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Abstract
We shall study the existence of solutions for a (k,n – k) conjugate boundary-value
problem at resonance with dimker L = 2 in this paper. The boundary-value problem is
shown as follows:

(–1)n–kϕ(n)(x) = f (x,ϕ(x),ϕ′(x), . . . ,ϕ(n–1)(x)), x ∈ [0, 1],

ϕ(i)(0) = ϕ(j)(1) = 0, 1≤ i ≤ k – 1, 1≤ j ≤ n – k – 1,

ϕ(0) =
∫ 1

0
ϕ(x)dA(x), ϕ(1) =

∫ 1

0
ϕ(x)dB(x).

We can obtain that this boundary-value problem has at least one solution under the
conditions we provided through Mawhin’s continuation theorem, and an example is
also provided for our new results.

Keywords: boundary value problem; resonance; Fredholm operator; Mawhin
continuation theorem

1 Introduction
Conjugate boundary-value problems at non-resonance have aroused considerable atten-
tion in recent years (see [–]), and there is also much research on boundary-value prob-
lems at resonance (see [–]). However, there are very few papers involving (k, n – k)
conjugate boundary-value problems at resonance, especially with dim ker L = . For ex-
ample, Jiang [] investigated the following boundary-value problem at resonance with
dim ker L = :

(–)n–ky(n)(t) = f
(
t, y(t), y′(t), . . . , y(n–)(t)

)
+ ε(t), a.e. t ∈ [, ],

y(i)() = y(j)() = ,  ≤ i ≤ k – ,  ≤ j ≤ n – k – ,

y(n–)() =
m∑

i=

αiy(n–)(ξi), y(n–)() =
l∑

j=

βjy(n–)(ηj),

where  ≤ k ≤ n – ,  < ξ < ξ < · · · < ξm < ,  < η < η < · · · < ηl < .
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Motivated by [–], we shall study the following (k, n – k) conjugate boundary-value
problem in the situation of resonance with dim ker L = :

(–)n–kϕ(n)(x) = f
(
x,ϕ(x),ϕ′(x), . . . ,ϕ(n–)(x)

)
, x ∈ [, ], ()

ϕ(i)() = ϕ(j)() = ,  ≤ i ≤ k – ,  ≤ j ≤ n – k – , ()

ϕ() =
∫ 


ϕ(x) dA(x), ϕ() =

∫ 


ϕ(x) dB(x), ()

where  ≤ k ≤ n – , n ≥ , A(x), B(x) are left continuous at x = , right continuous on [, );∫ 
 u(x) dA(x) and

∫ 
 u(x) dB(x) denote the Riemann-Stieltjes integrals of u with respect to

A and B, respectively.
However, there are great differences between this article and the above results, the

boundary conditions we study are ϕ() =
∫ 

 ϕ(x) dA(x) and ϕ() =
∫ 

 ϕ(x) dB(x). As is well
known, it is an original case to study conjugate boundary-value problems with integral
boundary conditions in the situation of resonance.

The organization of this paper is as follows. In Section , we provide a definition and
a theorem which will be used to prove the main results. In Section , we will give some
lemmas and prove the solvability of problem ()-().

2 Preliminaries
For the convenience of the reader, we recall some definitions and a theorem to be used
later.

Definition . ([]) Suppose that X and Y are real Banach spaces, L : dom L ⊂ X → Y
is a Fredholm operator of index zero if: () Im L is a closed subspace of Y ; () dim ker L =
codim Im L < ∞.

If X, Y are real Banach spaces, L : dom L ⊂ X → Y is a Fredholm operator of index zero,
and P : X → X, Q : Y → Y are continuous projectors such that

Im P = ker L, ker Q = Im L, X = ker L ⊕ ker P, Y = Im L ⊕ Im Q,

then we can conclude that

L|dom L∩ker P : dom L ∩ ker P → Im L

is invertible. We denote the inverse of the mapping by KP (generalized inverse operator
of L). Let � be an open bounded subset of X and dom L ∩ � �= ∅, then we say the mapping
N : X → Y is L-compact on � if KP(I – Q)N : � → X is compact and QN(�) is bounded.

Theorem . ([]; Mawhin continuation theorem) L : dom L ⊂ X → Y is a Fredholm
operator of index zero, and N is L-compact on �. The equation Lϕ = Nϕ has at least one
solution in dom L ∩ � if the following conditions are satisfied:

() Lϕ �= λNϕ for every (ϕ,λ) ∈ [(dom L\ker L) ∩ ∂�] × (, );
() Nϕ /∈ Im L for every ϕ ∈ ker L ∩ ∂�;
() deg(QN |ker L,� ∩ ker L, ) �= , where Q : Y → Y is a projection such that

Im L = ker Q.
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Let X = Cn–[, ] with norm ‖u‖ = max{‖u‖∞,‖u′‖∞, . . . ,‖u(n–)‖∞}, in which ‖u‖∞ =
maxx∈[,] |u(x)|, and Y = L[, ] with norm ‖x‖ =

∫ 
 |x(t)|dt. We define an operator L as

follows:

(Lϕ)(x) = (–)n–kϕ(n)(x)

with

dom L =
{
ϕ ∈ X : ϕ(i)() = ϕ(j)() = ,  ≤ i ≤ k – ,  ≤ j ≤ n – k – ,

ϕ() =
∫ 


ϕ(x) dA(x),ϕ() =

∫ 


ϕ(x) dB(x)

}
.

An operator N : X → Y is defined as

(Nϕ)(x) = f
(
x,ϕ(x),ϕ′(x), . . . ,ϕ(n–)(x)

)
.

So problem ()-() becomes Lϕ = Nϕ.

3 Main results
Assume that the following conditions hold in this paper:

(H)
∫ 


�(x) dA(x) = ,

∫ 


�(x) dB(x) = ,

∫ 


�(x) dB(x) = ,

∫ 


�(x) dA(x) = ,

where

�(x) =
(n – )!

(k – )!(n – k – )!

∫ 

x
tk–( – t)n–k– dt,

�(x) =
(n – )!

(k – )!(n – k – )!

∫ x


tk–( – t)n–k– dt.

(H) e =

∣∣∣∣∣
e e

e e

∣∣∣∣∣ �= ,

where

e =
∫ 



∫ 


k(x, y)�(x) dy dA(x), e =

∫ 



∫ 


k(x, y)�(x) dy dB(x),

e =
∫ 



∫ 


k(x, y)�(x) dy dA(x), e =

∫ 



∫ 


k(x, y)�(x) dy dB(x),

k(x, y) =

⎧⎨
⎩


(k–)!(n–k–)!

∫ x(–y)
 tk–(t + y – x)n–k– dt,  ≤ x ≤ y ≤ ;


(k–)!(n–k–)!

∫ y(–x)
 tn–k–(t + x – y)k– dt,  ≤ y ≤ x ≤ .

(H) f : [, ] × Rn → R satisfies Caratháodory conditions.
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(H) There exist functions r(x), qi(x) ∈ L[, ] with
∑n

i= ‖qi‖ <  such that

∣∣f (x,ϕ,ϕ, . . . ,ϕn)
∣∣ ≤

n∑
i=

qi(x)|ϕi| + r(x),

where x ∈ [, ], ϕi ∈ R.
(H) There exists a constant M >  such that if |ϕ(x)| + |ϕ(n–)(x)| > M for all x ∈ [, ],

then

∫ 



∫ 


k(x, y)f

(
y,ϕ(y),ϕ′(y),ϕ′(y), . . . ,ϕ(n–)(y)

)
dy dA(x) �= ,

or

∫ 



∫ 


k(x, y)f

(
y,ϕ(y),ϕ′(y),ϕ′′(y), . . . ,ϕ(n–)(y)

)
dy dB(x) �= .

(H) There are constants a, b >  such that one of the following two conditions holds:

c

∫ 



∫ 


k(x, y)N

(
c�(y) + c�(y)

)
dy dA(x) < , ()

c

∫ 



∫ 


k(x, y)N

(
c�(y) + c�(y)

)
dy dB(x) <  ()

if |c| > a and |c| > b, or

c

∫ 



∫ 


k(x, y)N

(
c�(y) + c�(y)

)
dy dA(x) > , ()

c

∫ 



∫ 


k(x, y)N

(
c�(y) + c�(y)

)
dy dB(x) >  ()

if |c| > a and |c| > b.
Then we can present the following theorem.

Theorem . Suppose (H)-(H) are satisfied, then there must be at least one solution of
problem ()-() in X.

To prove the theorem, we need the following lemmas.

Lemma . Assume that (H) and (H) hold, then L : dom L ⊂ X → Y is a Fredholm op-
erator with index zero. And a linear continuous projector Q : Y → Y can be defined by

(Qu)(x) = (Qu)�(x) + (Qu)�(x),

where

Qu =

e

(eTu – eTu), Qu =

e

(–eTu + eTu),

Tu =
∫ 



∫ 


k(x, y)u(y) dy dA(x), Tu =

∫ 



∫ 


k(x, y)u(y) dy dB(x).
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Furthermore, define a linear operator KP : Im L → dom L ∩ ker P as follows:

(KPu)(x) =
∫ 


k(x, y)u(y) dy + �(x)Tu + �(x)Tu

such that KP = (L|dom L∩ker P)–.

Proof It follows from (H) that

(–)n–k�
(n)
 (x) = , (–)n–k�

(n)
 (x) = , x ∈ [, ],

�
(i)
 () = �

(j)
 () = , �

(i)
 () = �

(j)
 () = ,  ≤ i ≤ k – ,  ≤ j ≤ n – k – ,

�() = , �() = , �() = , �() = .

It is obvious that

�() =
∫ 


�(x) dA(x), �() =

∫ 


�(x) dB(x),

�() =
∫ 


�(x) dB(x) = , �() =

∫ 


�(x) dA(x) = .

Thus we have

ker L =
{

c�(x) + c�(x), c, c ∈ R
}

.

Moreover, we can obtain that

Im L =
{

u ∈ Y :
∫ 



∫ 


k(x, y)u(y) dy dA(x) =

∫ 



∫ 


k(x, y)u(y) dy dB(x) = 

}
.

On the one hand, suppose u ∈ Im L, then there exists ϕ ∈ dom L such that

u = Lϕ ∈ Y .

Then we have

ϕ(x) =
∫ 


k(x, y)u(y) dy + ϕ()�(x) + ϕ()�(x).

Furthermore, for ϕ ∈ dom L, then

ϕ() =
∫ 


ϕ(x) dA(x)

=
∫ 



[∫ 


k(x, y)u(y) dy + ϕ()�(x) + ϕ()�(x)

]
dA(x)

=
∫ 



∫ 


k(x, y)u(y) dy dA(x) + ϕ()

∫ 


�(x) dA(x) + ϕ()

∫ 


�(x) dA(x).
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Using this together with (H), we can get

ϕ() =
∫ 



∫ 


k(x, y)u(y) dy dA(x) + ϕ(),

it means
∫ 


∫ 

 k(x, y)u(y) dy dA(x) = . And

ϕ() =
∫ 


ϕ(x) dB(x)

=
∫ 



[∫ 


k(x, y)u(y) dy + ϕ()�(x) + ϕ()�(x)

]
dB(x)

=
∫ 



∫ 


k(x, y)u(y) dy dB(x) + ϕ()

∫ 


�(x) dB(x) + ϕ()

∫ 


�(x) dB(x).

So we obtain that

∫ 



∫ 


k(x, y)u(y) dy dB(x) = .

Thus

Im L ⊂
{

u :
∫ 



∫ 


k(x, y)u(y) dy dA(x) =

∫ 



∫ 


k(x, y)u(y) dy dB(x) = 

}
.

On the other hand, if u ∈ Y satisfies

∫ 



∫ 


k(x, y)u(y) dy dA(x) =

∫ 



∫ 


k(x, y)u(y) dy dB(x) = ,

we let

ϕ(x) =
∫ 


k(x, y)u(y) dy + �(x) + �(x),

then we conclude that

(Lϕ)(x) = (–)n–kϕ(n)(x) = u(x),

ϕ(i)() = ϕ(j)() = ,  ≤ i ≤ k – ,  ≤ j ≤ n – k – ,

and

ϕ() =
∫ 


k(, y)u(y) dy + �() + �() = ,

ϕ() =
∫ 


k(, y)u(y) dy + �() + �() = .

Besides,

∫ 


ϕ(x) dA(x) =

∫ 



∫ 


k(x, y)u(y) dy dA(x) +

∫ 


�(x) dA(x) +

∫ 


�(x) dA(x) = ,
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and

∫ 


ϕ(x) dB(x) =

∫ 



∫ 


k(x, y)u(y) dy dB(x) +

∫ 


�(x) dB(x) +

∫ 


�(x) dB(x) = .

Therefore

ϕ() =
∫ 


ϕ(x) dA(x), ϕ() =

∫ 


ϕ(x) dB(x).

That is, ϕ ∈ dom L, hence, u ∈ Im L. In conclusion,

Im L =
{

u ∈ Y :
∫ 



∫ 


k(x, y)u(y) dy dA(x) =

∫ 



∫ 


k(x, y)u(y) dy dB(x) = 

}
.

We define a linear operator P : X → X as

(Pϕ)(x) = �(x)ϕ() + �(x)ϕ(),

then

(
Pϕ

)
(x) =

(
P(Pϕ)

)
(x)

= �(x)
[
(Pϕ)()

]
+ �(x)

[
(Pϕ)()

]

= �(x)
[
�()ϕ() + �()ϕ()

]
+ �(x)

[
�()ϕ() + �()ϕ()

]

= �(x)ϕ() + �(x)ϕ().

It is obvious that Pϕ = Pϕ and Im P = ker L. For any ϕ ∈ X, together with ϕ = (ϕ –Pϕ)+Pϕ,
we have X = ker P + ker L. It is easy to obtain that ker L ∩ ker P = {}, which implies

X = ker P ⊕ ker L.

Next, an operator Q : Y → Y is defined as follows:

(Qu)(x) = (Qu)�(x) + (Qu)�(x),

where

Qu =

e

(eTu – eTu), Qu =

e

(–eTu + eTu),

Tu =
∫ 



∫ 


k(x, y)u(y) dy dA(x), Tu =

∫ 



∫ 


k(x, y)u(y) dy dB(x).

Obviously, e = T(�(x)), e = T(�(x)), e = T(�(x)), e = T(�(x)). Noting that

(
Qu

)
(x) =

(
Q(Qu)

)
(x)�(x) +

(
Q(Qu)

)
(x)�(x)

=
[
Q

(
(Qu)�(x) + (Qu)�(x)

)]
�(x)

+
[
Q

(
(Qu)�(x) + (Qu)�(x)

)]
�(x),
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since

Q
(
(Qu)�(x)

)
=


e
(
eT

(
�(x)

)
– eT

(
�(x)

))
Qu

=

e

(ee – ee)Qu = Qu,

Q
(
(Qu)�(x)

)
=


e
(
eT

(
�(x)

)
– eT

(
�(x)

))
Qu

=

e

(ee – ee)Qu = ,

Q
(
(Qu)�(x)

)
=


e
(
–eT

(
�(x)

)
+ eT

(
�(x)

))
Qu

=

e

(–ee + ee)Qu = ,

Q
(
(Qu)�(x)

)
=


e
(
–eT

(
�(x)

)
+ eT

(
�(x)

))
Qu

=

e

(–ee + ee)Qu = Qu,

so

(
Qu

)
(x) = (Qu)�(x) + (Qu)�(x) = (Qu)(x).

And since u ∈ ker Q, we have eTu – eTu = , –eTu + eTu = , it follows from (H)
that Tu = Tu = , so u ∈ Im L, that is, ker Q ⊂ Im L, and obviously, Im L ⊂ ker Q. So
ker Q = Im L. For any u ∈ Y , because u = (u– Qu) + Qu, we have Y = Im L + Im Q. Moreover,
together with Qu = Qu, we can get Im Q ∩ Im L = {}. Above all, Y = Im L ⊕ Im Q.

To sum up, we can get that Im L is a closed subspace of Y ; dim ker L = codim Im L < +∞;
that is, L is a Fredholm operator of index zero.

We now define an operator KP : Y → X as follows:

(KPu)(x) =
∫ 


k(x, y)u(y) dy + �(x)Tu + �(x)Tu.

For any u ∈ Im L, we have Tu = , Tu = . Consequently,

(KPu)(x) =
∫ 


k(x, y)u(y) dy, (KPu)() = , (KPu)() = .

So

(KPu)(x) ∈ ker P, (KPu)() =
∫ 


(KPu)(x) dA(x),

(KPu)() =
∫ 


(KPu)(x) dB(x).

In addition, it is easy to know that

(KPu)(i)() = ,  ≤ i ≤ k – ; (KPu)(j)() = ,  ≤ j ≤ n – k – ,
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then (KPu)(x) ∈ dom L. Therefore

KPu ∈ dom L ∩ ker P, u ∈ Im L.

Next we will prove that KP is the inverse of L|dom L∩ker P . It is clear that

(LKPu)(x) = u(x), u ∈ Im L.

For each v ∈ dom L ∩ ker P, we have

(KPLv)(x) =
∫ 


k(x, y)(–)n–kv(n)(y) dy + �(x)

∫ 



∫ 


k(x, y)(–)n–kv(n)(y) dy dA(x)

+ �(x)
∫ 



∫ 


k(x, y)(–)n–kv(n)(y) dy dB(x)

= v(x) – v()�(x) – v()�(x) + �(x)
∫ 



(
v(x) – v()�(x)

– v()�(x)
)

dA(x) + �(x)
∫ 



(
v(x) – v()�(x) – v()�(x)

)
dB(x)

= v(x) + �(x)
∫ 


v(x) dA(x) + �(x)

∫ 


v(x) dB(x)

= v(x) + v()�(x) + v()�(x)

= v(x).

It implies that KPLv = v. So KP = (L|dom L∩ker P)–. Thus the lemma holds. �

Lemma . N is L-compact on � if dom L∩� �= , where � is a bounded open subset of X.

Proof We can get easily that QN is bounded. From (H) we know that there exists
M(x) ∈ L such that |(I – Q)Nϕ| ≤ M(x), a.e. x ∈ [, ], ϕ ∈ �. Hence KP(I – Q)N(�)
is bounded. By the Lebesgue dominated convergence theorem and condition (H), we
can obtain that KP(I – Q)N(�) is continuous. In addition, for {∫ 

 k(x, y)(I – Q)Nϕ(y) dy +
�(x)

∫ 


∫ 
 k(x, y)(I – Q)Nϕ(y) dy dA(x) + �(x)

∫ 


∫ 
 k(x, y)(I – Q)Nϕ(y) dy dB(x)} is equi-

continuous, by the Ascoli-Arzela theorem, we get KP(I – Q)N : � → X is compact. Thus,
N is L-compact. The proof is completed. �

Lemma . The set � = {ϕ ∈ dom L\ker L : Lϕ = λNϕ,λ ∈ [, ]} is bounded if (H)-(H)
are satisfied.

Proof Take ϕ ∈ �, then Nϕ ∈ Im L, thus we have

∫ 



∫ 


k(x, y)f

(
y,ϕ(y),ϕ′(y), . . . ,ϕ(n–)(y)

)
dy dA(x) =  ()

and

∫ 



∫ 


k(x, y)f

(
y,ϕ(y),ϕ′(y), . . . ,ϕ(n–)(y)

)
dy dB(x) = . ()
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By this together with (H) we know that there exists x ∈ [, ] such that

∣∣ϕ(x)
∣∣ +

∣∣ϕ(n–)(x)
∣∣ ≤ M.

And ϕ(i)() = ϕ(j)() = ,  ≤ i ≤ k – ,  ≤ j ≤ n – k – , hence there exists at least a point
θi ∈ [, ] such that ϕ(i)(θi) = , i = , , . . . , n – . Thus, we get ϕ(i)(x) =

∫ x
θi

ϕ(i+)(t) dt, i =
, , . . . , n – . So,

∥∥ϕ(i)∥∥∞ ≤ ∥∥ϕ(i+)∥∥
 ≤ ∥∥ϕ(i+)∥∥∞, i = , , . . . , n – . ()

From

∥∥ϕ(n–)(x)
∥∥∞ = max

x∈[,]

∣∣ϕ(n–)(x)
∣∣

and

ϕ(n–)(x) = ϕ(n–)(x) +
∫ x

x

ϕ(n)(t) dt

= ϕ(n–)(x) +
∫ x

x

(–)n–kf
(
t,ϕ(t),ϕ′(t), . . . ,ϕ(n–)(t)

)
dt,

it follows from (H) and () that

∣∣ϕ(n–)(x)
∣∣ ≤ ∣∣ϕ(n–)(x)

∣∣ +
∣∣∣∣
∫ x

x

∣∣ϕ(n)(t)
∣∣dt

∣∣∣∣

≤ M +
n∑

i=

‖qi‖
∥∥ϕ(i–)∥∥∞ + ‖r‖

≤ M + c′‖ϕ‖∞ + c′′∥∥ϕ(n–)∥∥∞, ()

where c′ = ‖q‖, c′′ =
∑n

i= ‖qi‖, M = M + ‖r‖.
In addition, for

ϕ(x) = ϕ(x) +
∫ x

x

ϕ′(t) dt,

from () we have

‖ϕ‖∞ ≤ M +
∥∥ϕ(n–)∥∥∞. ()

Besides, ‖ϕ‖ = max{‖ϕ‖∞,‖ϕ(n–)‖∞}. If ‖ϕ‖∞ ≥ ‖ϕ(n–)‖∞, by () and () we have

∥∥ϕ(n–)∥∥∞ ≤ M + c′‖ϕ‖∞
 – c′′

and

‖ϕ‖∞ ≤ M +
M + c′‖ϕ‖∞

 – c′′ ,

so ‖ϕ‖∞ ≤ 
–c′–c′′ [( – c′′)M + M].
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If ‖ϕ(n–)‖∞ > ‖ϕ‖∞, then by () and () we have

∥∥ϕ(n–)∥∥∞ ≤ M + c′(M +
∥∥ϕ(n–)∥∥∞

)
+ c′′∥∥ϕ(n–)∥∥∞

≤ M + c′M +
(
c′ + c′′)∥∥ϕ(n–)∥∥∞,

so ‖ϕ(n–)‖∞ ≤ 
–c′–c′′ (M + c′M). Above all, ‖ϕ‖ ≤ MX , where

MX = max

{


 – c′ – c′′
[(

 – c′′)M + M
]
,


 – c′ – c′′

(
M + c′M

)}
.

Above all, we know � is bounded. The proof of the lemma is completed. �

Lemma . The set � = {ϕ : ϕ ∈ ker L, Nϕ ∈ Im L} is bounded if (H)-(H), (H) hold.

Proof Let ϕ ∈ �, then ϕ(x) ≡ c�(x) + c�(x), and Nϕ ∈ Im L, so we can get

c

∫ 



∫ 


k(x, y)f

(
y, c�(y) + c�(y), . . . , c�

(n–)
 (y) + c�

(n–)
 (y)

)
dy dA(x) = 

and

c

∫ 



∫ 


k(x, y)f

(
y, c�(y) + c�(y), . . . , c�

(n–)
 (y) + c�

(n–)
 (y)

)
dy dB(x) = .

According to (H), we have |c| ≤ a, |c| ≤ b, that is to say, � is bounded. We complete
the proof. �

Lemma . The set � = {ϕ ∈ ker L : λJϕ + α( – λ)QNϕ = ,λ ∈ [, ]} is bounded if con-
ditions (H)-(H), (H) are satisfied, where J : ker L → Im L is a linear isomorphism given
by J(c�(x) + c�(x)) = 

e (ec – ec)�(x) + 
e (–ec + ec)�(x), and

α =

⎧⎨
⎩

–, if ()-() hold;

, if ()-() hold.

Proof Suppose that ϕ ∈ �, we have ϕ(x) = c�(x) + c�(x), and

λc = –α( – λ)TNϕ, λc = –α( – λ)TNϕ.

If λ = , by condition (H) we have |c| ≤ a, |c| ≤ b. If λ = , then c = c = . If λ ∈ (, ),
we suppose |c| ≥ a or |c| ≥ b, then

λc
 = –α( – λ)cTNϕ < 

or

λc
 = –α( – λ)cTNϕ < ,

which contradicts with λc
 > , λc

 > . So the lemma holds. �
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Then Theorem . can be proved now.

Proof of Theorem . Suppose that � ⊃ ⋃
i= �i ∪{} is a bounded open subset of X. From

Lemma . we know that N is L-compact on �. In view of Lemmas . and ., we can
get

() Lϕ �= λNϕ, for every (ϕ,λ) ∈ [(dom L\ker L) ∩ ∂�] × (, );
() Nϕ /∈ Im L, for every ϕ ∈ ker L ∩ ∂�.

Set H(ϕ,λ) = λJϕ + α( – λ)QNϕ. It follows from Lemma . that H(ϕ,λ) �=  for any ϕ ∈
∂� ∩ ker L. So, by the homotopy of degree, we have

deg(QN |ker L,� ∩ ker L, ) = deg(αJ ,� ∩ ker L, ) �= .

All the conditions of Theorem . are satisfied. So there must be at least one solution of
problem ()-() in X. The proof of Theorem . is completed. �

4 Example
We now present an example to illustrate our main theorem. Consider the following
boundary-value problem:

ϕ()(x) =
π


∣∣ϕ(x)

∣∣ +



sinϕ′(x) +




sinϕ′′(x) +



ϕ′′′(x) arctan

(


ϕ′′′(x)

)
+ x,

x ∈ [, ],

ϕ′() = ϕ′() = , ϕ() = –



ϕ

(



)
+




ϕ

(



)
,

ϕ() =



ϕ

(



)
–




ϕ

(



)
.

Obviously, n = , k = , and

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

, x ≤ 
 ;


 , 

 < x ≤ 
 ;

, 
 < x ≤ ;

B(x) =

⎧⎪⎪⎨
⎪⎪⎩

, x ≤ 
 ;

– 
 , 

 < x ≤ 
 ;

, 
 < x ≤ .

Let �(x) = x – x + , �(x) = –x + x, then

∫ 


�(x) dA(x) = –




�

(



)
+




�

(



)
= ,

∫ 


�(x) dB(x) =




�

(



)
–




�

(



)
= ,

and

∫ 


�(x) dB(x) =




�

(



)
–




�

(



)
= ,

∫ 


�(x) dA(x) = –




�

(



)
+




�

(



)
= ,
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thus (H) is satisfied. By calculation, we can obtain that e =
∣∣ e e

e e

∣∣ �= , so (H) holds. Let

f
(
x,ϕ,ϕ′,ϕ′′,ϕ′′′) =

π


|ϕ| +




sinϕ′ +



sinϕ′′ +



ϕ′′′ arctan

(


ϕ′′′

)
+ x,

then

∣∣f (x,ϕ,ϕ′,ϕ′′,ϕ′′′)∣∣ ≤ π


|ϕ| +




∣∣ϕ′∣∣ +



∣∣ϕ′′∣∣ +
π


∣∣ϕ′′′∣∣ + ,

where

q =
π


, q =




, q =



, q =
π


, r(x) = .

Taking M = , we have |ϕ′′′(x)| + |ϕ(x)| > ,

⎧⎨
⎩

f (x,ϕ,ϕ′,ϕ′′,ϕ′′′) ≥ π
 ·  – 

 – 
 > , if |ϕ(x)| ≥ ;

f (x,ϕ,ϕ′,ϕ′′,ϕ′′′) ≥ – 
 – 

 + 
 ·  · π

 > , if |ϕ′′′(x)| ≥ ,

for k(x, y) > ,

∫ 



∫ 


k(x, y)f

(
y,ϕ(y),ϕ′(y),ϕ′′(y),ϕ′′′(y)

)
dy dA(x) �= 

and

∫ 



∫ 


k(x, y)f

(
y,ϕ(y),ϕ′(y),ϕ′′(y),ϕ′′′(y)

)
dy dB(x) �= .

Hence (H) holds. Finally, taking a = 
π

, b = 
π

, when |c| > a, |c| > b,

⎧⎨
⎩

f (x,ϕ,ϕ′,ϕ′′,ϕ′′′) > π
 · ( 

π
�(x) + 

π
�(x)) – 

 – 
 = , if c · c > ;

f (x,ϕ,ϕ′,ϕ′′,ϕ′′′) > – 
 – 

 + 
 · ( 

π
) · arctan( 

 ·  · 
π

) > , if c · c < ,

then we obtain

c

∫ 



∫ 


k(x, y)f

(
y, c�(y) + c�(y), . . . , c�

′′′
 (y) + c�

′′′
 (y)

)
dy dA(x) > 

and

c

∫ 



∫ 


k(x, y)f

(
y, c�(y) + c�(y), . . . , c�

′′′
 (y) + c�

′′′
 (y)

)
dy dB(x) > ,

then condition (H) is satisfied. It follows from Theorem . that there must be at least
one solution in C[, ].
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