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Abstract
In this paper, we consider the following fourth-order Rayleigh type p-Laplacian
generalized neutral differential equation with linear autonomous difference operator:

(ϕp(x(t) – c(t)x(t – δ(t)))′′
)
′′ + f (t, x′(t)) + g(t, x(t – τ (t))) = e(t).

By applications of coincidence degree theory and some analysis skills, sufficient
conditions for the existence of periodic solutions are established.
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1 Introduction
In this paper, we consider the following fourth-order Rayleigh type p-Laplacian neutral
differential equation with linear autonomous difference operator:

(
ϕp

(
x(t) – c(t)x

(
t – δ(t)

))′′)′′ + f
(
t, x′(t)

)
+ g

(
t, x

(
t – τ (t)

))
= e(t), (.)

where p ≥ , ϕp(x) = |x|p–x for x �=  and ϕp() = ; |c(t)| �= , c, δ ∈ C(R,R) and c, δ are
T-periodic functions for some T > ; f and g are continuous functions defined on R

 and
periodic in t with f (t, ·) = f (t + T , ·), g(t, ·) = g(t + T , ·) and f (t, ) = , e, τ : R → R are
continuous periodic functions with e(t + T) ≡ e(t) and τ (t + T) ≡ τ (t).

In recent years, there has been a good amount of work on periodic solutions for fourth-
order differential equations (see [–] and the references cited therein). For example,
in [], applying Mawhin’s continuation theorem, Shan and Lu studied the existence of
periodic solution for a kind of fourth-order p-Laplacian functional differential equation
with a deviating argument as follows:

[
ϕp

(
u′′(t)

)]′′ + f
(
u(t)

)
u′(t) + g

(
t, u(t), u

(
t – τ (t)

))
= e(t). (.)
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Afterwards, Lu and Shan [] observed a fourth-order p-Laplacian differential equa-
tion

[
ϕp

(
u′′(t)

)]′′ + f
(
u′′(t)

)
+ g

(
u
(
t – τ (t)

))
= e(t) (.)

and presented sufficient conditions for the existence of periodic solutions for (.). Re-
cently, by means of Mawhin’s continuation theorem, Wang and Zhu [] studied a kind of
fourth-order p-Laplacian neutral functional differential equation

[
ϕp

(
x(t) – cx(t – δ)

)′′]′′ + f
(
x(t)

)
x′(t) + g

(
t, x

(
t – τ

(
t, |x|∞

)))
= e(t). (.)

Some sufficient criteria to guarantee the existence of periodic solutions were obtained.
However, the fourth-order p-Laplacian neutral differential equation (.), which in-

cludes the p-Laplacian neutral differential equation, has not attracted much attention in
the literature. In this paper, we try to fill the gap and establish the existence of periodic
solution of (.) using Mawhin’s continuation theory. Our new results generalize some
recent results contained in [, , , ] in several aspects.

2 Preparation
Lemma  (See []) If |c(t)| �= , then the operator (Au)(t) := x(t) – c(t)x(t – δ(t)) has a
continuous inverse A– on the space

CT :=
{

u|u ∈ (R,R), u(t + T) ≡ u(t),∀t ∈R
}

,

and satisfies
()

∫ T
 |(A–u)(t)|dt ≤

∫ T
 |u(t)|dt

–c∞ for c∞ := maxt∈[,T] |c(t)| <  ∀u ∈ CT ;

()
∫ T

 |(A–)(t)|dt ≤
∫ T

 |u(t)|dt
c– for c := mint∈[,T] |c(t)| >  ∀u ∈ CT .

Lemma  (Gaines and Mawhin []) Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Let � ⊂ X be an open bounded
set and N : � → Y be L-compact on �. Assume that the following conditions hold:

() Lx �= λNx, ∀x ∈ ∂� ∩ D(L), λ ∈ (, );
() Nx /∈ Im L, ∀x ∈ ∂� ∩ Ker L;
() deg{JQN ,� ∩ Ker L, } �= , where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in � ∩ D(L).

In order to apply Mawhin’s continuation degree theorem to study the existence of peri-
odic solution for (.), we rewrite (.) in the form:

⎧
⎨

⎩
(Ax)′′(t) = ϕq(x(t)),

x′′
(t) = –f (t, x′

(t)) – g(t, x(t – τ (t))) + e(t),
(.)

where 
p + 

q = . Clearly, if x(t) = (x(t), x(t)) is a T-periodic solution to (.), then x(t)
must be a T-periodic solution to (.). Thus, the problem of finding a T-periodic solution
for (.) reduces to finding one for (.).



Xin et al. Boundary Value Problems  (2017) 2017:24 Page 3 of 12

Now, set X = {x = (x(t), x(t)) ∈ C(R,R) : x(t + T) ≡ x(t)} with the norm |x|∞ =
max{|x|∞, |x|∞}; Y = {x = (x(t), x(t)) ∈ C(R,R) : x(t + T) ≡ x(t)} with the norm ‖x‖ =
max{|x|∞, |x′|∞}. Clearly, X and Y are both Banach spaces. Meanwhile, define

L : D(L) =
{

x ∈ C(
R,R) : x(t + T) = x(t), t ∈R

} ⊂ X → Y

by

(Lx)(t) =

(
(Ax)′′(t)

x′′
(t)

)

and N : X → Y by

(Nx)(t) =

(
ϕq(x(t))

–f (t, x′
(t)) – g(t, x(t – τ (t))) + e(t)

)

. (.)

Then (.) can be converted to the abstract equation Lx = Nx.
From ∀x ∈ Ker L, x = ( x

x
) ∈ Ker L, i.e.,

{ (x(t) – c(t)x(t – δ(t)))′′ = ,
x′′

(t) = , we have

⎧
⎨

⎩
x(t) – c(t)x(t – δ(t)) = at + a,

x(t) = bt + b,

where a, a, b, b ∈ R are constant. Let φ(t) �=  be a solution of x(t) – c(t)x(t – δ(t)) = ,
then Ker L = u = ( aφ(t),

b
). From the definition of L, one can easily see that

Ker L ∼= R
, Im L =

{

y ∈ Y :
∫ T



(
y(s)
y(s)

)

ds =

(



)}

.

So L is a Fredholm operator with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂R
 be

defined by

Px =

(
(Ax)()

x()

)

; Qy =

T

∫ T



(
y(s)
y(s)

)

ds,

then Im P = Ker L, Ker Q = Im L. Let K denote the inverse of L|Ker p∩D(L). It is easy to see
that Ker L = Im Q = R

 and

[Ky](t) =
∫ T


G(t, s)y(s) ds,

where

G(t, s) =

⎧
⎨

⎩

–s(T–t)
T ,  ≤ s ≤ t ≤ T ,

–t(T–s)
T ,  ≤ t < s ≤ T .

(.)

From (.) and (.), it is clear that QN and K(I – Q)N are continuous, QN(�) is bounded
and then K(I – Q)N(�) is compact for any open bounded � ⊂ X, which means N is L-
compact on �̄.
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3 Main results
Theorem  Assume that the following conditions hold:

(H) There exists a positive constant K such that |f (t, u)| ≤ K for (t, u) ∈R×R;
(H) There exists a positive constant D such that xg(t, x) > , and |g(t, x)| > K + |e|∞, here

|e|∞ = maxt∈[,T] |e(t)| for |x| > D and t ∈R;
(H) There exists a positive constant M and M > |e|∞ such that g(t, x) ≥ –M for x ≥ D and

t ∈R.

Then (.) has at least non-constant T-periodic solution if one of the following conditions
is satisfied:

(i) If c∞ <  and  – c∞ – ( T

 c + T(c + cδ + 
 c∞δ) + c∞δ

 + c∞δ) > ;
(ii) If c >  and c –  – ( T

 c + T(c + cδ + 
 c∞δ) + c∞δ

 + c∞δ) > ;
where δi = maxt∈[,ω] |δ(i)(t)|, ci = maxt∈[,ω] |c(i)(t)|, i = , .

Proof Consider the equation

Lx = λNx, λ ∈ (, ).

Set � = {x : Lx = λNx,λ ∈ (, )}. If x(t) = (x(t), x(t)) ∈ �, then

⎧
⎨

⎩
(Ax)′′(t) = λϕq(x(t)),

x′′
(t) = –λf (t, x′

(t)) – λg(t, x(t – τ (t))) + λe(t).
(.)

Then the second equation of (.) and x(t) = λ–pϕp[(Ax)′′(t)] imply

(
ϕp(Ax)′′(t)

)′′ + λpf
(
t, x′

(t)
)

+ λpg
(
t, x

(
t – τ (t)

))
= λpe(t). (.)

We first claim that there is a constant t ∈R such that

∣∣x(t)
∣∣ ≤ D. (.)

Integrating both sides of (.) on the interval [, T], we arrive at

∫ T



{
f
(
t, x(t)

)
+ g

(
t, x

(
t – τ (t)

))
– e(t)

}
dt = , (.)

which yields that there exists at least a point t∗
 such that

f
(
t∗
 , x′


(
t∗

))

+ g
(
t∗
 , x

(
t∗
 – τ

(
t∗

)))

= e
(
t∗

)
,

and we get

g
(
t∗
 , x

(
t∗
 – τ

(
t∗

)))

= e
(
t∗

)

– f
(
t∗
 , x′


(
t∗

))

,

and then by (H) we have

∣∣g
(
t∗
 , x

(
t∗
 – τ

(
t∗

)))∣∣ ≤ ∣∣e

(
t∗

)∣∣ +

∣∣f
(
t∗
 , x′


(
t∗

))∣∣ ≤ |e|∞ + K,
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and from (H) we can get |x(t∗
 – τ (t∗

 ))| ≤ D. Since x(t) is periodic with period T , take
t∗
 – τ (t∗

 ) = nT + t, t ∈ [, T], where n is some integer; then |x(t)| ≤ D, (.) is proved.
Then we have

|x|∞ = max
t∈[,T]

∣∣x(t)
∣∣ = max

t∈[ξ ,ξ+T]

∣∣x(t)
∣∣

=



max
t∈[ξ ,ξ+T]

(∣∣x(t)
∣
∣ +

∣
∣x(t – T)

∣
∣)

=



max
t∈[ξ ,ξ+T]

(∣
∣∣
∣x(t) +

∫ T

t

x′(s) ds
∣
∣∣
∣ +

∣
∣∣
∣x(t) –

∫ t

t–T
x′(s) ds

∣
∣∣
∣

)

≤ D +



(∫ t

ξ

∣∣x′
(s)

∣∣ds +
∫ ξ

t–T

∣∣x′
(s)

∣∣ds
)

≤ D +



∫ T



∣∣x′
(s)

∣∣ds. (.)

Multiplying both sides of (.) by (Ax)(t) and integrating over [, T], we get
∫ T



(
ϕp(Ax)′′(t)

)′′(Ax(t)
)

dt = –λp
∫ T


f
(
t, x′

(t)
)
(Ax)(t) dt

– λp
∫ T


g
(
t, x

(
t – τ (t)

))
(Ax)(t) dt

+ λp
∫ T


e(t)(Ax)(t) dt. (.)

Substituting
∫ T

 (ϕp(Ax)′′(t))′′(Ax(t)) dt =
∫ T

 |(Ax)′′(t)|p dt into (.), in view of (H), we
have

∫ T



∣
∣(Ax)′′(t)

∣
∣p dt ≤

∫ T



∣
∣f

(
t, x′

(t)
)∣∣

∣
∣[x(t) – c(t)x

(
t – δ(t)

)]∣∣dt

+
∫ T



∣∣g
(
t, x

(
t – τ (t)

))∣∣∣∣[x(t) – c(t)x
(
t – δ(t)

)]∣∣dt

+
∫ T



∣
∣e(t)

∣
∣
∣
∣[x(t) – c(t)x

(
t – δ(t)

)]∣∣dt

≤ ( + c∞)|x|∞
[∫ T



∣∣g
(
t, x

(
t – τ (t)

))∣∣dt + T
(
K + |e|∞

)]
. (.)

Besides, we can assert that there exists some positive constant N such that
∫ T



∣∣g
(
t, x

(
t – τ (t)

))∣∣dt ≤ TN + T
(
K + |e|∞

)
. (.)

In fact, from (H) and (.), we have
∫ T



{
g
(
t, x

(
t – τ (t)

))
– K – |e|∞

}
dt ≤

∫ T



{
g
(
t, x

(
t – τ (t)

))
–

∣∣f
(
t, x′

(t)
)∣∣ – |e|∞

}
dt

≤
∫ T



{
g
(
t, x

(
t – τ (t)

))
+ f

(
t, x′

(t)
)

– e(t)
}

dt

= .



Xin et al. Boundary Value Problems  (2017) 2017:24 Page 6 of 12

Define

E =
{

t ∈ [, T] : x
(
t – τ (t)

)
< –D

}
;

E =
{

t ∈ [, T] :
∣
∣x

(
t – τ (t)

)∣∣ ≤ D
} ∪ {

t ∈ [, T] : x
(
t – τ (t)

)
> D

}
.

With these sets we get

∫

E

∣
∣g

(
t, x

(
t – τ (t)

))∣∣dt ≤ T max
{

M, sup
t∈[,T],|x(t–τ (t))|≤D

∣
∣g(t, x)

∣
∣
}

,

∫

E

{∣∣g
(
t, x

(
t – τ (t)

))∣∣ – K – |e|∞
}

dt =
∫

E

{
g
(
t, x

(
t – τ (t)

))
– K – |e|∞

}
dt

≤ –
∫

E

{
g
(
t, x

(
t – τ (t)

))
– K – |e|∞

}
dt

≤
∫

E

{∣∣g
(
t, x

(
t – τ (t)

))∣∣ + K + |e|∞
}

dt,

which yields

∫

E

∣
∣g

(
t, x

(
t – τ (t)

))∣∣dt ≤
∫

E

∣
∣g

(
t, x

(
t – τ (t)

))∣∣dt +
∫

E∪E

(
K + |e|∞

)
dt

=
∫

E

∣∣g
(
t, x

(
t – τ (t)

))∣∣dt + T
(
K + |e|∞

)
.

That is,

∫ T



∣∣g
(
t, x

(
t – τ (t)

))∣∣dt =
∫

E

∣∣g
(
t, x

(
t – τ (t)

))∣∣dt +
∫

E

∣∣g
(
x

(
t – τ (t)

))∣∣dt

≤ 
∫

E

∣
∣g

(
t, x

(
t – τ (t)

))∣∣dt + T
(
K + |e|∞

)

≤ T max
{

M, sup
t∈[,T],|x(t–τ (t))|<D

∣∣g(t, x)
∣∣
}

+ T
(
K + |e|∞

)

= TN + T
(
K + |e|∞

)
,

where N = max{M, supt∈[,T],|x(t–τ (t))|<D |g(t, x)|}, proving (.).
Substituting (.) into (.) and recalling (.), we get

∫ T



∣∣(Ax)′′(t)
∣∣p dt ≤ T( + c∞)|x|∞

(
K + |e|∞ + N

)

≤ ( + c∞)
(

D +



∫ T



∣
∣x′

(t)
∣
∣dt

)
T

(
K + |e|∞ + N

)

=
( + c∞)N



∫ T



∣∣x′
(t)

∣∣dt + ( + c∞)ND, (.)

where N = T(K + |e|∞ + N).
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On the other hand, since (Ax)(t) = x(t) – c(t)x(t – δ(t)), we have

(Ax)′(t) =
(
x(t) – c(t)x

(
t – δ(t)

))′

= x′
(t) – c′(t)x

(
t – δ(t)

)
– c(t)x′


(
t – δ(t)

)
+ c(t)x′


(
t – δ(t)

)
δ′(t),

(Ax)′′(t) =
(
x′

(t) – c′(t)x
(
t – δ(t)

)
– c(t)x′


(
t – δ(t)

)
+ c(t)x′


(
t – δ(t)

)
δ′(t)

)′

= x′′
 (t) –

[
c′′(t)x

(
t – δ(t)

)
+ c′(t)x′(t – δ(t)

)(
 – δ′(t)

)
+ c′(t)x′(t – δ(t)

)

+ c(t)x′′(t – δ(t)
)(

 – δ′(t)
)

– c′(t)x′(t – δ(t)
)
δ′(t)

– c(t)x′′(t – δ(t)
)(

 – δ′(t)
)
δ′(t) – c(t)x′(t – δ(t)

)
δ′′(t)

]

= x′′
 (t) – c(t)x′′


(
t – δ(t)

)
–

[
c′′(t)x

(
t – δ(t)

)
+

(
c′(t) – c′(t)δ′(t)

– c(t)δ′′(t)
)
x′


(
t – δ(t)

)
+

(
c(t)

(
δ′(t)

) – c(t)δ′(t)
)
x′′


(
t – δ(t)

)]

and

(
Ax′′


)
(t) = (Ax)′′(t) + c′′(t)x

(
t – δ(t)

)
+

(
c′(t) – c′(t)δ′(t) – c(t)δ′′(t)

)
x′


(
t – δ(t)

)

+
(
c(t)

(
δ′(t)

) – c(t)δ′(t)
)
x′′


(
t – δ(t)

)
.

Case (I): If |c(t)| ≤ c∞ < , by applying Lemma , we have

∫ T



∣
∣x′′

 (t)
∣
∣dt =

∫ T



∣
∣A–Ax′′

 (t)
∣
∣dt

≤
∫ T

 |Ax′′
 (t)|dt

 – c∞

≤
(∫ T



∣∣(Ax)′′(t)
∣∣dt + cT |x|∞ + T(c + cδ + c∞δ)

∣∣x′

∣∣∞

+
(
c∞δ

 + c∞δ
)∫ T



∣∣x′′(t)
∣∣dt

) /
( – c∞),

where ci = maxt∈[,T] |c(i)(t)| and δi = maxt∈[,T] |δ(i)(t)|, i = , . From (.), we have

|x|∞ ≤ D +



∫ T



∣
∣x′

(t)
∣
∣dt

≤ D +
T


∣∣x′

∣∣∞

≤ D +
T


∫ T



∣
∣x′′

 (t)
∣
∣dt. (.)

From x() = x(T), there exists a point t∗ ∈ [, T] such that x′
(t∗) = , then we have

∣
∣x′


∣
∣∞ ≤ x′


(
t∗) +




∫ T



∣
∣x′′

 (t)
∣
∣dt =




∫ T



∣
∣x′′

 (t)
∣
∣dt. (.)
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Therefore, we have

∫ T



∣
∣x′′

 (t)
∣
∣dt ≤

∫ T
 |(Ax)′′(t)|dt + cT(D + T


∫ T

 |x′′
 (t)|dt)

 – c∞

+
T
 (c + cδ + c∞δ)

∫ T
 |x′′

 (t)|dt + (c∞δ
 + c∞δ)

∫ T
 |x′′(t)|dt

 – c∞

=
(∫ T



∣∣(Ax)′′(t)
∣∣dt +

(
T


c + T

(
c + cδ +




c∞δ

)
+ c∞δ

 + c∞δ

)

×
∫ T



∣
∣x′′

 (t)
∣
∣dt + TcD

) /
( – c∞).

Since  – c∞ – ( T

 c + T(c + cδ + 
 c∞δ) + c∞δ

 + c∞δ) > , we have

∫ T



∣
∣x′′

 (t)
∣
∣dt ≤

∫ T
 |(Ax)′′(t)|dt + TcD

 – c∞ – ( T
 c + T(c + cδ + 

 c∞δ) + c∞δ
 + c∞δ)

≤ T

q (

∫ T
 |(Ax)′′(t)|p dt)


p + TcD

 – c∞ – ( T
 c + T(c + cδ + 

 c∞δ) + c∞δ
 + c∞δ)

. (.)

Applying the inequality (a + b)k ≤ ak + bk for a, b > ,  < k < , from (.) and (.) we
obtain

∫ T



∣∣x′′
 (t)

∣∣dt ≤ T

q ( (+c∞)N∗


 )


p (

∫ T
 |x′

(t)|dt)

p + (( + c∞)N∗

 D)

p + TcD

 – c∞ – ( T
 c + T(c + cδ + 

 c∞δ) + c∞δ
 + c∞δ)

≤ T( (+c∞)N∗


 )

p ( 


∫ T

 |x′′
 (t)|dt)


p + (( + c∞)N∗

 D)

p + TcD

 – c∞ – ( T
 c + T(c + cδ + 

 c∞δ) + c∞δ
 + c∞δ)

.

It is easy to see that there exists a positive constant M∗ (independent of λ) such that

∫ T



∣∣x′′
 (t)

∣∣dt ≤ M∗.

Case (ii): If c > , we have

∫ T



∣
∣x′′

 (t)
∣
∣dt =

∫ T



∣
∣A–Ax′′

 (t)
∣
∣dt

≤
∫ T

 |Ax′′
 (t)|dt

c – 

≤
(∫ T



∣
∣(Ax)′′(t)

∣
∣dt +

(
T


c + T

(
c + cδ +




c∞δ

)
+ c∞δ

 + c∞δ

)

×
∫ T



∣∣x′′
 (t)

∣∣dt + TcD
) /

(c – ).
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Since c –  – ( T

 c + T(c + cδ + 
 c∞δ) + c∞δ

 + c∞δ) > , we have

∫ T



∣
∣x′′

 (t)
∣
∣dt ≤ T


q (

∫ T
 |(Ax)′′(t)|p dt)


p + TcD

c –  – ( T
 c + T(c + cδ + 

 c∞δ) + c∞δ
 + c∞δ)

.

Similarly, we can get
∫ T

 |x′′
 (t)|dt ≤ M∗.

It follows from (.) that

|x|∞ ≤ D +
T


∫ T



∣∣x′′
 (t)

∣∣dt ≤ D +
T


M∗ := M.

By (.)

∣
∣x′


∣
∣∞ ≤ 



∫ T



∣
∣x′′

 (t)
∣
∣dt ≤ 


M∗ := M.

On the other hand, from x() = x(T), we know that there is a point t ∈ [, T] such
that x′

(t) = ; then by the second equation of (.) we get

∣∣x′

∣∣∞ ≤ 



∫ T



∣∣x′′
(t)

∣∣dt

≤
∫ T



(∣∣f
(
t, x′

(t)
)∣∣ +

∣
∣g

(
t, x

(
t – τ (t)

))∣∣ +
∣
∣e(t)

∣
∣)dt

≤ TK + T
(
b + |e|∞

)
+ TN := M.

Integrating the first equation of (.) over [, T], we have
∫ T

 |x(t)|q–x(t) dt = , which
implies that there is a point t ∈ [, T] such that x(t) = , so

|x|∞ ≤ 


∫ T



∣∣x′
(t)

∣∣dt ≤ T
∣∣x′


∣∣∞ ≤ TM := M.

Let M = max{M, M, M, M}+ , � = {x = (x, x) : ‖x‖ < M} and � = {x : x ∈ ∂�∩
Ker L}, then ∀x ∈ ∂� ∩ Ker L

QNx =

T

∫ T



(
ϕq(x(t))

–f (t, x′
(t)) – g(t, x(t – τ (t))) + e(t)

)

dt.

If QNx = , then x(t) = , x = M or –M. But if x(t) = M, we know

 =
∫ T



{
g(t, M) – e(t)

}
dt.

From assumption (H), we have x(t) ≤ D ≤ M, which yields a contradiction. Similarly, if
x = –M, we also have QNx �= , i.e., ∀x ∈ ∂� ∩ Ker L, x /∈ Im L, so conditions () and () of
Lemma  are both satisfied. Define the isomorphism J : Im Q → Ker L as follows:

J(x, x) = (x, x).



Xin et al. Boundary Value Problems  (2017) 2017:24 Page 10 of 12

Let H(μ, x) = μx + ( – μ)JQNx, (μ, x) ∈ [, ] × �, then ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L),

H(μ, x) =

(
μx – –μ

T
∫ T

 [f (t, ) + g(t, x) – e(t)] dt
μx + ( – μ)ϕq(x)

)

∀(μ, x) ∈ (, ) × (∂� ∩ Ker L).

From f (t, ) =  and (H), it is obvious that xH(μ, x) > , ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L).
Hence

deg{JQN ,� ∩ Ker L, } = deg
{

H(, x),� ∩ Ker L, 
}

= deg
{

H(, x),� ∩ Ker L, 
}

= deg{I,� ∩ Ker L, } �= .

So condition () of Lemma  is satisfied. By applying Lemma , we conclude that equation
Lx = Nx has a solution x = (x, x) on �̄ ∩ D(L), i.e., (.) has a T-periodic solution x(t).

Finally, observe that y∗
 (t) is not constant. If y∗

 ≡ a (constant), then from (.) we have
g(t, a, a, , ) – e(t) ≡ , which contradicts the assumption that g(t, a, a, , ) – e(t) �≡ . The
proof is complete. �

If c(t) ≡ c and |c| �= , δ(t) ≡ δ, then (.) translates into the following form:

(
ϕp

(
x(t) – cx(t – δ)

)′′)′′ + f
(
t, x′(t)

)
+ g

(
t, x

(
t – τ (t)

))
= e(t). (.)

Similarly, we can get the following result.

Theorem  Assume that conditions (H)-(H) hold. Then (.) has at least non-constant
T-periodic solution.

We illustrate our results with some examples.

Example  Consider the following fourth-order p-Laplacian generalized neutral func-
tional differential:

(
ϕp

(
x(t) –




sin(t)x
(

t –



cos(t)

))′′)′′
–

cos(t)


sin x′(t)

– arctan

(
x(t – sin(t))
 + cos(t)

)
=




ecos t , (.)

where p is a constant.
It is clear that T = π

 , c(t) = 
 sin t, δ(t) = 

 cos t, τ (t) = sin t, e(t) = 
 ecos t , c =

maxt∈[,T] | 
 cos t| = 

 , c = maxt∈[,T] |– 
 sin t| = 

 , δ = maxt∈[,T] |– 
 sin t| = 

 , δ =
maxt∈[,T] |– 

 cos t| = 
 . f (t, u) = – 

 cos(t) sin u, g(t, x) = – arctan( x
+cos(t) ) and g(t, a)–

e(t) = – arctan( a
+cos(t) ) – 

 ecos(t) �≡ . Choose K = 
 , b = , D > π

 and M = π
 ; it is obvi-
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ous that (H)-(H) hold. Next, we consider

 – c∞ –
(

T


c + T

(
c + cδ +




c∞δ

)
+ c∞δ

 + c∞δ

)

=  –



–

(



×
(

π



)

× 


+
π



(



+



× 


+



× 


× 


)

+



× 


+




× 


)

> .

Therefore, by Theorem , (.) has at least one non-constant π
 -periodic solution.

Example  Consider a kind of fourth-order p-Laplacian neutral functional differential
as follows:

(
ϕp

(
x(t) – x(t – δ)

)′′)′′ + sin t cos x′(t) + arctan

(
x(t – cos t)
 + sin(t)

)
=




esin t . (.)

Here p is some positive integer and δ is a constant. It is clear that T = π , c = , τ (t) = cos t,
e(t) = 

 esin t , f (t, u) = sin t cos u, g(t, x) = arctan( x
+sin(t) ) and g(t, a) – e(t) = arctan( a

+sin(t) ) –

 ecos t �≡ . Choose K = , D > π

 and M = π
 ; it is obvious that (H)-(H) hold. So (.)

has at least one non-constant π-periodic solution by application of Theorem .
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