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Abstract
In this paper we study the initial value problem for the nonlinear wave equation with
damping and source terms

utt – ρ(x)–1Δu + ut +m2u = f (u)

with some ρ(x) and f (u) on the whole space Rn (n≥ 3).
For the low initial energy case, which is the non-positive initial energy, based on a

concavity argument we prove the blow-up result. As for the high initial energy case,
we give sufficient conditions of the initial data such that the corresponding solution
blows up in finite time. In other words, our results imply a complete blow-up theorem
in the sense of the initial energy, –∞ < E(0) < +∞.
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1 Introduction
In this paper our aim is to study some nonlinear wave equation with damping and source
terms in the following form:

⎧
⎪⎨

⎪⎩

utt – ρ(x)–Δu + ut + mu = f (u), (t, x) ∈ [, T) ×R
n,

u(, x) = u(x), x ∈R
n,

ut(, x) = u(x), x ∈R
n,

()

where Δ is Laplacian operator on R
n (n ≥ ), u(x) and u(x) are real valued functions, m

is a real constant (the case m =  is called the mass free case; m �=  the mass case), ρ(x)
satisfies the following condition:

(H) ρ(x) >  for every x ∈R
n, ρ ∈ C,γ (Rn) with γ ∈ (, ), and ρ ∈ Ln/(Rn) ∩ L∞(Rn).

The wave equations () appear in applications in various areas of mathematical physics
(see, for example, [–]), as well as in geophysics and ocean acoustics, where, for example,
the coefficient ρ(x) represents the speed of sound at the point x ∈ R

N (see []), in other
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words, ρ(x) �= constant implies that the medium where the sound travels is inhomoge-
neous.

For the nonlinear power, throughout the paper we make the following assumption: for
the nonlinear power f (s) there exists some constant ε >  such that

f (s)s ≥ ( + ε)F(s) ()

for any s ∈R, where

F(ζ ) =
∫ ζ


f (κ) dκ . ()

The nonlinear power satisfying () was firstly introduced for abstract wave equations with
ρ(x) =  by Levine []. And then Cazenave [] also considered it for Klein-Gordon equa-
tions.

Before going any further, we briefly introduce some results for the wave equation () with
ρ(x) = constant �=  (without loss of generality let ρ(x) = ), obviously it does not satisfy
the assumption (H). The general nonlinear power f (u) with () it was firstly considered
for some abstract wave equations in [], where Levine proved the blow-up result when
the initial energy was negative. But mostly the results as regards the Cauchy problem of
the wave equation were established for the typical form of nonlinear power as

f (u) = |u|p–u, ()

where  < p < n+
n– as n ≥  and  < p < ∞ as n = , . Here we note that the above power

satisfies the condition (). For the power (), the wave equations with damping term were
studied by many authors. It is well known that the local solution blows up in finite time
when the initial energy is negative. For global existence and non-existence of solutions for
the Cauchy problem of equation () with ρ(x) = , () and a (possibly nonlinear) damping
term, we here refer to [–]. In particular, recently the wave equation with damping term
was considered in [], where Levine and Todorova showed that for arbitrarily positive
initial energy there are choices of initial data such that the local solution blows up in finite
time. Subsequently, Todorova and Vitillaro [] established more precise result as regards
the existence of initial values such that the corresponding solution blows up in finite time
for arbitrarily high initial energy. More recently, Gazzola and Squassina [] established
sufficient conditions of initial data with arbitrarily positive initial energy such that the
corresponding solution blows up in finite time for the wave equation with linear damping
and () in the mass free case on a bounded Lipschitz subset of Rn. The first author [] also
studied the blow-up result for the Klein-Gordon equation with arbitrarily positive initial
energy. Also the authors [] investigated the non-existence of global solutions for some
coupled Klein-Gordon equations with arbitrary initial energy. Also, the wave equations
have been investigated with some special boundary conditions [].

For the case ρ(x) =  and m = , we also note that the equations were also considered
with f (u) = |u|p by some authors. Here we just refer to [] and the references therein.

Now we return to equation () with some general ρ(x). For the linear case, f (u) = ,
Eidus [] first studied the existence of solutions for the linear wave equation (). Then
Karachalios and Stavrakakis [] studied the existence of the solution of the damped wave
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equation () with some nonlinear power. And they [] also established the results as re-
gards the global existence and blow-up of solutions for equation () with (H) and () in
the free mass case by the potential well method, which was firstly developed by Sattinger
[]. Their blow-up result was under the condition that the initial energy was negative.
Recently, for equation () with (H) and () Zhou [] investigated the global existence and
blow-up result including the mass free case and mass case. Zhou established the blow-up
result when the initial energy was less than a positive constant, which is independent from
the initial data. But in all the work mentioned above, equation () with high initial energy
was not considered under the assumption (H).

The main purpose of this paper is to establish the blow-up result for equation () with
(H) and () when the initial energy is high. Based on a concavity argument, which was
used to establish blow-up of solutions to nonlinear damped wave equations (see e.g. [,
] and the references therein), we firstly establish the blow-up result when the initial en-
ergy is non-positive. Because of the nonlinearity, ρ(x) is not constant. We cannot directly
apply the proof method of [, ] for equations () in this paper. Note that, when the ini-
tial energy is zero, the blow-up result was also established in [], where the assumption is
needed that ρ(x) ∈ L(Rn) with (H) and

∫
ρ(x)u(x)u(x) dx ≥ . Thus in some sense (see

Remark ) we improve the blow-up result in []. As for the case with the arbitrarily posi-
tive initial energy, we establish the blow-up result for () under some conditions of (u, u)
on the whole space R

n. To the best of our knowledge this is the first blow-up result with
high initial energy for equation () with (H).

Moreover, we note that if ρ(x) satisfies (H) then the mass m does not affect the blow-up
result, but if ρ = constant �=  it will affect the blow-up result, that is, if m =  and ρ(x) = 
then the blow-up result is obtained only on a bounded subset of Rn. Indeed, by (H) we see
that ρ(x) will be a rapidly enough decreasing at infinite time, thus it makes it possible to
consider equation () on the whole space R

n in the mass free case.
The paper is composed of three sections. In the next section we introduce some nota-

tions and well-known results, and we also state our main results. In the last section we
prove our results.

2 Principal results
In order to state our main results, we briefly mention some facts, notations, and well-
known results. We denote by ‖ · ‖q the Lq(Rn) norm for  ≤ q ≤ ∞, and we define the
functional spaces: H(Rn) = {u ∈ L(Rn);‖u‖H(Rn) = ‖(–Δ)/u‖ < ∞}, and H

(Rn) = {u ∈
H(Rn); supp(u) is compact in R

n}. For simplicity we will denote
∫

Rn by
∫

. The notation
t → T– means t < T and t → T .

As in [], we introduce the function space X,(Rn), which is defined as the closure of
C∞

 functions with respect to the energy norm ‖u‖X, :=
∫ |∇u(x)| dx, that is,

X,(
R

n) =
{

u ∈ L
n

n–
(
R

n) : ∇u ∈ (
L(

R
n))n}. ()

It is well known that X, is embedded continuously in L n
n– , which means that there exists

a constant k >  such that

‖u‖ n
n–

≤ k‖u‖X, . ()

Following (), we have the following inequality (see []).
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Lemma  Suppose ρ ∈ L n
 (Rn) and n ≥ . Then there exists a constant α >  such that

∫
∣
∣∇u(x)

∣
∣ dx ≥ α

∫

ρ(x)
∣
∣u(x)

∣
∣ dx ()

for every u ∈ C∞
 (Rn). Moreover, α = k–‖ρ‖–

n


where k is defined in ().

In addition, the weighted space L
ρ(Rn) is defined to be the closure of C∞

 (Rn) functions
with respect to the inner product

(u, v)L
ρ

:=
∫

ρ(x)u(x)v(x) dx ()

and norm

‖u‖
L
ρ

= (u, u)L
ρ
. ()

For the local existence of solutions of equation (), we state the following.

Theorem  Under the assumption (H), for any initial data (u, u) ∈ X,(Rn) × L
ρ(Rn), if

f satisfies the conditions f () =  and

∣
∣f (λ) – f (λ)

∣
∣ ≤ c

(|λ|p– + |λ|p–)|λ – λ| ()

for all λ,λ ∈R, some constant c > , and

 < p <
n

n – 
when n ≥ , ()

then there exists a unique local solution u(t) of the equation () on a maximal time interval
[, Tmax) satisfying

u ∈ C
(
[, Tmax); X,(

R
n)) and ut ∈ C

(
[, Tmax); L

ρ

)
, ()

u(, x) = u(x) and ut(, x) = u(x). ()

In addition, u(t) satisfies

E() – E(t) =
∫ t



∥
∥uτ (τ , ·)∥∥

L
ρ

dτ ≥  ()

for every t ∈ [, Tmax), where

E(t) =



∫
(
ρ(x)

∣
∣ut(t, x)

∣
∣ +

∣
∣∇u(t, x)

∣
∣

+ mρ(x)
∣
∣u(t, x)

∣
∣ – ρ(x)F

(
u(t, x)

))
dx, ()

where F(u) is defined in ().
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This result can be proved by the Banach fixed point theorem. The proof follows from
the weighted-norm Lebesgue space of the corresponding theorem for the wave equations
of Kirchhoff type [].

If Tmax < ∞, then the local solution is said to blow up in finite time Tmax. Otherwise,
Tmax = ∞, the corresponding local solution is global.

Next we state our first blow-up result for equation () with (H) and () in the case of
non-positive initial energy.

Theorem  Under the assumptions (H) and (), if the nonzero initial data (u, u) ∈
X,(Rn) × L

ρ(Rn) satisfies

E() < , ()

or
∫

ρ(x)u(x)u(x) dx ≥  if E() = , ()

then the corresponding local solution of equation () blows up in finite time, Tmax < ∞.

Remark  In the case E() < , Zhou [] also established the blow-up result for equation
() with (H) and () under the further assumptions

∫
ρ(x)u(x)u(x) dx ≥  and ρ ∈ L(Rn).

But in the above theorem, we remove ρ ∈ L(Rn). Thus, in this sense we improve the re-
sult [].

To state our main blow-up result with arbitrarily positive initial energy, we introduce a
function as follows:

I(u) =
∫

(∣
∣∇u(x)

∣
∣ + mρ(x)

∣
∣u(x)

∣
∣ – ρ(x)f

(
u(x)

)
u(x)

)
dx. ()

Now we introduce our main blow-up result for equation () with arbitrarily positive
initial energy, as far as we know, which is the first blow-up result for equation () with (H)
on the whole space R

n.

Theorem  Under the assumptions (H) and (), if the initial data (u, u) ∈ X,(Rn) ×
L

ρ(Rn) satisfies

E() > , ()

I(u) < , ()
∫

ρ(x)u(x)u(x) dx ≥ , ()

‖u‖
L
ρ

>
( + ε)

mε
E() when m �= , ()

‖u‖
L
ρ

>
( + ε)

min{,α}ε E() when m = , ()

where ε and α are stated in () and Lemma , respectively, then the corresponding local
solution of equation () blows up in finite time Tmax < ∞.
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Remark  We note that, for the case E() < , by () and (), I(u(t, ·)) <  for every
t ∈ [, Tmax).

Reading Theorems ,  and Remark , naturally one considers the local solution when
the initial data satisfies E() >  and I(u) > . Indeed, for this case, being similar to the
argument with m =  and f (u) = |u|p–u in [], by a potential well method we can also
obtain the global existence of solutions of equation () with (H) and () when the positive
initial energy is small enough. Here we omit it. Furthermore, it is still open whether there
exists a global solution for wave equations when the initial energy is arbitrarily high.

3 Proof of the main theorems
In this section, we prove Theorems  and  based on a concavity argument. Firstly, we
introduce a lemma concerned with the concavity argument [].

Lemma  Let F(t) ∈ C([, T)) be a function satisfying that

FF ′′ – (α + )
(
F ′) ≥  ()

for some α > , if F() >  and F ′() >  then F(t) → +∞ as t → Tmax (≤ F()/αF ′()).

We next show a lemma, which plays a role in our proofs of Theorems  and .

Lemma  Assume that (u, u) ∈ X,(Rn) × L
ρ(Rn) satisfies

∫

ρ(x)u(x)u(x) dx ≥ . ()

If the corresponding local solution (u(t, x), ut(t, x)) ∈ C([, Tmax), X,(Rn) × L
ρ(Rn)) is such

that

I
(
u(t, ·)) <  ()

for every t ∈ [, Tmax), then ‖u(t, ·)‖
L
ρ

is strictly increasing on [, Tmax).

Proof Since u(t, x) is the local solution of equation (), we easily have




d

dt

∫

ρ(x)
∣
∣u(t, x)

∣
∣ dx =

∫

ρ(x)
∣
∣ut(t, x)

∣
∣ dx +

∫

ρ(x)u(t, x)ut(t, x)

–
∫

(
mρ(x)

∣
∣u(t, x)

∣
∣ +

∣
∣∇u(t, x)

∣
∣

– ρ(x)u(t, x)f
(
u(t, x)

))
dx ()

for every t ∈ [, Tmax).
As a result, it follows that

d

dt

∫

ρ(x)
∣
∣u(t, x)

∣
∣ dx +

d
dt

∫

ρ(x)
∣
∣u(t, x)

∣
∣ dx = 

(∥
∥ut(t, ·)∥∥

L
ρ

– I
(
u(t, ·))).
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By () and the above equation we have

d

dt

∫

ρ(x)
∣
∣u(t, x)

∣
∣ dx +

d
dt

∫

ρ(x)
∣
∣u(t, x)

∣
∣ dx >  ()

for every t ∈ [, Tmax).
Here we let H(t) = d

dt
∫

ρ(x)|u(t, x)| dx, then as in [] we see that the function H(t) is
a Lipschitzian function over [, Tmax). Thus, by () it follows that ‖u(t, ·)‖

L
ρ

is strictly
increasing on [, Tmax). �

Proof of Theorem  We first define the following auxiliary function:

G(t) =
∫

ρ(x)
∣
∣u(t, x)

∣
∣ dx +

∫ t



∥
∥u(τ , ·)∥∥

L
ρ

dτ

+ (T – t)‖u‖
L
ρ

+ ζ (T + t), ()

where the constants, T > , T > , ζ > , will be determined later.
We then have

G′(t) =
d
dt

G(t)

= 
∫

ρ(x)u(t, x)ut(t, ·) dx +
∥
∥u(t, ·)∥∥

L
ρ

– ‖u‖
L
ρ

+ ζ (T + t)

= 
∫

ρ(x)u(t, x)ut(t, ·) dx + 
∫ t



(
u(τ , ·), uτ (τ , ·))L

ρ
dτ

+ ζ (T + t) ()

and




G′′(t) =
∫

ρ(x)
∣
∣ut(t, x)

∣
∣ dx +

∫

ρ(t, x)u(t, x)utt(t, x) dx

+
∫

ρ(x)u(t, x)ut(t, x) dx + ζ

=
∫

ρ(x)
∣
∣ut(t, x)

∣
∣ dx +

∫

ρ(x)u(t, x)f
(
u(t, x)

)
dx

–
∫

(∣
∣∇u(t, x)

∣
∣ + mρ(x)

∣
∣u(t, x)

∣
∣)dx + ζ . ()

Case I: E() < . By (), (), and (), we see that

∫

ρ(x)F
(
u(t, x)

)
dx =




∫
(
mρ(x)

∣
∣u(t, x)

∣
∣ + ρ(x)

∣
∣ut(t, x)

∣
∣ +

∣
∣∇u(t, x)

∣
∣)dx

– E() +
∫ t



∥
∥uτ (τ , x)

∥
∥

L
ρ

dτ

≤ 
 + ε

∫

ρ(x)u(t, x)f
(
u(t, x)

)
dx ()

for all t ∈ [, Tmax).
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Thus, from () it follows that

G′′(t) ≥ ( + ε)
∫

ρ(x)
∣
∣ut(t, x)

∣
∣ dx + ( + ε)

∫ t



∥
∥uτ (τ , ·)∥∥

L
ρ

dτ

+ ε

∫
(∣
∣∇u(t, x)

∣
∣ + mρ(x)

∣
∣u(t, x)

∣
∣
)

dx – ( + ε)E() + ζ . ()

We now let the constant ζ satisfy

 < ζ ≤ –E(). ()

Then it follows from ()

–( + ε)E() + ζ ≥ ( + ε)ζ . ()

Obviously, G′′(t) >  on [, Tmax). Moreover, we can take T >  sufficiently large such
that

G′() = 
∫

ρ(x)u(x)u(x) + BT >  ()

and

ε



(∫

ρ(x)u(x)u(x) dx + ζT

)

>
∫

ρ(x)
∣
∣u(x)

∣
∣ dx. ()

Thus, by () we see that G(t) > , G′(t) > , and G′′(t) >  for every t ∈ [, Tmax). That
is, G(t) and G′(t) are strictly increasing on [, Tmax). Then we let

A =
∫

ρ(x)
∣
∣u(t, x)

∣
∣ dx +

∫ t



∥
∥u(τ , ·)∥∥

L
ρ

dτ + ζ (T + t), ()

B =



G′(t), ()

C =
∫

ρ(x)
∣
∣ut(t, x)

∣
∣ dx +

∫ t



∥
∥uτ (τ , ·)∥∥

L
ρ

dτ + ζ . ()

For every t ∈ [, T] we obviously have

G(t) ≥ A, ()

and by () and ()

G′′(t) ≥ ( + ε)C. ()

We now let T be sufficiently large and satisfy

T ≥ G()
εG′()

. ()

Noting the inequalities (), (), and (), we see that T, defined by (), is reasonable.
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And suppose the solution u(t, x) exists on [, T], then it follows that

G′′G(t) –
 + ε


(
G′(t)

) ≥ ( + ε)
(
AC – B) ()

for every t ∈ [, T]
By a simple computation we see that

As – Bs + C =
∫

ρ(x)
(
su(t, x) + ut(t, x)

) dx

+
∫ t



∥
∥su(τ , ·) + uτ (τ , ·)∥∥

L
ρ

dτ + ζ
(
s(T + t) + 

)

≥  ()

for every s ∈R and t ∈ [, T], which means that (B) – AC ≤ .
Thus we see that

G′′G(t) –
 + ε


(
G′(t)

) ≥ . ()

Since +ε
 > , we put α = ε

 . By Lemma  we see that

lim
t→T–

max

∥
∥u(t, ·)∥∥

L
ρ

= ∞, ()

which implies that the corresponding solution u(t, x) of equation () blows up in finite time
Tmax < ∞.

Case II: E() =  and
∫

ρ(x)u(x)u(x) dx ≥ . By () and () we have

∫
(∣
∣∇u(t, x)

∣
∣ + mρ(x)

∣
∣u(t, x)

∣
∣)dx – 

∫

ρ(x)F
(
u(t, x)

)
dx ≤  ()

for every t ∈ [, Tmax).
Noting the fact that

∫
ρ(x)F(u(t, x)) dx �= , we obtain by ()


∫

ρ(x)F
(
u(t, x)

)
dx <

∫

ρ(x)f
(
u(t, x)

)
u(t, x) dx. ()

We then get

I
(
u(t, x)

)
<  ()

for every t ∈ [, Tmax).
Thus by () and Lemma  we see that ‖u(t, ·)‖

L
ρ

is strictly increasing on [, Tmax).
In this case we still use the auxiliary function G(t) as ().
Thus, according to the proof of Case I, by () we see that G(t) > , G′(t) > , G′′(t) > 

on (, Tmax), that is to say, G(t) and G′(t) are strictly increasing over [, Tmax).



Wang and Wang Boundary Value Problems  (2017) 2017:39 Page 10 of 14

And as in () we also have

G′′(t) ≥ ( + ε)
∫

ρ(x)
∣
∣ut(t, x)

∣
∣ dx + ( + ε)

∫ t



∥
∥uτ (τ , ·)∥∥

L
ρ

dτ

+ ε

∫
(∣
∣∇u(t, x)

∣
∣ + mρ(x)

∣
∣u(t, x)

∣
∣)dx + ζ

≥ ( + ε)
∫

ρ(x)
∣
∣ut(t, x)

∣
∣ dx + ( + ε)

∫ t



∥
∥uτ (τ , ·)∥∥

L
ρ

dτ

+ ε
(
m + α

)
∫

ρ(x)
∣
∣u(x)

∣
∣ dx + ζ , ()

where the last inequality comes from Lemma  and Lemma .
Now we let the constant ζ satisfy

 < ζ ≤ ε

 + ε

(
α + m)‖u‖

L
ρ

()

for the mass free case or the mass case, and the other positive constants, T and T, be
large such that

T ≥ G()
εG′()

, ()

ε



(∫

ρ(x)u(x)u(x) dx + ζT

)

>
∫

ρ(x)
∣
∣u(x)

∣
∣ dx. ()

Then by the same argument as Case I, we can claim that the corresponding local solution
of equation () blows up in finite time.

Thus the proof of Theorem  is completed. �

In the following part we will address Theorem . The next lemma is the crux to prove
Theorem .

Lemma  Under the assumptions on ρ(x), f (u) and (u, u) in Theorem , the correspond-
ing local solution (u(t, x), ut(t, x)) ∈ C([, Tmax), X,(Rn) × L

ρ(Rn)) satisfies

I
(
u(t, ·)) < , ()

∥
∥u(t, ·)∥∥

L
ρ

>
( + ε)

mε
E() when m �= , ()

∥
∥u(t, ·)∥∥

L
ρ

>
( + ε)

min{,α}ε E() when m =  ()

for every t ∈ [, Tmax).

Proof Here the proof uses a contradiction argument. We assume that () is not true over
[, Tmax), that is, there exists a time T >  such that

T = min
{

t ∈ (, Tmax); I
(
u(t, ·)) = 

}
. ()
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Case I: m �= . Since I(u(t, ·)) <  on [, T), by Lemma  we see that ‖u(t, ·)‖
L
ρ

is strictly
increasing over [, T), which implies that

∥
∥u(t, ·)∥∥

L
ρ

> ‖u‖
L
ρ

>
( + ε)

mε
E() ()

for m �=  and every t ∈ (, T).
And by the continuity of ‖u(t, ·)‖

L
ρ

at t, we see that

∥
∥u(T , ·)∥∥

L
ρ

>
( + ε)

mε
E(). ()

On the other hand, by () and () we see that

m∥∥u(T , ·)∥∥
L
ρ

+
∥
∥∇u(T , ·)∥∥ – 

∫

ρ(x)F
(
u(T , x)

)
dx ≤ E(T) ≤ E(). ()

Moreover, noting the assumption I(u(T , ·)) =  and (), we then have

∥
∥u(T , ·)∥∥

L
ρ

+
∥
∥∇u(T , ·)∥∥ ≥ ( + ε)

∫

ρ(x)F
(
u(T , x)

)
dx. ()

Combining () and () we then obtain

m∥∥u(T , ·)∥∥
L
ρ

+
∥
∥∇u(T , ·)∥∥ ≤ ( + ε)

ε
E(). ()

Obviously there is a contradiction between () and (). Thus we have proved that

I
(
u(t, ·)) <  ()

for every t ∈ [, Tmax).
By Lemma  we see that if I(u(t, ·)) <  for every t ∈ [, Tmax), then ‖u(t, ·)‖

L
ρ

is strictly
increasing on t. Thus, () implies that

∥
∥u(t, ·)∥∥

L
ρ

>
( + ε)

ε
E() ()

for every t ∈ [, Tmax).
Thus the proof for Case I, m �= , is complete.
Case II: m = . As in the argument for (), we can also obtain

∥
∥u(T , ·)∥∥

L
ρ

>
( + ε)

min{,α}ε E(). ()

Since m = , the inequality () is rewritten as

∥
∥∇u(T , ·)∥∥ ≤ ( + ε)

ε
E(). ()

By Lemma , we see that

α
∥
∥u(t, x)

∥
∥

L
ρ

≤ ( + ε)
ε

E(). ()
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Thus by () and () we see that the assumption I(u(T , ·)) =  is wrong. That is to say,
I(u(t, ·)) <  for every t ∈ [, Tmax).

Similarly, we also get

∥
∥u(t, ·)∥∥

L
ρ

>
( + ε)

min{,α}ε E() ()

for every t ∈ [, Tmax).
Thus the proof of Lemma  has been completed. �

Proof of Theorem  Here we still use the auxiliary function G, defined in (). We have

G′′(t) = 
∫

ρ(x)
∣
∣ut(t, x)

∣
∣dx + 

∫

ρ(x)f
(
u(t, x)

)
u(tx, dx)

– 
∫

(∣
∣∇u(t, x)

∣
∣ + mρ(x)

∣
∣u(t, x)

∣
∣)dx + ζ

= 
∫

ρ(x)
∣
∣ut(t, x)

∣
∣dx – I

(
u(t, ·)) + ζ . ()

By Lemma , we see that

G′′(t) >  ()

for every t ∈ [, Tmax).
And from () we see that G′(t) >  for every t ∈ (, Tmax). Thus, it turns out that G(t)

and G′(t) is strictly increasing on [, Tmax).
Obviously the inequality () is also valid for every t ∈ [, Tmax). Then by Lemma ,

Lemma , (), (), and () we have

G′′(t) ≥ ( + ε)
∫

ρ(x)
∣
∣ut(t, x)

∣
∣ dx + ( + ε)

∫ t



∥
∥uτ (τ , ·)∥∥

L
ρ

dτ

+ ε

∫
(∣
∣∇u(t, x)

∣
∣ + mρ(x)

∣
∣u(t, x)

∣
∣)dx – ( + ε)E() + ζ

≥ ( + ε)
∫

ρ(x)
∣
∣ut(t, x)

∣
∣ dx + ( + ε)

∫ t



∥
∥uτ (τ , ·)∥∥

L
ρ

dτ

+ ε

∫
(
m + α

)
ρ(x)

∣
∣u(x)

∣
∣ dx – ( + ε)E() + ζ ()

for every t ∈ [, Tmax).
By () and () we see that

ε(m + α)
 + ε

∫

ρ(x)
∣
∣u(x)

∣
∣ dx – E() > 

for every m ∈ R.
We now let ζ satisfy

 < ζ ≤ ε(m + α)
 + ε

∫

ρ(x)
∣
∣u(x)

∣
∣ dx – E() ()
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for every m ∈ R, the other positive constants, T, and T, be large such that

T ≥ G()
εG′()

, ()

ε



(∫

ρ(x)u(x)u(x) dx + ζT

)

>
∫

ρ(x)
∣
∣u(x)

∣
∣ dx. ()

We next let A, B, C denote the same terms as (), (), and (), respectively.
We assume that the solution u(t) exists on [, T]. Then we have

G(t) ≥ A

and

G′′(t) ≥ ( + ε)C

for every t ∈ [, T].
In the same way as the proof of Theorem  we have

G(t)G′′(t) –
 + ε


(
G′(t)

) ≥ ( + ε)
(
AC – B) ≥ . ()

By Lemma  we see that there exists a finite time Tmax < ∞ such that the corresponding
solution blows up in finite time Tmax. �
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