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Abstract
In this study, the numerical technique based on two-dimensional block pulse
functions (2D-BPFs) has been developed to approximate the solution of fractional
Poisson type equations with Dirichlet and Neumann boundary conditions. These
functions are orthonormal and have compact support on [0, 1]. The proposed
method reduces the original problems to a system of linear algebra equations that
can be solved easily by any usual numerical method. The obtained numerical results
have been compared with those obtained by the Legendre and CAS wavelet
methods. In addition an error analysis of the method is discussed. Illustrative
examples are included to demonstrate the validity and robustness of the technique.
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1 Introduction
Fractional calculus is an important theoretical branch of mathematical theories [], which
has been widely applied in various fields such as the complex physical, mechanical, bio-
logical, and engineering fields. For example, fractional calculus has been applied to model
the nonlinear oscillations of earthquake [], fluid-dynamic traffic [], continuum and sta-
tistical mechanics [], signal processing [], control theory [] and dynamics of interfaces
between nanoparticles and subtracts []. In these practical applications, fractional cal-
culus has a certain geometric and physical meaning. Due to its historical dependence
and globally related characteristics, fractional differentiation can be approximately rep-
resented and vigorously developed in the anomalous diffusion. In view of the fact that
fractional calculus has great practical significance, it is very important to study fractional
differential equations. In general, the exact solutions of many fractional partial differential
equations cannot be obtained, so scholars are committed to obtaining their numerical so-
lutions to reflect the exact solutions. In recent years, the theory of fractional calculus has
been greatly developed, and lots of articles about fractional calculus have been published.
Numerical algorithms for different types of fractional differential equations have been pre-
sented. These algorithms include the Chebyshev and Legendre polynomials method [, ],
the wavelet method [, ], the piecewise constant orthogonal functions method [], the
differential transform method [], the collocation method [], the Adomian decomposi-
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tion method [], and so on. In [], the authors proposed a compact exponential scheme
for the time fractional convection-diffusion reaction equation with variable coefficients.
In [], the authors acquired the numerical solution of fractional Poisson equations us-
ing a two-dimensional Legendre wavelet. In [], Maleknejad and Mahdiani proposed to
solve nonlinear mixed Volterra-Fredholm integral equations with two-dimensional block
pulse functions using a direct method. Reference [] gave the numerical methods for
solving two-dimensional nonlinear integral equations of fractional order by using a two-
dimensional block pulse operational matrix. In this study, we applied two-dimensional
block pulse functions to obtain the numerical solutions of fractional Poisson type equa-
tions with Dirichlet and Neumann boundary conditions.

The current paper is organized as follows. In Section , the model with respect to Pois-
son type equations is given. In Section , some basic definitions and mathematical pre-
liminaries of fractional calculus are introduced. Section  introduces the definitions and
properties of two-dimensional block pulse functions. In Section , we discussed the error
analysis of our approach. Section  introduces the method for solving fractional Poisson
type equations. In Section , the proposed approach is tested through several numerical
examples. Finally, a conclusion is given in Section .

2 Illustration of the proposed model
In the following, we introduce the propagation of an elastic wave for a one-dimensional
rod model under the action of impact load.

The rod fixed at left and the right is exerted on a tensile impact load P, the length of it
is L, as is shown in Figure . The basic equation of this problem with boundary condition
is given as

{
∂u
∂x – 

c
∂u
∂t =  ( < x < L),

u(x, ) = u̇(x, L) = , u(, t) = , σ (L, t) = P,
()

where c =
√

E/p, is the wave velocity. The displacement analytical solution of the rod is

u(x, t) =
c
E
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where H(x) is a Heaviside step function:

H(x) =

{
, x > ,
, x < .

()

Figure 1 One-dimensional bar model under the
impact load.
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Based on the above model, we propose the following fractional Poisson equations model:

∂νu
∂xν

(x, t) +
∂γ u
∂tγ

(x, t) = g(x, t) ( ≤ x ≤ L,  ≤ t ≤ τ ), ()

with Dirichlet boundary conditions

{
u(x, ) = f(x), u(, t) = g(t);
u(x, τ ) = f(x), u(L, t) = g(t).

()

The Neumann boundary conditions are

{
u(x, ) = f(x), u(, t) = g(t);
∂u
∂t |(x,τ ) = f(x), ∂u

∂x |(L,t) = g(t).
()

3 Preliminaries and notations
In this section, we gave some necessary definitions and preliminaries of the fractional cal-
culus theory which will be used in the article [].

Definition  The Riemann-Liouville fractional integral operator Iν of order ν is given by

(
Iν f

)
(t) =

{


�(ν)
∫ t

 (t – τ )ν–f (τ ) dτ , ν > ;
f (t), ν = .

()

Definition  The Caputo definition of fractional differential operator is given by

cDν f (t) =

⎧⎨
⎩


�(m–ν)

∫ t


f (m)(τ )
(t–τ )ν–m+ dτ ,  < m –  ≤ ν < m;

dmf (t)
dtm , ν = m ∈ N+.

()

For the Caputo derivative, we have

cDνtγ =

{
, for γ ∈ N and γ < �ν�;

�(γ +)
�(γ +–ν) tγ –ν , for γ ∈ N and γ ≥ �ν� or γ /∈ N and γ > �ν	.

()

4 Two-dimensional block pulse functions
One-dimensional block pulse functions have been widely used for differential and integral
equations. More details for block pulse functions of the one-dimensional case are given in
[]. These conclusions can be extended to the two-dimensional block pulse functions.

4.1 Definitions and properties
D-BPFs are defined as

φi,i (x, t) =

{
, (i – )h ≤ x < ih and (i – )h ≤ x < ih,
, otherwise,

()

where i = , , . . . , m and i = , , . . . , m with positive integer values for m, m and
h = T

m
, h = T

m
, T, T ∈ N+.
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They have the following properties:
. Disjointness:

φi,i (x, t)φj,j (x, t) =

{
φi,i (x, t), i = j and i = j,
, otherwise.

()

. Orthogonality:

∫ T



∫ T


φi,i (x, t)φj,j (x, t) dt dx =

{
hh, i = i and j = j,
, otherwise.

()

In the region of x ∈ [, T) and t ∈ [, T), where i, j = , , . . . , m and
i, j = , , . . . , m.

. Completeness: For every u ∈ L([, T) × [, T)) when m and m approach infinity,
Parseval’s identity holds:

∫ T



∫ T


u(x, t) dt dx =

∞∑
i=

∞∑
i=

u
i,i

∥∥φi,i (x, t)
∥∥, ()

where

ui,i =


hh

∫ T



∫ T


u(x, t)φi,i (x, t) dt dx.

4.2 BPFs expansions
A function u(x, t) ∈ L([, T) × [, T)) can be expressed as

u(x, t) ∼=
m∑

i=

m∑
i=

ui,iφi,i (x, t) = V T	(x, t), ()

where

V = [u, . . . , u,m , . . . , um,, . . . , um,m ]T ,

	(x, t) =
[
φ,(x, t), . . . ,φ,m (x, t), . . . ,φm,(x, t), . . . ,φm,m (x, t)

]T .
()

The block pulse coefficients ui,i are obtained by

ui,i =


hh

∫ ih

(i–)h

∫ ih

(i–)h

u(x, t) dt dx. ()

Since each of the two-dimensional block pulse functions takes only one value in its sub-
region, the D-BPFs can be expanded by the two D-BPFs:

φi,i (x, t) = φi (x)φi (t), ()

where φi (x) and φi (t) are the D-BPFs related to the variables x and t, respectively. Then
we have

u(x, t) ∼= 	T (x)U	(t), ()
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where

U =

⎡
⎢⎢⎢⎢⎣

u, u, · · · u,m

u, u, · · · u,m
...

...
. . .

...
um, um, · · · um,m

⎤
⎥⎥⎥⎥⎦ ,

	(x) =
[
φ(x),φ(x), . . . ,φm (x)

]T , 	(t) =
[
φ(t),φ(t), . . . ,φm (t)

]T .

()

4.3 Operational matrix
In this part, we may simply introduce the operational matrix of fractional integration of
block pulse functions; more details can be found in [].

Let m = m = m and T = T = T . If Iα is the fractional integration operator of the block
pulse functions, we can get

Iα	(x) ∼= Fα	(x), ()

where

Fα =
(

T
m

)α 
�(α + )

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

 ξ ξ · · · ξm–

  ξ · · · ξm–

   · · · ξm–
...

...
...

. . .
...

   · · · 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

ξk = (k + )α+ – kα+ + (k – )α+.

Fα is called the block pulse operational matrix of fractional integration.
Let Dα is the block pulse operational matrix for the fractional differentiation. According

to the property of fractional calculus, DαFα = I , we can easily obtain the matrix Dα by
inverting the Fα matrix.

5 Error analysis
The error can be achieved when a function u(x, t) is represented by D-BPFs over the
region D = [, T) × [, T). Let m = m = m, so h = h = T

m .
We can define the error between u(x, t) and its D-BPFs approximation, um(x, t), over

the sub-region Di,i as follows:

ei,i (x, t) = ui,iφi,i (x, t) – u(x, t) = ui,i – u(x, t), (x, t) ∈ Di,i , ()

where

Di,i =
{

(x, t)
∣∣∣∣ i – 

m
≤ x <

i

m
,

i – 
m

≤ t <
i

m

}
.
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Using the mean value theorem

‖ei,i‖ ≤ 
m M, ()

where ‖u′(x, t)‖ ≤ M. Then the error function e(x, t) is defined as follows:

e(x, t) = um(x, t) – u(x, t). ()

By using equation (), we have

∥∥e(x, t)
∥∥ ≤ 

m M, ()

hence ‖e(x, t)‖ = O( 
m ).

From equation (), the conclusion is drawn that the method in this paper is convergent
when it is used to solve the numerical solutions of fractional partial differential equations.
For more details see [].

6 Description of the proposed method
In the section, we will use the two-dimensional block pulse function to obtain the nu-
merical solutions of equation () with Dirichlet and Neumann boundary conditions. We
suppose m = m = m. Then we have

∂vu
∂xv

∼= ∂v(	T (x)U	(t))
∂xv =

[
∂v	(x)

∂xv

]
U	(t) = 	T (x)DT

v U	(t), ()

∂γ u
∂tγ

∼= ∂γ (	T (x)U	(t))
∂tγ

= 	T (x)U
∂γ (	(t))

∂tγ
= 	T (x)UDγ 	(t). ()

Using equation (), the function g(x, t) of equation () can be expressed as

g(x, t) ∼= 	T (x)G	(t), ()

where G = (gij)m×m. Substituting equations ()-() into equation (), we have

	T (x)DT
v U	(t) + 	T (x)UDγ 	(t) = 	T (x)G	(t), ()

and dispersing equation () by the points (xi, tj) (i, j = , , . . . , m), we obtain

DT
v U + UDγ = G, ()

which is a Sylvester equation.
(i) Dirichlet boundary conditions: For equation () with boundary conditions of

equation (), we have

	T (x)U	() ≈ 	T (x)C, 	T ()U	(t) ≈ CT
 	(t),

	T (x)U	(τ ) ≈ 	T (x)C, 	T (L)U	(t) ≈ CT
 	(t).

()
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The entries of vector 	T (x) and 	(t) are independent, so from equation () we can
obtain

� = U	() – C ≈ , � = 	T ()U – CT
 ≈ ,

� = U	(τ ) – C ≈ , � = 	T (L)U – CT
 ≈ ,

()

(ii) Neumann boundary conditions: Similar to equation (), we can obtain

� = U	() – C ≈ , � = 	T ()U – CT
 ≈ ,

� = UD	(τ ) – C ≈ , � = 	T (L)DT
 U – CT

 ≈ ,
()

equation () together with equation () or equation () gives a system of linear
equations, we apply the least-square-method to solve the system, then the unknown
function can be found.

7 Numerical experiments
In this section, we applied several numerical examples to test our proposed method, and
compared the obtained numerical results with those obtained by the Legendre and the
CAS wavelet methods.

Example  Consider the following Laplace equation:

∂vu(x, t)
∂xv +

∂γ u(x, t)
∂tγ

= , ()

with Dirichlet boundary conditions u(x, ) = , u(, t) = , u(x, ) = sinh(x) sin(), u(, t) =
sinh() sin(t). The exact solution of this problem for v = γ =  is u(x, t) = sinh(x) sin(t). The
graph of the exact solution is shown in Figure . The graphs of numerical solutions for
m = , ,  are shown in Figures , , .

Example  Consider the following fractional Poisson equation:

∂/u
∂x/ +

∂/u
∂t/ = x/t(t – )

/
�

(



)
+ 

√
tx(x – )/

√
π , ()

Figure 2 Exact solution for Example 1.
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Figure 3 Numerical solution of m = 8 for
Example 1.

Figure 4 Numerical solution of m = 16 for
Example 1.

Figure 5 Numerical solution of m = 32 for
Example 1.

with homogeneous boundary conditions u(x, ) = u(x, ) = u(, t) = u(, t) = . The ana-
lytical solution of this problem is u(x, t) = xt(x – )(t – ). The graph of exact solution is
shown in Figure . The graphs of numerical solutions for m = , ,  in some nodes
(x, t) ∈ [, ] × [, ] are shown in Figures , , . From Examples  and Examples , it
can be concluded that the numerical solutions approximate the exact solutions well as m
grows.

Example  Consider the following Poisson equation:

∂νu(x, t)
∂xν

+
∂γ u(x, t)

∂tγ
= x

(
 + x)e–t , ()
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Figure 6 Exact solution for Example 2.

Figure 7 Numerical solution of m = 16 for
Example 2.

Figure 8 Numerical solution of m = 32 for
Example 2.

with the Neuman boundary condition u(x, ) = x, u(, t) = , ∂u(x,)
∂t = –xe–, ∂u(,t)

∂x = e–t .
The analytical solution of this problem for ν = γ =  is u(x, t) = xe–t . Numerical results for
some values of v, γ and m are listed in Table . The contrastive graphs for our method, the
Legendre and the CAS wavelet methods for m = , ,  are shown in Figures , , .
Table  shows that the numerical solutions are close to the analytical solution with m in-
creasing and the fractional order of v, γ approaches . From Figures , , , it can be
seen that our approach has a great advantage over CAS wavelet method. Moreover, when
m = , our method can achieve the same satisfactory results as the Legendre wavelet
method.
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Figure 9 Numerical solution of m = 64 for
Example 2.

Table 1 Numerical results of some values of v, γ and m for Examples 3

(x, t) v = 2, γ = 1.8 v = 2, γ = 1.9 Exact solution

m = 32 m = 64 m = 32 m = 64

(0.2, 0.2) 0.0080999 0.0078027 0.0072661 0.0068916 0.0065498
(0.4, 0.4) 0.0451791 0.0443244 0.0442091 0.0440639 0.0429004
(0.6, 0.6) 0.1254325 0.1229019 0.1221991 0.1208139 0.1185433
(0.8, 0.8) 0.2421242 0.2382542 0.2363440 0.2339913 0.2300564
(1.0, 1.0) 0.4533293 0.3819264 0.3791327 0.3750676 0.3678794

Figure 10 When m = 16, the numerical solutions obtained by our method and those obtained by the
Legendre and CAS wavelet methods at t = 0.3, 0.6, 0.95; see (a), (b), and (c).

Example  Consider equation () with Neumann boundary conditions u(x, ) = ,
u(, t) = , ∂u(x,)

∂t = x, ∂u(,t)
∂x = t. The analytical solution of this problem for v = γ = 


is u(x, t) = xt. Numerical results obtained by our method for m = , , ,  in some
nodes (x, t) ∈ [, ] × [, ] are listed in Table . In the processor of Inter(R) Core(TM)
i- CPU @ . Hz, RAM . GB and  bit Windows operating system, we use
MATLAB Rb to obtain the computing results and computing time for our method
and the Legendre wavelet method. The contrastive graph of computing time is shown in
Figure  (unit: second). Figure  shows that our method consumed less computing time
than the Legendre wavelet method. This example aims to illustrate that our method has
the advantages of easy theoretical construction and being less time consuming.
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Figure 11 When m = 32, the numerical solutions obtained by our method and those obtained by the
Legendre and CAS wavelet methods at t = 0.3, 0.6, 0.95; see (a), (b), and (c).

Figure 12 When m = 64, the numerical solutions obtained by our method and those obtained by the
Legendre and CAS wavelet methods at t = 0.3, 0.6, 0.95; see (a), (b), and (c).

Table 2 Numerical results of different m for Examples 4

(x, t) Exact solution m = 16 m = 32 m = 64 m = 128

(0, 0) 0 0 0 0 0
(1/4, 1/4) 0.0039 0.0036 0.0037 0.0039 0.0039
(2/4, 2/4) 0.0625 0.0620 0.0623 0.0625 0.0625
(3/4, 3/4) 0.3164 0.3159 0.3160 0.0362 0.3164
(1, 1) 1.0000 0.9996 0.9998 0.9999 1.0000
(5/4, 5/4) 2.4414 2.4406 2.4409 2.4413 2.4414
(6/4, 6/4) 5.0625 5.0618 5.0620 5.0624 5.0625
(7/4, 7/4) 9.3789 9.3776 9.3780 9.3785 9.3789
(2, 2) 16.0000 15.9987 15.9990 15.9996 15.9999

8 Conclusion
In the present analysis, we have applied two-dimensional block pulse functions to approx-
imate the solutions of Poisson type equations with two kinds of boundary conditions. Us-
ing this method, the system of fractional partial differential equations has been reduced to
solving a system of algebraic equations. The accuracy of the solutions of the original prob-
lems will be improved using suitable m and m. The block pulse functions are orthogonal



Xie et al. Boundary Value Problems  (2017) 2017:32 Page 12 of 13

Figure 13 The computing time consumed by our
method and that consumed by the Legendre wavelet
method.

piecewise continuous functions which prompts flexibility for applications. Compared with
other numerical methods, our proposed method has the great advantages of easy theoret-
ical construction and being less time consuming. Additionally, the illustrated examples
analyze and justify the ability and the reliability of the proposed method.
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