –


p

)
|∇u|p

)
ds +

(
 –

N
p

)∫

BR

|∇u|p dx –
∫

BR

(NF + F) dx = . (.)

Since F(x, u) ∈ L(RN ) and u ∈ X, we claim that

lim inf
n→∞ R

∫

∂BR

(∣∣F(x, u)
∣∣ + |∇u|p)dS = . (.)

Indeed, otherwise,

lim inf
n→∞ R

∫

∂BR

(∣∣F(x, u)
∣∣ + |∇u|p)dS = a > . (.)

Then, there exists R >  such that, for R ≥ R,

R
∫

∂BR

(∣∣F(x, u)
∣∣ + |∇u|p)dS ≥ a


. (.)
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Let Rn = R + n, n = , , . . . . Then Rn → ∞ as n → ∞. It follows from the integral mean
theorem that there is ξn ∈ (Rn–, Rn) and ξn ≥ R such that, for R ≥ R,

∫ Rn

Rn–

∫

∂BR

(|F| + |∇u|p)ds dR = ξn

∫

∂Bξn

(|F| + |∇u|p)ds ≥ a


, (.)

and thus

∫ ∞

R

∫

∂BR

(|F| + |∇u|p)ds dR ≥
∞∑

n=

∫ Rn

Rn–

∫

∂BR

(|F| + |∇u|p)ds dR = ∞. (.)

This contradicts the fact
∫

RN

(|F| + |∇u|p)dx =
∫ ∞



∫

∂BR

(|F| + |∇u|p)ds dR < ∞. (.)

Therefore, (.) is true. Thus, letting R → ∞ in (.), we have

N – p
p

∫

RN
|∇u|p dx +

∫

RN

(
NF(x, u) + F(x, u)

)
dx = . (.)

Then, we finish the proof of Lemma .. �

Lemma . Let a > m+( m+
m+ )λTpm, and let u ∈ X be a weak solution of

M̂
(‖u‖)(–�pu + |u|p–u

)
= μ

(
f (u) + h(x)

)
, (.)

where M̂(‖u‖) = (a + ληT (u)‖u‖pm + λ
(m+)Tp η′

T (u)‖u‖p(m+)). Then the following identity
holds:

M̂
(‖u‖)

(
N – p

p

∫

RN
|∇u|p dx +

N
p

∫

RN
|u|p dx

)

= Nμ

∫

RN

(
F(u) + hu

)
dx + μ

∫

RN
∇h · xu dx. (.)

Proof Since u ∈ X is a weak solution of (.), by standard regularity results, u ∈
C

loc(RN ) ∩ W ,p(RN ). Let

g(x, u) =
μ(f (u) + h(x))

M̂(‖u‖)
– |u|p–u. (.)

Then u ∈ X is also a solution of

–�pu = g(x, u). (.)

By Lemma .,

N – p
p

∫

RN
|∇u|p dx =

∫

RN

(
NG(u) + G(x, u)

)
dx, (.)

where G(x, u) =
∫ u

 g(x, s) ds and G(x, u) =
∑N

i= xi
∂G(x,u)

∂xi
. Then the conclusion holds. �
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Lemma . Assume that (F)-(F) and (H) hold and that ‖h‖p′ < m for m given in
Lemma .. Let un be a critical point of IT

μn at level cμn . Then for T sufficiently large, there
exists λ = λ(T) with λ < a( m+

m+ )T–pm such that, for any λ ∈ [,λ), subject to a subse-
quence, ‖un‖ < T for all n ∈N.

Proof Since (IT
μn )′(un) = , by Lemma . un satisfies

M̂
(‖u‖)

(
N
p

‖u‖p +
∫

RN
|∇u|p dx

)

= Nμn

∫

RN

(
F(un) + hun

)
dx + μn

∫

RN
∇h · xun dx. (.)

Using IT
μn (un) = cμn , we have

aN
p

‖un‖p +
λN

p(m + )
ηT (un)‖un‖p(m+) = Nμn

∫

RN

(
F(un) + hun

)
dx + Ncμn . (.)

Therefore, by (.), (.) and a > m+( m+
m+ )λTpm we deduce that

a


∫

RN
|∇un|p dx

≤ M̂
(‖un‖

)∫

RN
|∇un|p dx

= Ncμn + N
(

M̂
(‖un‖

)
–

a
p

)
‖u‖p –

λN
p(m + )

ηT (un)‖un‖p(m+) – μn

∫

RN
∇hx · un dx

≤ Ncμn +
λNm

p(m + )
ηT (un)‖un‖p(m+) +

λN
p(m + )Tp η′

T (un)‖un‖p(m+)

– μn

∫

RN
∇hx · un dx. (.)

By the min-max definition of the mountain pass level, Lemma ., and (.) we have

cμn ≤ max
t

IT
μn (tβ)

≤ max
t

{(
a
p

–
C



∫

BR

|β|p dx
)

tp + C

}
+ max

t

λ

p(m + )
ψ

(
tp

Tp

)
tp(m+)

≤ λm+

p(m + )
Tp(m+) + C. (.)

Using (H) and the Young equality, we have

∫

RN
∇h · xun dx ≤ 

p′

∫

RN
|ξ |p′

dx +

p

∫

RN
|ξ |p′ |un|p dx

≤ 
p

∫

RN
|ξ |p′ |un|p dx + C. (.)

We can easily calculate that

ηT (un)‖un‖p(m+) ≤ m+Tp(m+), η′(un)‖un‖p(m+) ≤ m+Tp(m+). (.)



Liu and Zhou Boundary Value Problems  (2017) 2017:20 Page 14 of 19

Combining the above estimates, we see that

a


∫

RN
|∇un|p dx ≤ λN(m + )

p(m + )
m+Tp(m+) +


p

∫

RN
|ξ |p′ |un|p dx + C. (.)

Since ξ (x) ∈ Lp′ (RN ) ∩ W ,∞, we see that ξp′un ∈ X. It follows from (IT
μn (un))′(ξp′un) = 

that

M̂
(∥∥ξp′

un
∥∥)∫

RN
|∇un|p–∇un∇

(
ξp′

un
)

+ |un|p–u
(
ξp′

un
)

dx

= μn

∫

RN

(
f (un) + h

)
ξp′

un dx. (.)

Since a > m+( m+
m+ )λTpm, we have (a/) ≥ M̂(‖ξp′un‖), and it follows from (.) and

(.) that

(a/)
∫

RN
|∇un|p–∇un∇

(
ξp′

un
)

+ |un|pξp′
dx ≥ (/)

∫

RN
f (un)unξ

p′
dx. (.)

From (.) by the Hölder inequality we deduce that

a
∫

RN
|∇un|p–∇un∇

(
ξp′

un
)

dx

≤ a
∫

RN
|∇un|p–∇un

(
p′ξp′–un∇ξ + ξp′∇un

)
dx

≤ 
(‖ξ‖∞

p′ + ‖∇ξ‖∞
p′

)(
a

∫

RN
|∇un|p dx

)
+ a(p – )–

∫

RN
ξp′ |un|p dx

≤ CλTp(m+) + C
∫

RN
ξp′ |un|p dx + C, (.)

where C is a constant independent of λ and T .
By (F), for any L > , there exists C(L) >  such that

f (s)s ≥ Lsp – C(L) for all s > . (.)

Combining (.)-(.), we get

(



L – C
)∫

RN
ξp′ |un|p dx ≤ CλTp(m+) + C. (.)

For L >  large enough, we obtain

∫

RN
ξp′ |un|p dx ≤ CλTp(m+) + C. (.)

It follows from (.) and (.) that

∫

RN
|∇un|p dx ≤ CλTp(m+) + C. (.)
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On the other hand,

a‖un‖p + ηT (un)‖un‖p(m+) +
λ

m + 
η′

T (un)‖un‖p(m+)

= μn

∫

RN

(
f (un)un + hun

)
dx

≤ ε‖un‖p + Cε‖un‖p∗
p∗ +


p′ ‖h‖p′

p′ +

p
‖u‖p. (.)

By (.) and (.) we have

(a – ε – /p)‖un‖p ≤ Cε‖un‖p∗
p∗ – λ/

(
(m + )Tp)η′

T (un)‖un‖p(m+) + C

≤ C‖∇un‖p∗
p + λm+(m + )–Tp(m+) + C

≤ CλTp∗(m+) + CλTp(m+) + C. (.)

Suppose that ‖un‖ > T for n ∈N and T large enough. Then

Tp < ‖un‖p ≤ CλTp∗(m+) + CλTp(m+) + C, (.)

which is not true if we choose T large and λ small enough. So by setting λ(T) small we
obtain that the sequence {un} is bounded for any λ ∈ [,λ), and the conclusion holds. �

Lemma . Let T , λ be defined by Lemma ., and un be the critical point of IT
μn at level

cμn . Then the sequence {un} is also a (PS) sequence for I .

Proof From the proof of Lemma . we may assume that ‖un‖ ≤ T . So

I(un) = IT
μn (un) + (μn – )

∫

RN

(
F(un) + hun

)
dx. (.)

Since μn → , we can show that {un} is a (PS) sequence of I . Indeed, the boundedness of
{un} implies that {IT

μn} is bounded. Also,

I ′(un)v =
(
IT
μn

)′(un, v) + (μn – )
∫

RN

(
f (un) + h(un)

)
v dx, v ∈ X. (.)

Thus, I ′(un) → , and {un} is a bounded (PS) sequence of I . By Lemma ., {un} has a con-
vergent subsequence. We may assume that un → ũ. Consequently, I ′(ũ) = . According
to Lemma ., we have that I(ũ) = limn→∞ I(un) = limn→∞ IT

μn (un) ≥ c >  and ũ is a
solution of problem (.). Thus, we completed the proof. �

Proof of Theorem . By Lemma . the problem has a solution u ∈ X with I(u) < .
From Lemma . we know that problem (.) possesses a second solution ũ ∈ X with
I(ũ) ≥ c > . Hence, u �= ũ, and we complete the proof of Theorem .. �

3 Proof of Theorem 1.2
Let Iλ(u) : X → R be the energy functional associated with problem (.) defined by

Iλ(u) =
a
p
‖u‖p +

λ

p(m + )
‖u‖p(m+) –


q
‖u‖q

q, (.)



Liu and Zhou Boundary Value Problems  (2017) 2017:20 Page 16 of 19

where F(u) =
∫ u

 f (s) ds. It is easy to see that the functional I ∈ C(E,R) and its Gateaux
derivative is given by

I ′
λ(u)v =

(
a + λ‖u‖pm)∫

RN

(|∇u|p–∇u∇v + |u|p–uv
)

dx

–
∫

RN
|u|q–uv dx, ∀v ∈ E. (.)

Clearly, we see that a weak solution of (.) corresponds to a critical point of the func-
tional.

In this part, we first proof the nonexistence for problem (.) for large λ > λ∗. which
means that if a solution exists, then λ must sufficiently small. Secondly, we obtain that
there exists λ∗∗ such that problem (.) has at least one solution for any  < λ < λ∗∗. Finally,
by the properties of λ∗ and λ∗∗ we deduce that λ∗ = λ∗∗. We will break the proof into six
steps.

Proof of Theorem . Step . Nonexistence for large λ > . It is sufficient to show that if
u is a nontrivial solution of problem (.), then λ >  must be small. Assume that u is a
nontrivial solution of problem (.). Then we get I ′

λ(u)u = , that is,

a‖u‖p + λ‖u‖p(m+) = ‖u‖q
q. (.)

Since p < q < min{p(m + ), p∗}, applying the Young inequality and (.), we deduce that

a‖u‖p + λ‖u‖p(m+) = ‖u‖q
q ≤ Sq

q‖u‖q
E ≤ a‖u‖p

E + λ‖u‖p(m+)
E , (.)

which implies that λ ≤ λ = (Sq
q)

pm
q–p a– p(m+)–q

q–p . On the other hand, if λ∗ ≥ λ, then we con-
clude that problem (.) has no solution for any λ ∈ (λ∗, +∞).

Step . Coercivity of Iλ(u). Indeed, for any u ∈ E and all λ > ,

Iλ(u) =
a
p
‖u‖p +

λ

p(m + )
‖u‖p(m+) –


q
‖u‖q

q

≥ a
p
‖u‖p +

λ

p(m + )
‖u‖p(m+) +

λ

p(m + )
‖u‖p(m+) –

Sq
q

q
‖u‖q. (.)

Since q < p(m + ), there exists C = C(λ, q, m, Sq) such that

Sq
q

q
‖u‖q ≤ λ

p(m + )
‖u‖p(m+) + C. (.)

It follows that

Iλ(u) ≥ a
p
‖u‖p +

λ

p(m + )
‖u‖p(m+) – C. (.)

This implies that Iλ(u) is coercive.
Step . The infimum of Iλ is attained. Let {un} be a minimizing sequence of Iλ. Then from

Step  we immediately see that {un} is bounded in X . Therefore, without loss of generality,
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we may assume that {un} is nonnegative and converges weakly and pointwise to some u
in X.

Using the compact embedding X ↪→ Lq(RN ), we have

‖u‖q = lim
n→∞‖un‖q and ‖u‖ ≤ lim inf

n→∞ ‖un‖ (.)

by the weak lower semicontinuity of the norm ‖ · ‖. Thus,

Iλ(u) =
a
p
‖u‖p +

λ

p(m + )
‖u‖p(m+) –


q
‖u‖q

q

≤ lim inf
n→∞

(
a
p
‖un‖p +

λ

p(m + )
‖un‖p(m+)

)
–


q

lim
n→∞‖un‖q

q

≤ lim inf
n→∞

(
a
p
‖un‖p +

λ

p(m + )
‖un‖p(m+) –


q
‖un‖q

q

)
= lim inf

n→∞ Iλ(un). (.)

Therefore, u is a global minimum for Iλ, and hence it is a critical point, namely a weak
solution to problem (.).

Step . The weak solution u is nontrivial if λ >  is sufficiently small. Clearly, Iλ() = .
Therefore, it is sufficient to show that there exists λ >  such that

inf
u∈E

Iλ(u) < , for any λ ∈ (,λ). (.)

Choose u ∈ C∞
 (RN ), u �≡ , such that ‖u‖E = . Denote

Iλ(tu) = tps(t), s(t) = B + λBtpm – Btq–p, t ≥ , (.)

where

B =
a
p

, B =


p(m + )
> , B =


q

∫

RN
|u|q dx > .

Then there exist λ >  and large tλ >  such that Iλ(tλu) <  for λ ∈ (,λ]. Let e = tλu.
Then ‖e‖ = tλ and Iλ(e) < . This implies that (.) is true. So the weak solution u is non-
trivial if λ >  is sufficiently small.

Now, we define

λ∗∗ = sup
{
λ > , problem (.) admits a nontrival weak solution

}
,

λ∗ = inf
{
λ > , problem (.) does not admit any nontrival weak solution

}
.

Clearly, λ∗∗ ≥ λ∗. To complete the proof of Theorem ., it suffices to prove the following
facts: (a) problem (.) has a weak solution for any λ < λ∗∗; (b) λ∗∗ = λ∗, and problem
(.) admits a weak solution when λ = λ∗.

Step . Problem (.) has a solution for any λ < λ∗∗ and λ∗ = λ∗∗. Fix λ < λ∗∗. By the
definition of λ∗∗, there exists μ ∈ (λ,λ∗∗) such that Iλ has a nontrivial critical point uμ ∈ E.
Clearly, we have

(
a + λ

(∫

RN

(|∇umu|p + |uμ|p)dx
)m)(

–�puμ + |uμ|p–uμ

) ≤ |uμ|q–uμ. (.)
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This implies that uμ is a subsolution of problem (.). In order to find a supsolution of
(.) that dominates uμ, we consider the constrained minimization problem

inf

{
a
p
‖ω‖p +

λ

p(m + )
‖ω‖p(m+) –


q
‖ω‖q

q : ω ∈ E,‖ω‖q
q = q and ω ≥ uμ

}
. (.)

Arguments similar to those used in Step  and Step  show that the above minimization
has a solution uλ ≥ uμ, which is also a weak solution of problem (.). Hence, problem
(.) admits a weak solution for any λ ∈ [,λ∗∗), This means that λ∗ ≥ λ∗∗ by the definition
of λ∗. But we already know that λ∗∗ ≥ λ∗, and therefore λ∗∗ = λ∗.

Step . Problem (.) admits a nontrivial solution when λ = λ∗. Let {λn} be a increasing
sequence converging to λ∗, and {un} be a sequence of solutions of (.) corresponding to
λn. By Step , {un} is bounded in X, and without loss of generality we may assume that
un ⇀ u in X, un → u in Lq(RN ), and un → u∗ a.e. in X. It follows from Iλ(un)v =  that, for
any v ∈ X,

(
a + λn‖un‖pm)∫

RN

(|∇un|p–∇un∇v + |un|p–unv
)

dx =
∫

RN
|un|q–unv dx. (.)

Then, passing to the limit as n → ∞, we deduce that u∗ satisfies Iλ(u∗)v =  when λ = λ∗.
Now, it remains to prove that u∗ is a nontrivial critical point for Iλ∗ . From I ′

λ(un)un =  it
is easy to deduce that ‖un‖ ≥ (λnS–q

q )/(q–p(m+)), which implies that un has a lower bound.
Next, since λn ↗ λ∗ as n → ∞, it suffices to show that ‖un – u∗‖ →  as n → ∞.

Since un and u∗ are the solutions of (.) corresponding to λn and λ∗, we see that

 =
(
I ′
λn (un) – I ′

λ∗
(
u∗))(un – u) = Xn + Yn – Zn, (.)

where

Xn =
(
a + λn‖un‖pm)∫

RN

(|∇un|p–∇un –
∣∣∇u∗∣∣p–∇u∗)∇(

un – u∗)dx

+
(|un|p–un –

∣∣u∗∣∣p–u∗)(un – u∗)dx;

Yn =
(
λn‖un‖pm – λ∗∥∥u∗∥∥pm)∫

RN

∣∣∇u∗∣∣p–∇u∗∇(
un – u∗)

+
∣∣u∗∣∣p–u∗(un – u∗)dx;

Zn =
∫

RN

(|un|q–un –
∣∣u∗∣∣q–u∗)(un – u∗)dx.

By the Hölder inequality and compact embedding un → u in Lq(RN , H) we have

|Xn| =
∣∣∣∣
∫

RN

(|un|q–un –
∣∣u∗∣∣q–u∗)(un – u∗)dx

∣∣∣∣

≤
∫

RN

(|un|q– +
∣∣u∗∣∣q–)∣∣un – u∗∣∣dx

≤ C
(‖un‖q– +

∥∥u∗∥∥q–)∥∥un – u∗∥∥
q →  as n → ∞. (.)
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Next, consider the functional j : X →R defined by

j(ω) =
∫

RN

∣∣∇u∗∣∣p–∇u∗∇ω +
∣∣u∗∣∣p–u∗ω dx. (.)

Since |j(ω)| ≤ ‖u∗‖p–‖ω‖, j is continuous on X. Using un ⇀ u∗ and the boundedness of
un and u∗ in X, we have that

|Yn| ≤
(‖un‖pm +

∥∥u∗∥∥pm)∣∣g(
un – u∗)∣∣ →  as n → ∞. (.)

Combining (.), (.), and (.), this forces Xn →  as n → ∞. Then, using the stan-
dard inequality (.) in R

N , we have that ‖un – u∗‖ →  as n → ∞, and thus u∗ is a
nontrivial weak solution of problem (.) corresponding to λ = λ∗. This completes the
proof of Theorem .. �
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