
Gan et al. Boundary Value Problems  (2017) 2017:31 
DOI 10.1186/s13661-017-0763-3

R E S E A R C H Open Access
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Abstract
In the present paper, our purpose is to construct the Fučik spectrum C±

l (cf. (2.13) and
(2.17) below) with different weights for the p-Laplacian. As an application, we will
discuss the existence of nontrivial solutions to the p-Laplace equations with
resonance on the Fučik spectrum by making use of variational methods and Morse
theory.
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1 Introduction
In this paper, we consider the existence of nontrivial solutions to the Dirichlet boundary
value problem

{
–�pu = λa(x)(u+)p– – μb(x)(u–)p– + g(x, u), in �,
u = , on ∂�,

(.)

where � is a bounded domain in R
N with smooth boundary ∂�, �p denotes the p-Laplace

operator, that is, �pu = ∇(|∇u|p–∇u), u± = max{±u(x), }, and a(x), b(x) ∈ Lr(�), where
r > N

p if  < p ≤ N and r =  if p > N . We assume that g : � × R → R is a Caratheodory
function.

It is well known that the value of (λ,μ) plays an important role in the study of the solv-
ability of (.). The approach here of course requires the preliminary study of weighted
asymmetric eigenvalue problems of the form

{
–�pu = λa(x)(u+)p– – μb(x)(u–)p–, in �,
u = , on ∂�.

(.)

The set �p(a, b), the Fučik spectrum of the p-Laplacian with the weights a(x) and b(x) on
W ,p

 , is defined by those (λ,μ) ∈R
 such that (.) has a nontrivial solution u.

The generalized notion of spectrum was introduced for p =  (i.e. in the linear case)
in the s by Fučik [] and Dancer [] in connection with the study of the so-called
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jumping non-linearities. From then on, further work has been done in the study of �(, );
cf. [–]. The quasilinear case of p �=  and N = , in the situation where a(x) and b(x) are
nonconstant and different, was investigated in [–] (for a(x) and b(x) > ) and [] (for
a(x) and b(x) are indefinite). From the above papers, �p(a, b) has the same general shape
as in the linear ODE case.

In the quasilinear PDE case, when λa = μb,

{
–�pu = λa(x)|u|p–u, in �,
u = , on ∂�.

(.)

It is well known that problem (.) has an unbound sequence of variational eigenvalues
λl(a) satisfying a standard min-max characterization, λl(a) → +∞ (l → ∞). The first
eigenvalue λ(a) of –�pu is positive, simple, and admits a positive eigenfunction ϕa (see
Lindqvist [] for the case a(x) =  and Cuesta [] for the case where a(x) is an indefinite
weights), where λ(a) := min{∫

�
|∇u|p : u ∈ W ,p

 (�) and
∫
�

a|u|p = } < λ(a) := min{λ ∈
R : λ is the eigenvalue and λ > λ(a)}. We denote ea(x) := ϕa

‖ϕa‖,p
. According to Arias et al.

[], we know that �p(a, b) contains the two lines λ(a) ×R and R× λ(b).
As in [], the first nontrivial eigenvalue which admits a sign-changing eigenfunction of

the eigenvalue problem with weights a(x) and b(x) is defined as c(a, b) := infγ∈	 maxt∈[–,]

A(γ (t)), where A(u) :=
∫
�

|∇u|p dx, 	 := {γ ∈ C([–, ],Ma,b) : γ (–) = ϕa and γ () = ϕb},
and Ma,b := {u ∈ W ,p

 (�) :
∫
�

a(x)(u+)p +b(x)(u–)p dx = }. Hence, the first nontrivial curve
in �p(a, b) through (c(a, b), c(a, b)) asymptotic to λ(a) × R and R × λ(b) at infinity was
constructed by Cuesta et al. [] for the case a = b = , and by Arias et al. [] for the
case with two different nonconstant weights. More recently, unbounded curves {C±

l } in
�p(a, b) have been constructed and variationally characterized by min-max procedures by
Micheletti and Pistoia [] for p > , a = b = , and by Perera [] for p > , a = b =  and
[] for the fractional p-Laplace operator.

Related studies can also be found in [–].
It is our purpose in this paper to initiate the study of (.) and its relation with the solv-

ability of (.) in the general case: a(x), b(x) ≥  are possibly nonconstant and different.
Hence we will discuss the existence of the Fučik spectrum for (.) besides λ(a) × R,
R × λ(b) and C := {(α(s), sα(s)) : α(s) = c(a, sb), s > } (in []), which is an open question
raised in [].

As an application, we will concern ourselves with the resonance type of the problem
(.). The resonance problem has been studied by Perera [] and Guo and Liu [] for
the case (λ,μ) ∈ �p(a, b), with a = b = . The purpose of this paper is to discuss the gen-
eral resonance case (λ,μ) ∈ �p(a, b), with nonconstant and different weights a(x) and b(x).
When (λ,μ) ∈ λ(a) × R ((λ,μ) ∈ R × λ(b)), we obtain the existence of nontrivial solu-
tion for (.) by the Morse theorem. However, the usual Morse theory supposes that the
functional �(u) satisfies the Palais-Smale condition ((P.S.) condition for short), which is
not clear in the case where the nonlinear term g(x, u) is asymptotic to |u|p–u at infinity.
To overcome this difficulty, Cerami introduced a weaker compactness condition (see [])
that allows for more general results; see for example []. Fortunately, replacing the usual
(P.S.) condition by Cerami’s weaker compactness condition ((Cc) condition for short), we
still have the deformation lemma (see []).



Gan et al. Boundary Value Problems  (2017) 2017:31 Page 3 of 20

2 Fučik spectrum with different weights
In this section, we consider the eigenvalues problem of asymmetric p-Laplacian with
weights (.). It is always assumed that a(x), b(x) ∈ Lr(�) with r as in the introduction,
i.e. r > N

p if  < p ≤ N and r =  if p > N .
As is well known, the associated functional of the problem (.) is

I(u) =
∫

�

|∇u|p –
∫

�

λa(x)
(
u+)p + μb(x)

(
u–)p, u ∈ W ,p

 (�).

We introduce two new functionals as follows:

J+
s,t,s (u) =

∫
�

|∇u|p – sa(x)
(
u+)p – (s + t)b(x)

(
u–)p + sa(x)

(
u–)p,

J–
s,t,s (u) =

∫
�

|∇u|p – sb(x)
(
u–)p – (s + t)a(x)

(
u+)p + sb(x)

(
u+)p,

where u ∈ W ,p
 (�), s is a positive constant to be determined later.

The Finsler manifold we need is defined as follows:

S(a) :=
{

u ∈ W ,p
 (�)

∣∣∣ ∫
�

a(x)
∣∣u(x)

∣∣p dx = 
}

.

S(b) can be considered in a similar way. We will consider the functionals J+
s,t,s on the man-

ifold S(a) and J–
s,t,s on the manifold S(b), respectively. Let us just deduce the case J+

s,t,s on
S(a), since the other case can be done similarly.

For each integer l ≥ , we define maps family Fl(a) as

Fl(a) :=
{

A ⊂ S(a); there exists an odd continuous surjection map h : Sl– → A
}

,

where Sl– is the unit sphere in R
l .

As observed by Drábek and Robinson [], we can define an unbounded sequence of
functionals J(u) by

λl(a) := inf
A∈Fl

max
u∈A

J(u),

where J(u) =
∫
�

|∇u|dx = J,,(u). It is shown that λl(a) is the lth eigenvalue of –�p with
weight a(x), although it is not known whether this gives a complete list of eigenvalues.
Furthermore,

λl(a) → +∞, as l → ∞.

In the sequel we fix some l ≥  and suppose that

λl–(a) < λl(a). (.)

For any ε ∈ (,λl(a) – λl–(a)), we can choose an Al– ∈Fl–(a), such that

max
u∈Al–

J(u) < λl–(a) + ε.
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Let hl– : Sl– → Al– be any fixed continuous surjection and denote

F+
l (a) :=

{
A+ ⊂ S(a); there is a continuous surjection map h : Sl–

+ → A,

such that h|Sl– = hl–
}

,

where Sl–
+ is the upper hemisphere of Sl– with boundary Sl–. Then F+

l (a) is a homotopy-
stable family of compact subsets of S(a) with closed boundary Al–, that is,

(i) every set A+ ∈F+
l (a) contains Al–;

(ii) for any set A+ ∈F+
l (a) and any deformation η ∈ C([, ] × S(a); S(a)) satisfying

η(t, u) = u for all (t, u) ∈ ({} × S(a)) ∪ ([, ] × Al–) we have η({} × A) ∈F+
l (a).

Now, we define

c+
l (s, t, s) := inf

A+∈F+
l (a)

max
u∈A+

J+
s,t,s (u). (.)

Similarly, we can define

c–
l (s, t, s) := inf

A–∈F–
l (b)

max
u∈A–

J–
s,t,s (u). (.)

We can make sure that c±
l (s, t, s) is the critical value of J±

s,t,s (u), under some assump-
tions. Furthermore, the critical point of J±

s,t,s (u) corresponding to c±
l (s, t, s) in which s

is determined in a special way, is just the solution to (.), that is, we will establish the
following result.

Theorem . Suppose that the weights a(x) and b(x) are nonnegative and, for some fixed
constants k′ ≥  ≥ k > ,

 ≤ ka(x) ≤ b(x) ≤ k′a(x), a.e. x ∈ �, (.)

where k and k′ satisfy

(

k

–

k′

)
λl(a) <

(
λl(a) – λl–(a)

)
( – δ),

where δ ∈ (, ). Suppose that s and t are in some intervals as follows:

t ∈
(

λl(a)
k

–
(
λl(a) – λl–(a)

)
,
λl(a)

k′ – δ
(
λl(a) – λl–(a)

)]
; (.)

s ∈ (
max

{
λl–(a), (k – )

(
λl(a) – λl–(a)

)
+ k′t

}
,

min
{

k
(
δ
(
λl(a) – λl–(a)

)
+ t

)
,λl(a) – δ

(
λl(a) – λl–(a)

)}]
. (.)

Then, for any s in [δ(λl(a) – λl–(a)),λl(a) – λl–(a)), c+
l (s, t, s) is a critical value of J+

s,t,s (u)
on S(a). In particular, the set of the Fučik spectrum of –�p with weights a(x) and b(x) greater
than c(a(x), b(x)) includes (s + c+

l (s, t, s), t + c+
l (s, t, s)) for s and t in the above intervals, and

some well-defined s ∈ [δ(λl(a) – λl–(a)),λl(a) – λl–(a)) satisfying

c+
l (s, t, s) = s.
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Lemma . J+
s,t,s (u) satisfies the (P.S.) condition on S(a).

Proof Let {un} ⊂ S(a) and tn ∈R be sequence, such that, for some constant k,

∣∣J+
s,t,s (un)

∣∣ ≤ k (.)

and ∫
�

{|∇un|p–∇un∇w –
[
sa

(
u+

n
)p– – (s + t)b

(
u–

n
)p– + sa

(
u–

n
)p–]w

– tna|un|p–unw
} ≤ εn‖w‖,p, (.)

for all w ∈ W ,p
 (�), where εn → , as n → ∞ and ‖ · ‖,p represents the norm of W ,p

 (�).
From (.) it follows that {un} remains bounded in W ,p

 (�); consequently, for a subse-
quence, un → u weakly in W ,p

 (�), strongly in Lp(�) and almost everywhere in �. Putting
w = un – u in equation (.), we also see that tn remains bounded. We then have

∫
�

|∇un|p–∇un(∇un – u) =
∫

�

[
sa

(
u+

n
)p– – (s + t)b

(
u–

n
)p– + sa

(
u–

n
)p–](un – u)

+
∫

�

tna|un|p–un(un – u) + o(εn),

where the right-hand side goes to zero as n → ∞, i.e.

∫
�

|∇un|p–∇un(∇un – u) → , n → ∞.

It is sufficient to obtain un → u strongly in W ,p
 . �

Lemma . As a function of s, t, s, the min-max value

c+
l (s, t, s) := inf

A+∈F+
l (a)

max
u∈A+

J+
s,t,s (u)

is continuous on s.

Proof Let {sn} ⊂ [δ(λl(a) – λl–(a)),λl(a) – λl–(a)] be a sequence such that

sn → s, as n → ∞.

Taking A+ ∈F+
l (a) in the following equation:

J+
s,t,s (u) – J+

s,t,sn (u) = (s – sn)
∫

�

(a – b)
(
u–)p.

Then we can see that

max
A+

J+
s,t,sn (u) – max

A+
(sn – s)

∫
�

(a – b)
(
u–)p

≤ max
A+

J+
s,t,s (u) ≤ max

A+
J+
s,t,sn (u) + max

A+
(s – sn)

∫
�

(a – b)
(
u–)p. (.)
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Noting that ka(x) ≤ b(x) ≤ k′a(x), we have

max
A+

(sn – s)
∫

�

(a – b)
(
u–)p ≤ |sn – s|

(
max

{| – k|, ∣∣k′ – 
∣∣})max

A+

∫
�

a
(
u–)p

≤ (
max

{| – k|, ∣∣k′ – 
∣∣})|sn – s| := εn,

where εn → , as n → ∞. By (.) we have

c+
l (s, t, sn) – εn ≤ c+

l (s, t, s) ≤ c+
l (s, t, sn) + εn.

Letting n → ∞, we have

lim sup
n→∞

c+
l (s, t, sn) ≤ c+

l (s, t, s) ≤ lim inf
n→∞ c+

l (s, t, sn),

which shows that limn→∞ c+
l (s, t, sn) = c+

l (s, t, s). The proof is completed. �

Proof of Theorem . We first claim that

c+
l (s, t, s) ≥ λl(a) – s. (.)

If it is not the case, that is, c+
l (s, t, s) < λl(a) – s, then we can choose some A+ ∈F+

l (a), such
that

max
u∈A+

J+
s,t,s (u) < λl(a) – s.

By setting A = A+ ∪ (–A+), we get an odd symmetric set A. The set A is thus in Fl(a).
Since the functional J(u) = J,,(u) is even, from (.) it follows that

λl(a) ≤ max
A

J(u) = max
A+

J(u)

≤ max
A+

J+
s,t,s (u) + max

A+

∫
�

sa
(
u+)p + (s + t)b

(
u–)p – sa

(
u–)p

≤ max
A+

J+
s,t,s (u) + max

A+

[∫
�

sa
(
u+)p +

(
(t + s)k′ – s

)
a
(
u–)p

]

≤ max
A+

J+
s,t,s (u) + max

{
s, tk′ +

(
k′ – 

)
s

}∫
�

a|u|p

< λl(a) – s + max
{

s, tk′ +
(
k′ – 

)(
λl(a) – λl–(a)

)}∫
�

a|u|p

≤ λl(a), (.)

which leads to a contradiction. Thus, (.) follows.
The inequality (.) is crucial in proving the existence of critical value of J+

s,t,s (u) on
the manifold S(a). Since the assumption in the theorem implies that, for ε ∈ (,λl(a) –
λl–(a) – s), we have

c+
l (s, t, s) ≥ λl(a) – s

> λl–(a) + ε + s – s



Gan et al. Boundary Value Problems  (2017) 2017:31 Page 7 of 20

> max
Al–

J(u) + s – s

= max
Al–

J(u) + max
Al–

[∫
�

sa
(
u+)p + sa

(
u–)p – sa

(
u+)p – sa

(
u–)p

]

≥ max
Al–

J(u) + max
Al–

[∫
�

sa
(
u–)p – s

∫
�

a
(
u+)p – (s + t)

∫
�

b
(
u–)p

]

≥ max
Al–

J+
s,t,s (u). (.)

By Lemma ., we know that J+
s,t,s satisfies the (P.S.) condition on S(a). Then it follows

from Theorem . of Ghoussoub [] that c+
l (s, t, s) is a critical value of J+

s,t,s (u), that is,
according to the Lagrange multiple rule, there is some u ∈ W ,p

 (�), such that

–�pu – sa
(
u+)p– + (s + t)b

(
u–)p– – sa

(
u–)p– = c+

l (s, t, s)
[
a
(
u+)p– – a

(
u–)p–].

The min-max value c+
l (s, t, s) is also a function of s, and from Lemma ., we know that

c+
l (s, t, s) is continuous on s. Set

ψ(s) = c+
l (s, t, s) – s.

Next we claim that

ψ
(
δ
(
λl(a) – λl–(a)

)) ≥  and ψ
(
λl(a) – λl–(a)

) ≤ .

In fact, for every A+ ∈F+
l (a), since A = A+ ∪ (–A+) ∈Fl(a), on A, we have

J(u) =
∫

�

|∇u|p ≥ λl(a)
∫

�

a|u|p.

Hence, we can estimate the maximum of Js,t,δ(λl(a)–λl–(a))(u) on A+ as follows:

max
A+

J+
s,t,δ(λl(a)–λl–(a))(u)

= max
A+

{∫
�

|∇u|p – sa
(
u+)p –

(
t + δ

(
λl(a) – λl–(a)

))
b
(
u–)p

+ δ
(
λl(a) – λl–(a)

)∫
�

a
(
u–)p

}

≥ max
A+

{
λl(a)

∫
�

a|u|p – sa
(
u+)p –

(
t + δ

(
λl(a) – λl–(a)

))
b
(
u–)p

+ δ
(
λl(a) – λl–(a)

)∫
�

a
(
u–)p

}

≥ max
A+

{
λl(a)

∫
�

a|u|p

– max
{

s, k′(t + δ
(
λl(a) – λl–(a)

))
– δ

(
λl(a) – λl–(a)

)}∫
�

a|u|p
}

= λl(a) – max
{

s, k′(t + δ
(
λl(a) – λl–(a)

))
– δ

(
λl(a) – λl–(a)

)}
.
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By the conditions (.) and (.), we have
{

λl(a) ≥ s + δ(λl(a) – λl–(a)),
λl(a) ≥ k′(t + δ(λl(a) – λl–(a))).

Then we see that ψ(δ(λl(a) – λl–(a))) ≥ .
Moreover, for any ε > , we pick up an A ∈Fl(a), such that

A = h
(
Sl–(a)

)
, h|Sl–(a) = hl–,

and

max
u∈A

J(u) < λl(a) + ε.

Denote A+ = h(Sl–
+ (a)), and then A+ ∈F+

l (a). For every u ∈ A+,

Js,t,λl(a)–λl–(a)(u)

=
∫

�

|∇u|p – sa
(
u+)p –

(
λl(a) – λl–(a) + t

)
b
(
u–)p +

(
λl(a) – λl–(a)

)
a
(
u–)p

≤ λl(a)
∫

�

a|u|p + ε

+
∫

�

[
–sa

(
u+)p –

(
λl(a) – λl–(a) + t

)
b
(
u–)p +

(
λl(a) – λl–(a)

)
a
(
u–)p]

≤ (
λl(a) – s

)∫
�

a
(
u+)p + ε

+
[
λl(a) –

(
λl(a) – λl–(a) + t

)
k – λl–(a)

]∫
�

a
(
u–)p

≤ max
{
λl(a) – s, λl(a) –

(
λl(a) – λl–(a) + t

)
k – λl–(a)

}
+ ε.

We can deduce that ψ(λl(a) – λl–(a)) ≤ . Hence there exists some s ∈ [δ(λl(a) –
λl–(a)),λl(a) – λl–(a)), such that

ψ(s) = ,

which means that if we take s in Js,t,s (u) as above, then

s = c+
l (s, t, s). �

We see that there exists some u which is also the solution, in the weak sense, to the
following equation:

–�pu =
(
s + c+

l (s, t, s)
)
a
(
u+)p– –

(
t + c+

l (s, t, s)
)
b
(
u–)p–.

Clearly,

C+
l :=

{(
s + c+

l (s, t, s), t + c+
l (s, t, s)

)
: s = c+

l (s, t, s)
} ⊂ �p(a, b), (.)

where s, t, s and c+
l (s, t, s) are as in Theorem ..
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In a similar way, suppose λl–(b) < λl(b) for some fix l ≥ , and then we can get a corre-
sponding conclusion as follows.

Theorem . Suppose that the weights a(x) and b(x) are nonnegative and, for some fixed
constants k′ ≥  ≥ k > ,

 ≤ kb(x) ≤ a(x) ≤ k′b(x), a.e. x ∈ �, (.)

where k and k′ satisfy

(

k

–

k′

)
λl(b) <

(
λl(b) – λl–(b)

)
( – δ),

where δ ∈ (, ). Suppose that s and t are in some intervals as follows:

t ∈
(

λl(b)
k

–
(
λl(b) – λl–(b)

)
,
λl(b)

k′ – δ
(
λl(b) – λl–(b)

)]
; (.)

s ∈ (
max

{
λl–(b), (k – )

(
λl(b) – λl–(b)

)
+ k′t

}
,

min
{

k
(
δ
(
λl(b) – λl–(b)

)
+ t

)
,λl(b) – δ

(
λl(b) – λl–(b)

)}]
. (.)

Then, for any s in [δ(λl(b) – λl–(b)),λl(b) – λl–(b)), c–
l (s, t, s) is a critical value of J–

s,t,s (u)
on S(b). In particular, the set of the Fučik spectrum of –�p with weights a(x) and b(x) greater
than c(a(x), b(x)) includes (t + c–

l (s, t, s), s + c–
l (s, t, s)) for s and t in the above intervals, and

some well-defined s ∈ [δ(λl(b) – λl–(b)),λl(b) – λl–(b)) satisfies

c–
l (s, t, s) = s.

Hence,

C–
l :=

{(
t + c–

l (s, t, s), s + c–
l (s, t, s)

)
: s = c–

l (s, t, s)
} ⊂ �p(a, b), (.)

where s, t, s and c–
l (s, t, s) are as in Theorem ..

Remark . Theorem . and Theorem . contain the results in [], in which a(x) =
b(x) = ; so our results must be much more generic than those in [].

Remark . Theorem . and Theorem . answer partly the open question raised in []:
whether there exists any other Fučik spectrum for (.) besides λ(a) × R, R × λ(b) and
C := {(α(s), sα(s)) : α(s) = c(a, sb), s > }.

3 Resonance problems with respect to the Fučik spectrum
As an application, we consider the resonance problems for the Dirichlet boundary prob-
lem (.) of the Fučik spectrum type. The first case: (λ,μ) is in the part of the two lines
λ(a)×R and R×λ(b), which has been defined in []. The second case: (λ,μ) ∈ C±

l , which
is defined in Section ; see equations (.) and (.). Similar to Section , we always as-
sumed that a(x), b(x) ∈ Lr with r as in the introduction. We assume that g : �×R →R is a
Caratheodory function. In order to state our main results, we assume that g(x, u) satisfies
the following conditions:
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(f) g(x, u) ∈ C(�̄ ×R,R) with g(x, ) =  and lim|s|→∞ g(x,s)
|s|p– =  uniformly;

(f) pG(x, s) – g(x, s)s >  a.e. x ∈ �, ∀s �= ;
(f) lim|s|→∞(g(x, s)s – pG(x, s)) = –∞;
(f) for some v ∈ (, p), there are constants m, am >  s.t. G(x, u) ≥ am|u|v for |u| ≤ m;
(F) |g(x, u)| ≤ V (x)p–q|u|q– + W (x)p– with q ≤ p and nonnegative V , W ∈ Lp(�);
(F) ∃θ ∈ (, ) and M >  such that G(x, u) – θpG(x, u

θ
) ≤ M, for |u| ≥ M.

As is well known, the weak solution to the problem (.) is a critical point of

�(u) =
∫

�

|∇u|p – λa(x)
(
u+)p – μb(x)

(
u–)p – pG(x, u), ∀u ∈ W ,p

 (�), (.)

where G(x, t) =
∫ t

 g(x, s) ds, and then we have the following.

Theorem . Suppose that conditions (f)-(f) hold, a(x), b(x) ≥ ε > , a.e. in �. Then
(.) has at least one nontrivial weak solution in W ,p

 (�) if one of the following conditions
holds:

(f) λ = λ(a); and μ satisfies

c(a, a)a(x) > μb(x) and μ

∫
�

b(x)ep
a(x) dx ≥ ;

(f) μ = λ(b); and λ satisfies

c(b, b)b(x) > λa(x) and λ

∫
�

a(x)ep
b(x) dx ≥ .

Theorem . Suppose that (F), (f) and (f) hold, a(x), b(x) ≥ ε > , a.e. in � and satisfy
the conditions mentioned in Theorem . (or in Theorem .), and then the problem (.)
has a nontrivial solution if (λ,μ) ∈ C+

l (or (λ,μ) ∈ C–
l ).

In order to prove Theorem ., we need to state the following conclusions about critical
groups. Firstly, we introduce some notations. Let E := W ,p

 (�), E∗ represent the dual space
to E, and J be a C(E,R). Then the critical set of J on E is defined as

K =
{

u ∈ E, J ′(u) = θ
}

.

For c ∈ R∪ {+∞}, we use

Jc =
{

u ∈ E, J(u) ≤ c
}

, Jc =
{

u ∈ E, J(u) < c
}

standing for the closed and open sublevel sets of functional J on E. Recall that the critical
groups of J at its isolated point u with a critical value c = J(u) are defined by

Cq(J , u) = Hq
(
Jc ∩ U ,

(
Jc ∩ U

) \ {u}), for all q ≥ ,

where U is an isolated neighborhood of u, and Hq(·, ·) is the qth singular relative homology
groups with the integer coefficients Z. Moreover, it is well known that Cq(J , u) is indepen-
dent of the choice of U and due to the excision property of singular homology theory.
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Suppose that –∞ < inf J(K), and we choose c < inf J(K). The critical groups of J at infinity
are defined by

Cq(J ,∞) = Hq
(
E, Jc), for all q ≥ .

From the deformation lemma, we see that Cq(J ,∞) is independent of the choice of c <
inf J(K) while J satisfies the (P.S.) condition. For details of the topological notation men-
tioned here and throughout this paper refer to [].

Lemma . Suppose that conditions (f)-(f) hold and λ = λ(a) (or μ = λ(b)); then the
functional � satisfies (Cc) condition for all c ∈R.

Proof We just give the proof of the case when λ = λ(a), and the other case of μ = λ(b)
can be treated similarly.

Suppose that {un} ∈ W ,p
 is a sequence such that

�(un) → c, (.)(
 + ‖un‖,p

)∥∥�′(un)
∥∥

E∗ → . (.)

It is sufficient to obtain that {un} is bounded. Assume the contrary, that is, ‖un‖ → ∞.
Let vn = un

‖un‖,p
. Then, up to a subsequence, we still denote the subsequence by {vn}. There

is a v such that {vn} converges weakly to v in W ,p
 (�), vn → v strongly in Lp(�), and

vn(x) → v(x) almost everywhere in �. In (.) divided by ‖un‖p–
,p , and then for every

w ∈ W ,p
 , we have

∫
�

[
|∇vn|p–∇vn∇w – λa(x)

(
v+

n
)p–w + μb(x)

(
v–

n
)p–w –

g(x, un)w
‖un‖p–

,p

]
dx → . (.)

In (.), first we claim that ‖un‖–p
,p

∫
�

g(x, un)w dx → . Indeed, it follows from (f) that,
for any ε > , there exists Cε >  such that

∣∣g(x, u)
∣∣ ≤ Cε + ε|u|p–, ∀(x, u) ∈ �̄ ×R.

By Hölder’s inequality and Sobolev’s inequality, we get

∣∣∣∣
∫

�

g(x, un)w
‖un‖p–

,p
dx

∣∣∣∣ ≤
∫

�

Cε + ε|un|p–

‖un‖p–
,p

|w|dx ≤
(

C

‖un‖p–
,p

+ εC

)
‖w‖ → , n → ∞.

Hence from (.) we have

∫
�

[|∇vn|p–∇vn∇w – λa(x)
(
v+

n
)p–w + μb(x)

(
v–

n
)p–w

]
dx → , n → ∞. (.)

Putting w = vn – v, it is sufficient to obtain

∫
�

|∇vn|p–∇vn∇(vn – v) dx → , n → ∞.
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And consequently

∫
�

(|∇vn|p–∇vn – |∇v|p–∇v
)∇(vn – v) dx → , n → ∞.

Using the inequality

|ξ – η|p ≤ c
[(|ξ |p–ξ – |η|p–η

)
(ξ – η)

]s/[|ξ |p + |η|p]–s/,

where ξ ,η ∈R
N , c = c(p) > , and s =  if p ≥ , s = p if  < p < , one easily obtains vn → v

in W ,p
 with ‖v‖,p = .

Hence from (.) we see that

∫
�

|∇v|p–∇v∇w =
∫

�

[
λa(x)

(
v+


)p–w + μb(x)

(
v–


)p–w

]
dx, ∀w ∈ W ,p

 . (.)

Taking w = v±
 , respectively, we get

∫
�

∣∣∇v+

∣∣p = λ(a)

∫
�

a(x)
∣∣v+


∣∣p (.)

and ∫
�

∣∣∇v–

∣∣p = μ

∫
�

b(x)
∣∣v–


∣∣p, (.)

respectively. From the above equality (.), we know either v+
 =  or v = ea, where ea

is the eigenfunction corresponding to λ = λ(a). If v = ea, then un(x) = ‖un‖,pea → +∞
for almost everywhere in �. If v+

 = , then we must have v = –eb <  where eb is the
eigenfunction corresponding to μ = λ(b), since v �=  and equality (.), then un(x) =
–‖un‖,peb → –∞ for almost everywhere in �.

From assumption (f), we have

lim
n→∞

(
g(x, un)un – pG(x, un)

)
= –∞, a.e. x ∈ �, as n → ∞. (.)

However, by (.) and (.), one has

p�(un) –
〈
�′(un), un

〉 → pc, n → ∞,

which implies that

∫
�

(
g(x, un)un – pG(x, un)

)
dx → pc, as n → ∞.

This contradicts (.). Thus {un} is bounded, and the proof completed. �

Lemma . Suppose that conditions (f)-(f) and (f) (or (f)) hold, a(x), b(x) ≥ ε > , a.e.
in �. Then we have

C(�,∞) �= .
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Proof We just give the proof of the case (f), and the other case (f) can be treated in a
similar way.

By (f), we know that � is of class C in W ,p
 (�). We consider the decomposition of

W ,p
 = V ⊕ W , where V = span{ea} is the one-dimensional eigenspace associated with

λ(a), with ea >  in � and ‖ea‖,p = , and W := {w ∈ W ,p
 (�) :

∫
�

a(x)wep–
a dx = } is a

complementary subspace of V in W ,p
 (�). Therefore (see []), there exists λ̄ > λ(a) such

that
∫

�

|∇u|p dx ≥ λ̄

∫
�

a(x)|u|p dx, ∀u ∈ W .

We claim that λ̄ = c(a, a), if it is not the case, that is, there exists u ∈ W , such that

λ(a)
∫

�

a(x)|u|p <
∫

�

|∇u|p < c(a, a)
∫

�

a(x)|u|p.

Hence there exist λ(a) < θ < c(a, a) and u ∈ W , such that

∫
�

|∇u|p = θ

∫
�

a(x)|u|p.

Hence, θ is the eigenvalue of problem (.), which contradicts Theorem  in [] stating
that problem (.) does not admit any eigenvalue in the open interval (λ(a), c(a, a)). Then
we have

∫
�

|∇u|p dx ≥ c(a, a)
∫

�

a(x)|u|p dx, ∀u ∈ W . (.)

On the other hand, (f) implies that

lim|s|→∞
pG(x, s)

|s|p = .

And from (f), we obtain: for any M > , there is some R >  such that

g(x, s)s – pG(x, s) ≤ –M, |s| > R, a.e. x ∈ �.

Integrating the equality

d
dx

[
G(x, s)
|s|p

]
=

g(x, s)s – pG(x, s)
|s|p+ ,

over the interval [t, T] ⊂ [R, +∞), we have

G(x, T)
|T |p –

G(x, t)
|t|p ≤ M

p

(


Tp –

tp

)
. (.)

Noting that limT→∞ T–pG(x, T) = , and letting T → ∞ in (.), we have

G(x, t) ≥ M
p

, ∀t ≥ R, a.e. x ∈ �. (.)
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Similarly, it is shown that G(x, t) ≥ M
p , ∀t ≤ –R, a.e. x ∈ �. Hence

lim|t|→∞ G(x, t) = +∞, a.e. x ∈ �.

Now, letting v = ξea ∈ V (ξ ∈ R), from the assumption (f) we have

�(v) =

p

∫
�

|∇v|p dx –

p

∫
�

[
λ(a)a(x)

(
v+)p + μb(x)

(
v–)p]dx –

∫
�

G(x, v) dx

=

{

pξp ∫

�
|∇ea|p dx – 

pλ(a)ξp ∫
�

a(x)ep
a dx –

∫
�

G(x, ξea), ξ ≥ ,

p |ξ |p ∫

�
|∇ea|p dx – 

pμ|ξ |p ∫
�

b(x)ep
a dx –

∫
�

G(x, ξea), ξ < 

=

{
–

∫
�

G(x, ξea), ξ ≥ ,

p |ξ |p[ – μ

∫
�

b(x)ep
a dx] –

∫
�

G(x, ξea), ξ < 

≤ –
∫

�

G(x, ξea).

It follows from Lebesgue’s theorem that

�(v) → –∞, for v ∈ V and ‖v‖,p → ∞.

Now we turn to proving

inf
W

� = m > –∞. (.)

Indeed, by (f),we obtain that, for any ε > , there exists Cε >  such that

∣∣G(x, u)
∣∣ ≤ Cε + ε|u|p, ∀(x, u) ∈ �̄ ×R. (.)

By (.) and (.), we have, for any w ∈ W ,

p�(w) =
∫

�

|∇w|p dx –
∫

�

[
λ(a)a(x)

(
w+)p + μb(x)

(
w–)p + pG(x, w)

]
dx

≥ c(a, a)
∫

�

a(x)|w|p dx –
∫

�

[
λ(a)a(x)

(
w+)p + μb(x)

(
w–)p + pG(x, w)

]
dx

=
(
c(a, a) – λ(a)

)∫
�

a(x)
(
w+)p dx

+
∫

�

[
c(a, a)a(x) – μb(x)

](
w–)p dx – p

∫
�

G(x, w) dx

≥
∫

�

[(
c(a, a) – λ(a)

)
a(x) – pε

](
w+)p dx

+
∫

�

(
c(a, a)a(x) – μb(x) – pε

)(
w–)p dx – pCε |�|.

With the condition (f), we can choose ε small enough such that (c(a, a) –λ(a))a(x) – pε ≥
, c(a, a)a(x) – μb(x) – pε ≥ . Then fix ε, and we have �(w) ≥ –pCε |�| where –pCε |�| is
a constant. Obviously (.) holds true.
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We suppose that � has only a finite number of critical points. Then, for sufficiently small
number c, we have by [], that

C(�,∞) = H
(
E,�c) �= . �

Lemma . (Theorem . in []) Suppose that conditions (f)-(f) hold, and let zero be
an isolated critical point of �. Then the Morse critical groups for � at zero are trivial, that
is,

Cq(�, ) = , for all q.

Proof of Theorem . In view of Lemma . and Lemma ., we have C(�,∞) �= , and
according to the Morse equality, the functional � has at least one critical point u such
that C(�, u) �= . Since C(�, ) =  by Lemma ., we conclude that u �= . The proof is
complete. �

Proof of Theorem . Here we only consider the case (λ,μ) ∈ C+
l , since the case (λ,μ) ∈ C–

l

can be done similarly. Let (λ,μ) = (s + c+
l (s, t, s), t + c+

l (s, t, s)), where s = c+
l (s, t, s). We

introduce a new functional as follows:

�j(u) = �(u) +

j

∫
�

a|u|p

=
∫

�

|∇u|p – sa
(
u+)p –

(
t + c+

l (s, t, s)
)
b
(
u–)p + c+

l (s, t, s)a
(
u–)p

–
(

c+
l (s, t, s) –


j

)
a|u|p – pG(x, u). (.)

First we will show that, for sufficiently large j, there is some uj ∈ W ,p
 (�) such that

‖uj‖
∥∥�′

j(uj)
∥∥ → , inf�j(uj) > –∞. (.)

Let Al– ∈F+
l–(a) be as in Section . By (.), there exists j, for any j ≥ j, and we have

max
u∈Al–

J+
s,t,s (u) ≤ c+

l (s, t, s) –

j

.

For such j, u ∈ Al– and R > , by (F) and a(x) ≥ ε (a.e. in �) we will have

�j(Ru) = Rp
[

J+
s,t,s –

(
c+

l (s, t, s) –

j

)]
– p

∫
�

G(x, Ru)

≤ –
Rp

j
+ p

(‖V‖p–q
p ‖u‖q

pRq + ‖W‖p–
p ‖u‖pR

)

≤ –
Rp

j
+ C

(‖V‖p–q
p Rq + ‖W‖p–

p R
)

≤ –
Rp

j
+ C

(
Rq + 

)
.
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Then we see that

max
Al–

�j(Ru) → –∞, as R → ∞. (.)

Let

F =
{

u ∈ W ,p
 (�) : J+

s,t,s ≥ c+
l (s, t, s)

∫
�

a|u|p
}

. (.)

For u ∈ F , by (.) and (F), we can deduce the following from (.):

�j(u) ≥
∫
�

a|u|p
j

– p
(‖V‖p–q

p ‖u‖q
p + ‖W‖p–

p ‖u‖p
)

≥
∫
�

a|u|p
j

– C
(

‖V‖p–q
p

(∫
�

a|u|p
) q

p
+ ‖W‖p–

p

(∫
�

a|u|p
) 

p
)

≥
∫
�

a|u|p
j

– C
((∫

�

a|u|p
) q

p
+ 

)
.

Denote r := (
∫
�

a|u|p)

p , k(r) := rp

j –C(rq +). It is sufficient to deduce that k(r) (r ∈ [, +∞))
takes its minimum at point rm = ( Cqj

p )


p–q , and its minimum is

max
r≥

k(r) = k
((

Cqj
p

) 
p–q

)
=

(
qj
p

) q
p–q

C
p

p–q

(
q
p

– 
)

– C.

Thus, we have

inf
u∈F

�j(u) ≥ Cj := min
r≥

k(r) =
(

qj
p

) q
p–q

C
p

p–q

(
q
p

– 
)

– C > –∞. (.)

Now using (.), for any j ≥ j, we can choose sufficiently high Rj > , thus

max�j(B) < Cj, (.)

where B = {Rju : u ∈ Al–}. In fact, (.) holds only if Rj is larger than the positive solution
of the following equation:

–
Rp

j
+ C

(
Rq + 

)
= Cj =

(
qj
p

) q
p–q

C
p

p–q

(
q
p

– 
)

– C.

It is sufficient to find that (.) holds as Rj ≥ Cj


p–q . As a matter of convenience, and
without loss of generality, we suppose Rj is large enough and satisfies

Rj+ =

θ

Rj, j = j, j + , . . . . (.)

Then we will consider the homotopy-stable family of compact subsets of W ,p
 (�) with

boundary B given by

F+
j =

{
A ⊂ W ,p

 : there is a continuous surjection h : Sl–
+ → A

such that h|Sl– = Rjhl–
}

,
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where hl– : Sl– → Al– is as in Section . We claim that the set F is dual to the class F+
j ,

i.e.,

F ∩ B = ∅, F ∩ A �= ∅, ∀A ∈F+
j . (.)

It is clear from (.) and (.) that F ∩ B = ∅. Let A ∈ F+
j . If  ∈ A, then we are done.

Otherwise, we denote by π the radial projection onto S, π (A) ∈F+
l , and we have

max
u∈π (A)

J+
s,t,s (u) ≥ c+

l (s, t, s).

So F ∩ π (A) �= ∅, and we obtain F ∩ A �= ∅.
Now let us define a minimax sequence on the class F+:

cj := inf
A∈F+

j
max
u∈A

�j(u). (.)

Noting the truth that the set F is dual to the class F+
j , and by (.), we have

cj ≥ Cj > max
u∈RjAl–

�j(u). (.)

Hence it follows from a deformation argument of Cerami [] that, for the above j, there
exists a sequence uj such that

‖uj‖
∥∥�′

j(uj)
∥∥ <


j
,

∣∣�j(uj) – cj
∣∣ <


j
. (.)

It is easy to prove that {cj}∞j is a non-decreasing sequence. According to (.) and (.),
for j ≥ j we can get

cj +

j

≥ cj +

j

≥ �j(uj)

≥ cj –

j

≥ Cj –

j

=
(

qj
p

) q
p–q

C
p

p–q

(
q
p

– 
)

– C. (.)

We claim that the sequence {cj}∞j is bounded. Assume the contrary, that is, cj → –∞ as
j → ∞, and then we will prove that {cj}∞j has some fixed growth rate, which contradicts
(.).

In fact, for a fixed number j ≥ j and ∀ε > , there exists A ∈ F+
j and a continuous sur-

jection h, such that A = h(Sl–
+ ) and

max
u∈Sl–

+

�j
(
h(u)

)
< cj + ε.
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Noting that H(·) := Rj+
Rj

h(·) = θ–h(·) ∈F+
j+. Therefore, for all u ∈ Sl–

+ , we have

cj + ε > �j
(
h(u)

)
= �

(
h(u)

)
+


j

∫
�

a
∣∣h(u)

∣∣p

=
∫

�

∣∣∇h(u)
∣∣p –

(
s + c+

l (s, t, s)
)(

h(u)+)p –
(
t + c+

l (s, t, s)
)(

h(u)–)p

– pG
(
x, h(u)

)
+


j

∫
�

a
∣∣h(u)

∣∣p

=
(

Rj

Rj+

)p(∫
�

∣∣∇H(u)
∣∣p –

(
s + c+

l (s, t, s)
)(

H(u)+)p –
(
t + c+

l (s, t, s)
)(

H(u)–)p

– pG
(
x, H(u)

)
+


j + 

∫
�

a
∣∣H(u)

∣∣p
)

+
(

Rj

Rj+

)p ∫
�

pG
(
x, H(u)

)
–

∫
�

pG
(
x, h(u)

)
+


j(j + )

∫
�

a
∣∣h(u)

∣∣p

= θp�j+
(
H(u)

)
+ θp

∫
�

pG
(

x,
h(u)
θ

)
–

∫
�

pG
(
x, h(u)

)
+


j(j + )

∫
�

a
∣∣h(u)

∣∣p

≥ θp�j+
(
H(u)

)
– CM,

where CM is a constant and only related to the condition (F). Noting the arbitrariness of
u ∈ Sl–

+ , we have

cj + ε ≥ θp max
u∈Sl–

+

�j+
(
H(u)

)
– CM

≥ θpcj+ – CM.

According to the arbitrariness of ε, we have

cj ≥ θpcj+ – CM.

From the assumption that cj → –∞ as j → ∞, there will exist j ≥ j, such that cj < , and
then we can get

|cj| ≤ θp|cj+| + CM, j = j, j + , . . . .

Suppose that |cj| is large enough, and then we can translate the last formula into the fol-
lowing:

|cj| ≤ θ |cj+|, j = j, j + , . . . .

Then we have

|cj+| ≥ θ j–j–|cj |, j = j, j + , . . . ,

contradicting (.). Thus, {cj}∞j is bounded. According to (.), we obtain (.).



Gan et al. Boundary Value Problems  (2017) 2017:31 Page 19 of 20

We complete the proof by showing that a subsequence of {uj} mentioned in (.) con-
verges to a solution to (.). It is sufficient to prove that {uj} is bounded. Assume the con-
trary, that is, ‖uj‖ → ∞. Setting vj := uj

‖uj‖ , then up to a subsequence, we still denote the

subsequence by {vj}. There is a v such that vj ⇀ v weakly in W ,p
 (�), strongly in Lp(�),

and almost everywhere in �. We have

∫
�

|∇vj|p–∇vj∇(vj – v) =
(�′

j(uj), vj – v)

p‖uj‖p–
,p

+
∫

�

[(
λ –


j

)
a
(
v+

j
)p–

+
(

μb –

j
a
)(

v–
j
)p– –

g(x, uj)
‖uj‖p–

,p

]
(vj – v) → .

It is sufficient to obtain
∫

�

|∇vj|p–∇vj∇(vj – v) dx → , j → ∞.

Hence, we can deduce that vj → v strongly in W ,p
 , and ‖v‖ = . For each w ∈ W ,p

 , we
have

(�′
j(uj), w)

p‖uj‖p–
,p

=
∫

�

|∇vj|p–∇vj∇w –
∫

�

[(
λ –


j

)
a
(
v+

j
)p–

+
(

μb –

j

a
)(

v–
j
)p– –

g(x, uj)
‖uj‖p–

,p

]
w.

Going to the limit as j → ∞, we get

∫
�

|∇v|p–∇v∇w –
[
λa

(
v–


)p– – μb

(
v+


)p–]w = .

So v ∈ Eλa,μb. Thus,

(�′
j(uj), uj)

p
– �j(uj) =

∫
�

[
pG(x, uj) – g(x, uj)uj

] → +∞,

contradicting (.). Hence, {uj} is bounded. There exists a subsequence of {uj} converging
to a weak solution to (.). �
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