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1 Introduction
We consider the system of nonlinear ordinary fractional differential equations

(S)

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+u(t) + λf (t, u(t), v(t), w(t)) = , t ∈ (, ),

Dβ
+v(t) + μg(t, u(t), v(t), w(t)) = , t ∈ (, ),

Dγ
+w(t) + νh(t, u(t), v(t), w(t)) = , t ∈ (, ),

with the multi-point boundary conditions which contain fractional derivatives

(BC)

⎧
⎪⎪⎨

⎪⎪⎩

u(j)() = , j = , . . . , n – ; Dp
+u(t)|t= =

∑N
i= aiD

q
+u(t)|t=ξi ,

v(j)() = , j = , . . . , m – ; Dp
+v(t)|t= =

∑M
i= biD

q
+v(t)|t=ηi ,

w(j)() = , j = , . . . , l – ; Dp
+w(t)|t= =

∑L
i= ciD

q
+w(t)|t=ζi ,

where λ,μ,ν > , α,β ,γ ∈R, α ∈ (n – , n], β ∈ (m – , m], γ ∈ (l – , l], n, m, l ∈N, n, m, l ≥
, p, p, p, q, q, q ∈R, p ∈ [, n–], p ∈ [, m–], p ∈ [, l–], q ∈ [, p], q ∈ [, p],
q ∈ [, p], ξi, ai ∈ R for all i = , . . . , N (N ∈ N),  < ξ < · · · < ξN ≤ , ηi, bi ∈ R for all
i = , . . . , M (M ∈ N),  < η < · · · < ηM ≤ , ζi, ci ∈ R for all i = , . . . , L (L ∈ N),  < ζ < · · · <
ζL ≤ , and Dk

+ denotes the Riemann-Liouville derivative of order k.
Under some assumptions on f , g and h, we give intervals for the parameters λ, μ and ν

such that positive solutions of (S)-(BC) exist. By a positive solution of problem (S)-(BC),
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we mean a triplet of functions (u, v, w) ∈ (C([, ],R+)), (R+ = [,∞)) satisfying (S) and
(BC) with u(t) >  for all t ∈ (, ], or v(t) >  for all t ∈ (, ], or w(t) >  for all t ∈ (, ].
The nonexistence of positive solutions for the above problem is also studied. Our results
generalize the results from the paper [], where the authors investigated a system with
two fractional differential equations and multi-point boundary conditions. Besides, our
results improve and extend the results from [], where only a few cases are presented for
the existence of positive solutions for a system of integral equations and, as an application,
for a system with three fractional equations subject to some boundary conditions in points
t =  and t =  (Application . from []).

Systems with two fractional differential equations with multi-point or Riemann-Stieltjes
integral boundary conditions were also studied in [–], etc. Fractional differential equa-
tions describe many phenomena in various fields of engineering and scientific disciplines
such as physics, biophysics, chemistry, biology, economics, control theory, signal and im-
age processing, aerodynamics, viscoelasticity, electromagnetics, and so on (see [–]).

The paper is organized as follows. In Section , we present some auxiliary results which
investigate a nonlocal boundary value problem for fractional differential equations. Sec-
tion  contains the main existence theorems for positive solutions with respect to a cone
for our problem (S)-(BC). In Section , we investigate the nonexistence of positive solu-
tions of (S)-(BC); and in Section , some examples are given to support our results. The
main conclusions for our investigations from this paper are presented in Section .

2 Auxiliary results
We present firstly some auxiliary results from [] that will be used to prove our main
results.

We consider the fractional differential equation

Dα
+u(t) + x(t) = ,  < t < , ()

with the multi-point boundary conditions

u(j)() = , j = , . . . , n – ; Dp
+u(t)|t= =

N∑

i=

aiD
q
+u(t)|t=ξi , ()

where α ∈ (n – , n], n ∈ N, n ≥ , ai, ξi ∈ R, i = , . . . , N (N ∈ N),  < ξ < · · · < ξN ≤
, p, q ∈ R, p ∈ [, n – ], q ∈ [, p], and x ∈ C[, ]. We denote 
 = �(α)

�(α–p) –
�(α)

�(α–q)
∑N

i= aiξ
α–q–
i .

Lemma . ([]) If 
 �= , then the function u ∈ C[, ] given by

u(t) =
∫ 


G(t, s)x(s) ds, t ∈ [, ], ()

is solution of problem ()-(), where

G(t, s) = g(t, s) +
tα–




N∑

i=

aig(ξi, s), ∀(t, s) ∈ [, ] × [, ], ()



Luca Boundary Value Problems  (2017) 2017:102 Page 3 of 35

and

g(t, s) =


�(α)

⎧
⎨

⎩

tα–( – s)α–p– – (t – s)α–,  ≤ s ≤ t ≤ ,

tα–( – s)α–p–,  ≤ t ≤ s ≤ ,

g(t, s) =


�(α – q)

⎧
⎨

⎩

tα–q–( – s)α–p– – (t – s)α–q–,  ≤ s ≤ t ≤ ,

tα–q–( – s)α–p–,  ≤ t ≤ s ≤ .

()

Lemma . ([]) The functions g and g given by () have the properties:
(a) g(t, s) ≤ h(s) for all t, s ∈ [, ], where

h(s) =


�(α)
( – s)α–p–( – ( – s)p

)
, s ∈ [, ];

(b) g(t, s) ≥ tα–h(s) for all t, s ∈ [, ];
(c) g(t, s) ≤ tα–

�(α) for all t, s ∈ [, ];
(d) g(t, s) ≥ tα–q–h(s) for all t, s ∈ [, ], where

h(s) =


�(α – q)
( – s)α–p–( – ( – s)p–q

)
, s ∈ [, ];

(e) g(t, s) ≤ 
�(α–q) tα–q– for all t, s ∈ [, ];

(f ) The functions g and g are continuous on [, ] × [, ]; g(t, s) ≥ , g(t, s) ≥  for all
t, s ∈ [, ]; g(t, s) > , g(t, s) >  for all t, s ∈ (, ).

Lemma . ([]) Assume that ai ≥  for all i = , . . . , N and 
 > . Then the function G

given by () is a nonnegative continuous function on [, ] × [, ] and satisfies the inequal-
ities:

(a) G(t, s) ≤ J(s) for all t, s ∈ [, ], where J(s) = h(s) + 



∑N
i= aig(ξi, s), s ∈ [, ];

(b) G(t, s) ≥ tα–J(s) for all t, s ∈ [, ];
(c) G(t, s) ≤ σtα–, for all t, s ∈ [, ], where σ = 

�(α) + 

�(α–q)

∑N
i= aiξ

α–q–
i .

Lemma . ([]) Assume that ai ≥  for all i = , . . . , N , 
 > , x ∈ C[, ] and x(t) ≥ 
for all t ∈ [, ]. Then the solution u of problem ()-() given by () satisfies the inequality
u(t) ≥ tα–u(t′) for all t, t′ ∈ [, ].

We can also formulate similar results as Lemmas .-. for the fractional boundary
value problems

Dβ
+v(t) + y(t) = ,  < t < , ()

v(j)() = , j = , . . . , m – ; Dp
+v(t)|t= =

M∑

i=

biD
q
+v(t)|t=ηi , ()

and

Dγ
+w(t) + z(t) = ,  < t < , ()
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w(j)() = , j = , . . . , l – ; Dp
+w(t)|t= =

L∑

i=

ciD
q
+w(t)|t=ζi , ()

where β ∈ (m – , m], γ ∈ (l – , l], m, l ∈ N, m, l ≥ , bi,ηi ∈ R, i = , . . . , M (M ∈ N),  <
η < · · · < ηM ≤ , ci, ζi ∈ R, i = , . . . , L (L ∈ N),  < ζ < · · · < ζL ≤ , p, q, p, q ∈ R, p ∈
[, m – ], q ∈ [, p], p ∈ [, l – ], q ∈ [, p], and y, z ∈ C[, ].

We denote by 
, g, g, G, h, h, J and σ, and 
, g, g, G, h, h, J and σ the cor-
responding constants and functions for problem ()-() and problem ()-(), respectively,
defined in a similar manner as 
, g, g, G, h, h, J and σ, respectively. More precisely,
we have


 =
�(β)

�(β – p)
–

�(β)
�(β – q)

M∑

i=

biη
β–q–
i ,

g(t, s) =


�(β)

⎧
⎨

⎩

tβ–( – s)β–p– – (t – s)β–,  ≤ s ≤ t ≤ ,

tβ–( – s)β–p–,  ≤ t ≤ s ≤ ,

g(t, s) =


�(β – q)

⎧
⎨

⎩

tβ–q–( – s)β–p– – (t – s)β–q–,  ≤ s ≤ t ≤ ,

tβ–q–( – s)β–p–,  ≤ t ≤ s ≤ ,

G(t, s) = g(t, s) +
tβ–




M∑

i=

big(ηi, s), ∀(t, s) ∈ [, ] × [, ],

h(s) =


�(β)
( – s)β–p–( – ( – s)p

)
, s ∈ [, ],

h(s) =


�(β – q)
( – s)β–p–( – ( – s)p–q

)
, s ∈ [, ],

J(s) = h(s) +





M∑

i=

big(ηi, s), s ∈ [, ],

σ =


�(β)
+



�(β – q)

M∑

i=

biη
β–q–
i ,

and


 =
�(γ )

�(γ – p)
–

�(γ )
�(γ – q)

L∑

i=

ciζ
γ –q–
i ,

g(t, s) =


�(γ )

⎧
⎨

⎩

tγ –( – s)γ –p– – (t – s)γ –,  ≤ s ≤ t ≤ ,

tγ –( – s)γ –p–,  ≤ t ≤ s ≤ ,

g(t, s) =


�(γ – q)

⎧
⎨

⎩

tγ –q–( – s)γ –p– – (t – s)γ –q–,  ≤ s ≤ t ≤ ,

tγ –q–( – s)γ –p–,  ≤ t ≤ s ≤ ,

G(t, s) = g(t, s) +
tγ –




L∑

i=

cig(ζi, s), ∀(t, s) ∈ [, ] × [, ],

h(s) =


�(γ )
( – s)γ –p–( – ( – s)p

)
, s ∈ [, ],
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h(s) =


�(γ – q)
( – s)γ –p–( – ( – s)p–q

)
, s ∈ [, ],

J(s) = h(s) +





L∑

i=

cig(ζi, s), s ∈ [, ],

σ =


�(γ )
+



�(γ – q)

L∑

i=

ciζ
γ –q–
i .

The inequalities from Lemmas . and . for the functions G, G, v and w are the
following G(t, s) ≤ J(s), G(t, s) ≥ tβ–J(s), G(t, s) ≤ σtβ–, G(t, s) ≤ J(s), G(t, s) ≥
tγ –J(s), G(t, s) ≤ σtγ – for all t, s ∈ [, ], and v(t) ≥ tβ–v(t′), w(t) ≥ tγ –w(t′) for all
t, t′ ∈ [, ].

In the proof of our main existence results, we shall use the following theorem (the Guo-
Krasnosel’skii fixed point theorem, see []).

Theorem . Let X be a Banach space, and let C ⊂ X be a cone in X. Assume  and 

are bounded open subsets of X with  ∈  ⊂  ⊂ , and let A : C ∩ ( \ ) → C be a
completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂, and ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂, or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂, and ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂.

Then A has a fixed point in C ∩ ( \ ).

3 Existence of positive solutions
In this section, we give sufficient conditions on λ, μ, ν , f , g and h such that positive solu-
tions with respect to a cone for our problem (S)-(BC) exist.

We present the assumptions that we shall use in the sequel.

(H) α,β ,γ ∈ R, α ∈ (n – , n], β ∈ (m – , m], γ ∈ (l – , l], n, m, l ∈ N, n, m, l ≥ ,
p, p, p, q, q, q ∈ R, p ∈ [, n – ], p ∈ [, m – ], p ∈ [, l – ], q ∈ [, p], q ∈
[, p], q ∈ [, p], ξi ∈R, ai ≥  for all i = , . . . , N (N ∈N),  < ξ < · · · < ξN ≤ , ηi ∈
R, bi ≥  for all i = , . . . , M (M ∈N),  < η < · · · < ηM ≤ , and ζi ∈R, ci ≥  for all i =
, . . . , L (L ∈ N),  < ζ < · · · < ζL ≤ ; λ,μ,ν > , 
 = �(α)

�(α–p) – �(α)
�(α–q)

∑N
i= aiξ

α–q–
i >

, 
 = �(β)
�(β–p) – �(β)

�(β–q)
∑M

i= biη
β–q–
i > , 
 = �(γ )

�(γ –p) – �(γ )
�(γ –q)

∑L
i= ciζ

γ –q–
i > .

(H) The functions f , g, h : [, ] ×R+ ×R+ ×R+ →R+ are continuous.

For σ ∈ (, ), we introduce the following extreme limits:

f s
 = lim sup

u+v+w→+
max
t∈[,]

f (t, u, v, w)
u + v + w

, gs
 = lim sup

u+v+w→+
max
t∈[,]

g(t, u, v, w)
u + v + w

,

hs
 = lim sup

u+v+w→+
max
t∈[,]

h(t, u, v, w)
u + v + w

, f i
 = lim inf

u+v+w→+
min

t∈[σ ,]

f (t, u, v, w)
u + v + w

,

gi
 = lim inf

u+v+w→+
min

t∈[σ ,]

g(t, u, v, w)
u + v + w

, hi
 = lim inf

u+v+w→+
min

t∈[σ ,]

h(t, u, v, w)
u + v + w

,

f s
∞ = lim sup

u+v+w→∞
max
t∈[,]

f (t, u, v, w)
u + v + w

, gs
∞ = lim sup

u+v+w→∞
max
t∈[,]

g(t, u, v, w)
u + v + w

,

hs
∞ = lim sup

u+v+w→∞
max
t∈[,]

h(t, u, v, w)
u + v + w

, f i
∞ = lim inf

u+v+w→∞ min
t∈[σ ,]

f (t, u, v, w)
u + v + w

,

gi
∞ = lim inf

u+v+w→∞ min
t∈[σ ,]

g(t, u, v, w)
u + v + w

, hi
∞ = lim inf

u+v+w→∞ min
t∈[σ ,]

h(t, u, v, w)
u + v + w

.
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In the definition of the extreme limits above, the variables u, v and w are nonnegative.
By using the Green functions Gi, i = , , , from Section , we consider the following

nonlinear system of integral equations:

⎧
⎪⎪⎨

⎪⎪⎩

u(t) = λ
∫ 

 G(t, s)f (s, u(s), v(s), w(s)) ds, t ∈ [, ],

v(t) = μ
∫ 

 G(t, s)g(s, u(s), v(s), w(s)) ds, t ∈ [, ],

w(t) = ν
∫ 

 G(t, s)h(s, u(s), v(s), w(s)) ds, t ∈ [, ].

If (u, v, w) is a solution of the above system, then by Lemma . and the corresponding
lemmas for problems ()-() and ()-(), we deduce that (u, v, w) is a solution of problem
(S)-(BC).

We consider the Banach space X = C[, ] with the supremum norm ‖ ·‖ and the Banach
space Y = X × X × X with the norm ‖(u, v, w)‖Y = ‖u‖ + ‖v‖ + ‖w‖. We define the cones

P =
{

u ∈ X, u(t) ≥ tα–‖u‖,∀t ∈ [, ]
} ⊂ X,

P =
{

v ∈ X, v(t) ≥ tβ–‖v‖,∀t ∈ [, ]
} ⊂ X,

P =
{

w ∈ X, w(t) ≥ tγ –‖w‖,∀t ∈ [, ]
} ⊂ X,

and P = P × P × P ⊂ Y .
For λ,μ,ν > , we define now the operator Q : P → Y by Q(u, v, w) = (Q(u, v, w),

Q(u, v, w), Q(u, v, w)) with

Q(u, v, w)(t) = λ

∫ 


G(t, s)f

(
s, u(s), v(s), w(s)

)
ds, t ∈ [, ], (u, v, w) ∈ P,

Q(u, v, w)(t) = μ

∫ 


G(t, s)g

(
s, u(s), v(s), w(s)

)
ds, t ∈ [, ], (u, v, w) ∈ P,

Q(u, v, w)(t) = ν

∫ 


G(t, s)h

(
s, u(s), v(s), w(s)

)
ds, t ∈ [, ], (u, v, w) ∈ P.

Lemma . If (H)-(H) hold, then Q : P → P is a completely continuous operator.

Proof Let (u, v, w) ∈ P be an arbitrary element. Because Q(u, v, w), Q(u, v, w) and Q(u,
v, w) satisfy problem ()-() for x(t) = λf (t, u(t), v(t), w(t)), t ∈ [, ], problem ()-() for
y(t) = μg(t, u(t), v(t), w(t)), t ∈ [, ], and problem ()-() for z(t) = νh(t, u(t), v(t), w(t)), t ∈
[, ], respectively, then by Lemma . and the corresponding ones for problems ()-()
and ()-(), we obtain

Q(u, v, w)
(
t′) ≥ tα–Q(u, v, w)

(
t′), Q(u, v, w)

(
t′) ≥ tβ–Q(u, v, w)

(
t′),

Q(u, v, w)
(
t′) ≥ tγ –Q(u, v, w)

(
t′), ∀t, t′ ∈ [, ], (u, v, w) ∈ P,

and so

Q(u, v, w)(t) ≥ tα– max
t′∈[,]

Q(u, v, w)
(
t′)

= tα–∥∥Q(u, v, w)
∥
∥, ∀t ∈ [, ], (u, v, w) ∈ P,
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Q(u, v, w)(t) ≥ tβ– max
t′∈[,]

Q(u, v, w)
(
t′)

= tβ–∥∥Q(u, v, w)
∥
∥, ∀t ∈ [, ], (u, v, w) ∈ P,

Q(u, v, w)(t) ≥ tγ – max
t′∈[,]

Q(u, v, w)
(
t′)

= tγ –∥∥Q(u, v, w)
∥
∥, ∀t ∈ [, ], (u, v, w) ∈ P.

Therefore, Q(u, v, w) = (Q(u, v, w), Q(u, v, w), Q(u, v, w)) ∈ P, and then Q(P) ⊂ P. By us-
ing standard arguments, we can easily show that Q, Q and Q are completely continuous
(continuous and compact, that is, map bounded sets into relatively compact sets), and then
Q is a completely continuous operator. �

If (u, v, w) ∈ P is a fixed point of operator Q, then (u, v, w) is a solution of problem (S)-
(BC). So, we will investigate the existence of fixed points of operator Q.

For σ ∈ (, ), we denote A =
∫ 
σ

J(s) ds, B =
∫ 

 J(s) ds, C =
∫ 
σ

J(s) ds, D =
∫ 

 J(s) ds, E =
∫ 
σ

J(s) ds, F =
∫ 

 J(s) ds, where J, J and J are defined in Section .
First, for f s

 , gs
, hs

, f i∞, gi∞, hi∞ ∈ (,∞) and numbers α,α,α ≥  with α + α + α = ,
α̃, α̃, α̃ >  with α̃ + α̃ + α̃ = , α̃′

, α̃′
 >  with α̃′

 + α̃′
 = , α̃′′

 , α̃′′
 >  with α̃′′

 + α̃′′
 = ,

α̃′′′
 , α̃′′′

 >  with α̃′′′
 + α̃′′′

 = , we define the numbers

L =
α

θσα–f i∞A
, L =

α

θσβ–gi∞C
, L =

α

θσ γ –hi∞E
, L =

α̃

f s
 B

,

L =
α̃

gs
D

, L =
α̃

hs
F

, L′
 =

α̃′


gs
D

, L′
 =

α̃′


hs
F

, L′′
 =

α̃′′


f s
 B

, L′′
 =

α̃′′


hs
F

,

L′′′
 =

α̃′′′


f s
 B

, L′′′
 =

α̃′′′


gs
D

, L̃ =


f s
 B

, L̃ =


gs
D

, L̃ =


hs
F

,

where θ = min{σα–,σβ–,σγ –}.

Theorem . Assume that (H) and (H) hold, σ ∈ (, ), α,α,α ≥  with α + α + α =
, α̃, α̃, α̃ >  with α̃ + α̃ + α̃ = , α̃′

, α̃′
 >  with α̃′

 + α̃′
 = , α̃′′

 , α̃′′
 >  with α̃′′

 + α̃′′
 = ,

α̃′′′
 , α̃′′′

 >  with α̃′′′
 + α̃′′′

 = .
() If f s

 , gs
, hs

, f i∞, gi∞, hi∞ ∈ (,∞), L < L, L < L and L < L, then for each
λ ∈ (L, L), μ ∈ (L, L), ν ∈ (L, L) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If f s
 = , gs

, hs
, f i∞, gi∞, hi∞ ∈ (,∞), L < L′

 and L < L′
, then for each λ ∈ (L,∞),

μ ∈ (L, L′
), ν ∈ (L, L′

) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for
problem (S)-(BC).

() If gs
 = , f s

 , hs
, f i∞, gi∞, hi∞ ∈ (,∞), L < L′′

 and L < L′′
, then for each λ ∈ (L, L′′

),
μ ∈ (L,∞), ν ∈ (L, L′′

) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for
problem (S)-(BC).

() If hs
 = , f s

 , gs
, f i∞, gi∞, hi∞ ∈ (,∞), L < L′′′

 and L < L′′′
 , then for each λ ∈ (L, L′′′

 ),
μ ∈ (L, L′′′

 ), ν ∈ (L,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for
problem (S)-(BC).

() If f s
 = gs

 = , hs
, f i∞, gi∞, hi∞ ∈ (,∞), L < L̃, then for each λ ∈ (L,∞), μ ∈ (L,∞),

ν ∈ (L, L̃) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for problem
(S)-(BC).
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() If f s
 = hs

 = , gs
, f i∞, gi∞, hi∞ ∈ (,∞), L < L̃, then for each λ ∈ (L,∞), μ ∈ (L, L̃),

ν ∈ (L,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for problem
(S)-(BC).

() If gs
 = hs

 = , f s
 , f i∞, gi∞, hi∞ ∈ (,∞), L < L̃, then for each λ ∈ (L, L̃), μ ∈ (L,∞),

ν ∈ (L,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for problem
(S)-(BC).

() If f s
 = gs

 = hs
 = , f i∞, gi∞, hi∞ ∈ (,∞), then for each λ ∈ (L,∞), μ ∈ (L,∞),

ν ∈ (L,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for problem
(S)-(BC).

() If f s
 , gs

, hs
 ∈ (,∞) and at least one of f i∞, gi∞, hi∞ is ∞, then for each λ ∈ (, L),

μ ∈ (, L), ν ∈ (, L) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for
problem (S)-(BC).

() If f s
 = , gs

, hs
 ∈ (,∞) and at least one of f i∞, gi∞, hi∞ is ∞, then for each

λ ∈ (,∞), μ ∈ (, L′
), ν ∈ (, L′

) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If gs
 = , f s

 , hs
 ∈ (,∞) and at least one of f i∞, gi∞, hi∞ is ∞, then for each

λ ∈ (, L′′
), μ ∈ (,∞), ν ∈ (, L′′

) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If hs
 = , f s

 , gs
 ∈ (,∞) and at least one of f i∞, gi∞, hi∞ is ∞, then for each

λ ∈ (, L′′′
 ), μ ∈ (, L′′′

 ), ν ∈ (,∞) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If f s
 = gs

 = , hs
 ∈ (,∞) and at least one of f i∞, gi∞, hi∞ is ∞, then for each

λ ∈ (,∞), μ ∈ (,∞), ν ∈ (, L̃) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If f s
 = hs

 = , gs
 ∈ (,∞) and at least one of f i∞, gi∞, hi∞ is ∞, then for each

λ ∈ (,∞), μ ∈ (, L̃), ν ∈ (,∞) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If gs
 = hs

 = , f s
 ∈ (,∞) and at least one of f i∞, gi∞, hi∞ is ∞, then for each

λ ∈ (, L̃), μ ∈ (,∞), ν ∈ (,∞) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If f s
 = gs

 = hs
 =  and at least one of f i∞, gi∞, hi∞ is ∞, then for each λ ∈ (,∞),

μ ∈ (,∞), ν ∈ (,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for
problem (S)-(BC).

Proof We consider the above cone P ⊂ Y and the operators Q, Q, Q and Q. We will
prove some illustrative cases of this theorem.

Case (). We consider f s
 , gs

, hs
, f i∞, gi∞, hi∞ ∈ (,∞). Let λ ∈ (L, L), μ ∈ (L, L) and ν ∈

(L, L). We choose ε >  a positive number such that ε < f i∞, ε < gi∞, ε < hi∞ and

α̃

(f s
 + ε)B

≥ λ,
α̃

(gs
 + ε)D

≥ μ,
α̃

(hs
 + ε)F

≥ ν,

α

θσα–(f i∞ – ε)A
≤ λ,

α

θσβ–(gi∞ – ε)C
≤ μ,

α

θσ γ –(hi∞ – ε)E
≤ ν.

By using (H) and the definition of f s
 , gs

 and hs
, we deduce that there exists R > 

such that f (t, u, v, w) ≤ (f s
 + ε)(u + v + w), g(t, u, v, w) ≤ (gs

 + ε)(u + v + w), h(t, u, v, w) ≤
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(hs
 + ε)(u + v + w) for all t ∈ [, ] and u, v, w ≥  with u + v + w ≤ R. We define the set

 = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}.
Now let (u, v, w) ∈ P∩∂, that is, ‖(u, v, w)‖Y = R or, equivalently, ‖u‖+‖v‖+‖w‖ = R.

Then u(t) + v(t) + w(t) ≤ R for all t ∈ [, ], and by Lemma ., we obtain

Q(u, v, w)(t) ≤ λ

∫ 


J(s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


J(s)

(
f s
 + ε

)(
u(s) + v(s) + w(s)

)
ds

≤ λ
(
f s
 + ε

)
∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= λ
(
f s
 + ε

)
B
∥
∥(u, v, w)

∥
∥

Y ≤ α̃
∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [, ],

Q(u, v, w)(t) ≤ μ

∫ 


J(s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


J(s)

(
gs

 + ε
)(

u(s) + v(s) + w(s)
)

ds

≤ μ
(
gs

 + ε
)
∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= μ
(
gs

 + ε
)
D

∥
∥(u, v, w)

∥
∥

Y ≤ α̃
∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [, ],

Q(u, v, w)(t) ≤ ν

∫ 


J(s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ν

∫ 


J(s)

(
hs

 + ε
)(

u(s) + v(s) + w(s)
)

ds

≤ ν
(
hs

 + ε
)
∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= ν
(
hs

 + ε
)
F
∥
∥(u, v, w)

∥
∥

Y ≤ α̃
∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [, ].

Therefore, ‖Q(u, v, w)‖ ≤ α̃‖(u, v, w)‖Y , ‖Q(u, v, w)‖ ≤ α̃‖(u, v, w)‖Y , ‖Q(u, v, w)‖ ≤
α̃‖(u, v, w)‖Y .

Then, for (u, v, w) ∈ P ∩ ∂, we deduce

∥
∥Q(u, v, w)

∥
∥

Y =
∥
∥Q(u, v, w)

∥
∥ +

∥
∥Q(u, v, w)

∥
∥ +

∥
∥Q(u, v, w)

∥
∥

≤ (̃α + α̃ + α̃)
∥
∥(u, v, w)

∥
∥

Y =
∥
∥(u, v, w)

∥
∥

Y . ()

By the definition of f i∞, gi∞ and hi∞, there exists R >  such that f (t, u, v, w) ≥ (f i∞ –
ε)(u + v + w), g(t, u, v, w) ≥ (gi∞ – ε)(u + v + w), h(t, u, v, w) ≥ (hi∞ – ε)(u + v + w) for all
u, v, w ≥  with u + v + w ≥ R and t ∈ [σ , ]. We consider R = max{R, R/θ}, and we
define  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}. Then, for (u, v, w) ∈ P with ‖(u, v, w)‖Y = R,
we obtain

u(t) + v(t) + w(t) ≥ σα–‖u‖ + σβ–‖v‖ + σγ –‖w‖ ≥ θ
(‖u‖ + ‖v‖ + ‖w‖)

= θ
∥
∥(u, v, w)

∥
∥

Y = θR ≥ R, ∀t ∈ [σ , ].
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Then, by Lemma ., we conclude

Q(u, v, w)(t) ≥ λ

∫ 


tα–J(s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λσα–
∫ 

σ

J(s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λσα–
∫ 

σ

J(s)
(
f i
∞ – ε

)(
u(s) + v(s) + w(s)

)
ds

≥ λσα–θ
(
f i
∞ – ε

)
∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= λσα–θ
(
f i
∞ – ε

)
A

∥
∥(u, v, w)

∥
∥

Y

≥ α
∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [σ , ],

Q(u, v, w)(t) ≥ μ

∫ 


tβ–J(s)g

(
s, u(s), v(s), w(s)

)
ds

≥ μσβ–
∫ 

σ

J(s)g
(
s, u(s), v(s), w(s)

)
ds

≥ μσβ–
∫ 

σ

J(s)
(
gi
∞ – ε

)(
u(s) + v(s) + w(s)

)
ds

≥ μσβ–θ
(
gi
∞ – ε

)
∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= μσβ–θ
(
gi
∞ – ε

)
C

∥
∥(u, v, w)

∥
∥

Y

≥ α
∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [σ , ],

Q(u, v, w)(t) ≥ ν

∫ 


tγ –J(s)h

(
s, u(s), v(s), w(s)

)
ds

≥ νσ γ –
∫ 

σ

J(s)h
(
s, u(s), v(s), w(s)

)
ds

≥ νσ γ –
∫ 

σ

J(s)
(
hi

∞ – ε
)(

u(s) + v(s) + w(s)
)

ds

≥ νσ γ –θ
(
hi

∞ – ε
)
∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= νσ γ –θ
(
hi

∞ – ε
)
F
∥
∥(u, v, w)

∥
∥

Y

≥ α
∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [σ , ].

So ‖Q(u, v, w)‖ ≥ Q(u, v, w)(σ ) ≥ α‖(u, v, w)‖Y , ‖Q(u, v, w)‖ ≥ Q(u, v, w)(σ ) ≥ α‖(u,
v, w)‖Y , ‖Q(u, v, w)‖ ≥ Q(u, v, w)(σ ) ≥ α‖(u, v, w)‖Y .

Hence, for (u, v, w) ∈ P ∩ ∂, we obtain

∥
∥Q(u, v, w)

∥
∥

Y =
∥
∥Q(u, v, w)

∥
∥ +

∥
∥Q(u, v, w)

∥
∥ +

∥
∥Q(u, v, w)

∥
∥

≥ (α + α + α)
∥
∥(u, v, w)

∥
∥

Y =
∥
∥(u, v, w)

∥
∥

Y . ()

By using Lemma ., Theorem . i) and relations (), (), we deduce that Q has a
fixed point (u, v, w) ∈ P ∩ ( \ ), u(t) ≥ tα–‖u‖, v(t) ≥ tβ–‖v‖, w(t) ≥ tγ –‖w‖ for all
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t ∈ [, ], and R ≤ ‖u‖+‖v‖+‖w‖ ≤ R. If ‖u‖ > , then u(t) >  for all t ∈ (, ], if ‖v‖ > ,
then v(t) >  for all t ∈ (, ], and if ‖w‖ > , then w(t) >  for all t ∈ (, ]. So, (u, v, w) is a
positive solution for our problem (S)-(BC).

Case (). We consider f s
 = , f i∞ = ∞, gs

, hs
, gi∞, hi∞ ∈ (,∞). Let λ ∈ (,∞), μ ∈ (, L′

)
and ν ∈ (, L′

). We choose ε >  a positive number such that ε ≤ λθσα–A and

ε ≤  – μgs
D – νhs

F
λB

, ε ≤ α̃′
 – μgs

D
μD

, ε ≤ α̃′
 – νhs

F
νF

.

The numerators of the above fractions are positive because μ < α̃′


gs
D , that is, α̃′

 > μgs
D,

ν < α̃′


hs
F , that is, α̃′

 > νhs
F , and  – μgs

D – νhs
F = α̃′

 + α̃′
 – μgs

D – νhs
F = (̃α′

 – μgs
D) +

(̃α′
 – νhs

F) > .
By using (H) and the definition of f s

 , gs
, hs

, we deduce that there exists R >  such
that f (t, u, v, w) ≤ ε(u + v + w), g(t, u, v, w) ≤ (gs

 + ε)(u + v + w), h(t, u, v, w) ≤ (hs
 + ε)(u +

v + w) for all t ∈ [, ], u, v, w ≥  with u + v + w ≤ R. We define the set  = {(u, v, w) ∈
Y ,‖(u, v, w)‖Y < R}.

Now let (u, v, w) ∈ P ∩ ∂, that is, ‖(u, v, w)‖Y = R. Then u(t) + v(t) + w(t) ≤ R for all
t ∈ [, ], and by Lemma . we obtain

Q(u, v, w)(t) ≤ λ

∫ 


J(s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


J(s)ε

(
u(s) + v(s) + w(s)

)
ds

≤ λε

∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= λεB
∥
∥(u, v, w)

∥
∥

Y ≤ 

(
 – μgs

D – νhs
F

)∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ μ

∫ 


J(s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


J(s)

(
gs

 + ε
)(

u(s) + v(s) + w(s)
)

ds

≤ μ
(
gs

 + ε
)
∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= μ
(
gs

 + ε
)
D

∥
∥(u, v, w)

∥
∥

Y

≤ μ

(

gs
 +

α̃′
 – μgs

D
μD

)

D
∥
∥(u, v, w)

∥
∥

Y

=


(
μgs

D + α̃′

)∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ ν

∫ 


J(s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ν

∫ 


J(s)

(
hs

 + ε
)(

u(s) + v(s) + w(s)
)

ds

≤ ν
(
hs

 + ε
)
∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds
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= ν
(
hs

 + ε
)
F
∥
∥(u, v, w)

∥
∥

Y ≤ ν

(

hs
 +

α̃′
 – νhs

F
νF

)

F
∥
∥(u, v, w)

∥
∥

Y

=


(
νhs

F + α̃′

)∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [, ].

Therefore

∥
∥Q(u, v, w)

∥
∥ ≤ 


(
 – μgs

D – νhs
F

)∥
∥(u, v, w)

∥
∥

Y ,

∥
∥Q(u, v, w)

∥
∥ ≤ 


(
μgs

D + α̃′

)∥
∥(u, v, w)

∥
∥

Y ,

∥
∥Q(u, v, w)

∥
∥ ≤ 


(
νhs

F + α̃′

)∥
∥(u, v, w)

∥
∥

Y .

Then, for (u, v, w) ∈ P ∩ ∂, we conclude

∥
∥Q(u, v, w)

∥
∥

Y =
∥
∥Q(u, v, w)

∥
∥ +

∥
∥Q(u, v, w)

∥
∥ +

∥
∥Q(u, v, w)

∥
∥

≤ 

(
 – μgs

D – νhs
F + μgs

D + α̃′
 + νhs

F + α̃′

)∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y . ()

By the definition of f i∞, there exists R >  such that f (t, u, v, w) ≥ 
ε
(u + v + w) for all

u, v, w ≥  with u + v + w ≥ R and t ∈ [σ , ]. We consider R = max{R, R/θ}, and we
define  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}. Then, for (u, v, w) ∈ P with ‖(u, v, w)‖Y = R,
we obtain u(t) + v(t) + w(t) ≥ θ‖(u, v, w)‖Y = θR ≥ R for all t ∈ [σ , ]. Then by Lemma .
we deduce

Q(u, v, w)(t) ≥ λ

∫ 


tα–J(s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λσα–
∫ 

σ

J(s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λσα–
∫ 

σ

J(s)

ε

(
u(s) + v(s) + w(s)

)
ds

≥ λσα–θ

ε

∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= λσα–θ

ε

A
∥
∥(u, v, w)

∥
∥

Y ≥ ∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [σ , ].

Then ‖Q(u, v, w)‖ ≥ Q(u, v, w)(σ ) ≥ ‖(u, v, w)‖Y , and

∥
∥Q(u, v, w)

∥
∥

Y ≥ ∥
∥Q(u, v, w)

∥
∥ ≥ ∥

∥(u, v, w)
∥
∥

Y . ()

By using Lemma ., Theorem .(i) and inequalities (), (), we conclude that Q has
a fixed point (u, v, w) ∈ P ∩ ( \ ) which is a positive solution of problem (S)-(BC).

Case (). We consider gs
 = hs

 = , gi∞ = ∞, f s
 , f i∞, hi∞ ∈ (,∞). Let λ ∈ (, L̃), μ ∈

(,∞), ν ∈ (,∞). We choose ε >  a positive number such that ε ≤ μθσβ–C and

ε ≤  – λf s
 B

λB
, ε ≤  – λf s

 B
μD

, ε ≤  – λf s
 B

νF
.
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The numerator of the above fractions is positive because λ < 
f s
B , that is,  – λf s

 B > .
By using (H) and the definition of f s

 , gs
, hs

, we deduce that there exists R >  such that
f (t, u, v, w) ≤ (f s

 + ε)(u + v + w), g(t, u, v, w) ≤ ε(u + v + w), h(t, u, v, w) ≤ ε(u + v + w) for all
t ∈ [, ], u, v, w ≥  with u + v + w ≤ R. We define the set  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y <
R}.

Now let (u, v, w) ∈ P ∩ ∂, that is, ‖(u, v, w)‖Y = R. Then u(t) + v(t) + w(t) ≤ R for all
t ∈ [, ], and by Lemma ., we obtain

Q(u, v, w)(t) ≤ λ

∫ 


J(s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


J(s)

(
f s
 + ε

)(
u(s) + v(s) + w(s)

)
ds

≤ λ
(
f s
 + ε

)
∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= λ
(
f s
 + ε

)
B
∥
∥(u, v, w)

∥
∥

Y ≤ λ

(

f s
 +

 – λf s
 B

λB

)

B
∥
∥(u, v, w)

∥
∥

Y

=


(
λf s

 B + 
)∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ μ

∫ 


J(s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


J(s)ε

(
u(s) + v(s) + w(s)

)
ds

≤ με

∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= μεD
∥
∥(u, v, w)

∥
∥

Y ≤ μ
 – λf s

 B
μD

D
∥
∥(u, v, w)

∥
∥

Y

=



(
 – λf s

 B
)∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ ν

∫ 


J(s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ν

∫ 


J(s)ε

(
u(s) + v(s) + w(s)

)
ds

≤ νε

∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= νεF
∥
∥(u, v, w)

∥
∥

Y ≤ ν
 – λf s

 B
νF

F
∥
∥(u, v, w)

∥
∥

Y

=



(
 – λf s

 B
)∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [, ].

Therefore

∥
∥Q(u, v, w)

∥
∥ ≤ 


(
λf s

 B + 
)∥
∥(u, v, w)

∥
∥

Y ,

∥
∥Q(u, v, w)

∥
∥ ≤ 


(
 – λf s

 B
)∥
∥(u, v, w)

∥
∥

Y ,

∥
∥Q(u, v, w)

∥
∥ ≤ 


(
 – λf s

 B
)∥
∥(u, v, w)

∥
∥

Y .
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Then, for (u, v, w) ∈ P ∩ ∂, we deduce

∥
∥Q(u, v, w)

∥
∥

Y =
∥
∥Q(u, v, w)

∥
∥ +

∥
∥Q(u, v, w)

∥
∥ +

∥
∥Q(u, v, w)

∥
∥

≤ 


(
 + λf s

 B +  – λf s
 B +  – λf s

 B
)∥
∥(u, v, w)

∥
∥

Y =
∥
∥(u, v, w)

∥
∥

Y . ()

By the definition of gi∞, there exists R >  such that g(t, u, v, w) ≥ 
ε
(u + v + w) for all

u, v, w ≥  with u + v + w ≥ R and t ∈ [σ , ]. We consider R = max{R, R/θ}, and we
define  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}. Then, for (u, v, w) ∈ P with ‖(u, v, w)‖Y = R,
we obtain u(t) + v(t) + w(t) ≥ θ‖(u, v, w)‖Y = θR ≥ R for all t ∈ [σ , ].

Then, by Lemma ., we conclude

Q(u, v, w)(t) ≥ μ

∫ 


tβ–J(s)g

(
s, u(s), v(s), w(s)

)
ds

≥ μσβ–
∫ 

σ

J(s)g
(
s, u(s), v(s), w(s)

)
ds

≥ μσβ–
∫ 

σ

J(s)

ε

(
u(s) + v(s) + w(s)

)
ds

≥ μσβ–θ

ε

∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= μσβ–θ

ε

C
∥
∥(u, v, w)

∥
∥

Y ≥ ∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [σ , ].

Then ‖Q(u, v, w)‖ ≥ Q(u, v, w)(σ ) ≥ ‖(u, v, w)‖Y , and

∥
∥Q(u, v, w)

∥
∥

Y ≥ ∥
∥Q(u, v, w)

∥
∥ ≥ ∥

∥(u, v, w)
∥
∥

Y . ()

By using Lemma ., Theorem .(i) and inequalities (), (), we deduce that Q has a
fixed point (u, v, w) ∈ P ∩ ( \ ) which is a positive solution of problem (S)-(BC).

Case () We consider f s
 = gs

 = hs
 = , hi∞ = ∞, f i∞, gi∞ ∈ (,∞). Let λ ∈ (,∞), μ ∈

(,∞) and ν ∈ (,∞). We choose ε >  such that

ε ≤ νθσ γ –E, ε ≤ 
λB

, ε ≤ 
μD

, ε ≤ 
νF

.

By using (H) and the definition of f s
 , gs

, hs
, we deduce that there exists R >  such that

f (t, u, v, w) ≤ ε(u+v+w), g(t, u, v, w) ≤ ε(u+v+w), h(t, u, v, w) ≤ ε(u+v+w) for all t ∈ [, ],
u, v, w ≥  with u + v + w ≤ R. We define the set  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}.

Now let (u, v, w) ∈ P ∩ ∂, that is, ‖(u, v, w)‖Y = R. Then u(t) + v(t) + w(t) ≤ R for all
t ∈ [, ], and by Lemma . we obtain

Q(u, v, w)(t) ≤ λ

∫ 


J(s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


J(s)ε

(
u(s) + v(s) + w(s)

)
ds

≤ λε

∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds



Luca Boundary Value Problems  (2017) 2017:102 Page 15 of 35

= λεB
∥
∥(u, v, w)

∥
∥

Y ≤ 

∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ μ

∫ 


J(s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


J(s)ε

(
u(s) + v(s) + w(s)

)
ds

≤ με

∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= μεD
∥
∥(u, v, w)

∥
∥

Y ≤ 

∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ ν

∫ 


J(s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ν

∫ 


J(s)ε

(
u(s) + v(s) + w(s)

)
ds

≤ νε

∫ 


J(s)

(‖u‖ + ‖v‖ + ‖w‖)ds

= νεF
∥
∥(u, v, w)

∥
∥

Y ≤ 

∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [, ].

Therefore ‖Q(u, v, w)‖ ≤ 
‖(u, v, w)‖Y , ‖Q(u, v, w)‖ ≤ 

‖(u, v, w)‖Y , ‖Q(u, v, w)‖ ≤

‖(u, v, w)‖Y .

Then, for (u, v, w) ∈ P ∩ ∂, we conclude

∥
∥Q(u, v, w)

∥
∥

Y ≤ ∥
∥(u, v, w)

∥
∥

Y . ()

By the definition of hi∞, there exists R >  such that h(t, u, v, w) ≥ 
ε
(u + v + w) for all

u, v, w ≥  with u + v + w ≥ R and t ∈ [σ , ]. We consider R = max{R, R/θ}, and we
define  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}. Then, for (u, v, w) ∈ P with ‖(u, v, w)‖Y = R,
we obtain u(t) + v(t) + w(t) ≥ θ‖(u, v, w)‖Y = θR ≥ R for all t ∈ [σ , ].

Then, by Lemma ., we deduce

Q(u, v, w)(t) ≥ ν

∫ 


tγ –J(s)h

(
s, u(s), v(s), w(s)

)
ds

≥ νσ γ –
∫ 

σ

J(s)h
(
s, u(s), v(s), w(s)

)
ds

≥ νσ γ –
∫ 

σ

J(s)

ε

(
u(s) + v(s) + w(s)

)
ds

≥ νσ γ –θ

ε

∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= νσ γ –θ

ε

E
∥
∥(u, v, w)

∥
∥

Y ≥ ∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [σ , ].

Then ‖Q(u, v, w)‖ ≥ Q(u, v, w)(σ ) ≥ ‖(u, v, w)‖Y , and

∥
∥Q(u, v, w)

∥
∥

Y ≥ ∥
∥Q(u, v, w)

∥
∥ ≥ ∥

∥(u, v, w)
∥
∥

Y . ()
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By using Lemma ., Theorem .(i) and inequalities (), (), we conclude that Q has
a fixed point (u, v, w) ∈ P ∩ ( \ ) which is a positive solution of problem (S)-(BC).

�

Remark . Each of the cases ()-() of Theorem . contains seven cases as follows:
{f i∞ = ∞, gi∞, hi∞ ∈ (,∞)}, or {gi∞ = ∞, f i∞, hi∞ ∈ (,∞)}, or {hi∞ = ∞, f i∞, gi∞ ∈ (,∞)},
or {f i∞ = gi∞ = ∞, hi∞ ∈ (,∞)}, or {f i∞ = hi∞ = ∞, gi∞ ∈ (,∞)}, or {gi∞ = hi∞ = ∞, f i∞ ∈
(,∞)}, or {f i∞ = gi∞ = hi∞ = ∞}. So the total number of cases from Theorem . is ,
which we grouped in  cases.

Each of the cases ()-() contains four subcases because α,α,α ∈ (, ), or α =  and
α = α = , or α =  and α = α = , or α =  and α = α = .

Remark . In the paper [], the authors present only  cases (Theorems .-. from
[]) from  cases, namely the first nine cases of our Theorem .. They did not study the
cases when some extreme limits are  and other are ∞. Besides, compared to Theorems
.-. and .-. from [], our intervals for parameters λ,μ,ν presented in Theorem .
(our cases ()-() and ()) are better than the corresponding ones from []. In addition, the
cone used in [] implies the existence of nonnegative solutions which satisfy the condition
inft∈[ξ ,η](u(t) + v(t) + w(t)) > , which is different from our definition of positive solutions.

Remark . One can formulate existence results for the general case of the system of n
fractional differential equations

(̃S) Dαj
+uj(t) + λjfj

(
t, u(t), . . . , un(t)

)
= , j = , . . . , n,

with the boundary conditions

(B̃C)

⎧
⎨

⎩

u(k)
j () = , k = , . . . , mj – , j = , . . . , n,

Dpj
+uj(t)|t= =

∑Nj
k= ajkDqj

+uj(t)|t=ξjk , j = , . . . , n,

where αj ∈ (mj – , mj], mj ∈ N, mj ≥ ; ξjk , ajk ∈ R for all k = , . . . , Nj, (Nj ∈ N);  < ξj <
ξj < · · · ≤ ξjNj , pj ∈ [, nj – ], qj ∈ [, pj], j = , . . . , N .

According to the values of f s
j = lim supu+···+un→+ supt∈[,]

fj(t,u,...,un)
u+···+un

∈ [,∞), and f i
j∞ =

lim infu+···+un→∞ inft∈[σ ,]
fj(t,u,...,un)

u+···+un
∈ (,∞], j = , . . . , n, we have n cases, which can be

grouped in n+ cases.

In what follows, for f i
, gi

, hi
, f s∞, gs∞, hs∞ ∈ (,∞) and numbers α,α,α ≥  with α +

α + α = , α̃, α̃, α̃ >  with α̃ + α̃ + α̃ = , α̃′
, α̃′

 >  with α̃′
 + α̃′

 = , α̃′′
 , α̃′′

 >  with
α̃′′

 + α̃′′
 = , α̃′′′

 , α̃′′′
 >  with α̃′′′

 + α̃′′′
 = , we define the numbers

M =
α

θσα–f i
A

, M =
α

θσβ–gi
C

, M =
α

θσ γ –hi
E

,

M =
α̃

f s∞B
, M =

α̃

gs∞D
, M =

α̃

hs∞F
, M′

 =
α̃′


gs∞D

,

M′
 =

α̃′


hs∞F
, M′′

 =
α̃′′


f s∞B

, M′′
 =

α̃′′


hs∞F
, M′′′

 =
α̃′′′


f s∞B

,
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M′′′
 =

α̃′′′


gs∞D
, M̃ =


f s∞B

, M̃ =


gs∞D
, M̃ =


hs∞F

,

where θ = min{σα–,σβ–,σγ –}.

Theorem . Assume that (H) and (H) hold, σ ∈ (, ), α,α,α ≥  with α +α +α =
, α̃, α̃, α̃ >  with α̃ + α̃ + α̃ = , α̃′

, α̃′
 >  with α̃′

 + α̃′
 = , α̃′′

 , α̃′′
 >  with α̃′′

 + α̃′′
 = ,

α̃′′′
 , α̃′′′

 >  with α̃′′′
 + α̃′′′

 = .
() If f i

, gi
, hi

, f s∞, gs∞, hs∞ ∈ (,∞), M < M, M < M and M < M, then for each
λ ∈ (M, M), μ ∈ (M, M), ν ∈ (M, M) there exists a positive solution
(u(t), v(t), w(t)), t ∈ [, ] for problem (S)-(BC).

() If f s∞ = , gs∞, hs∞, f i
, gi

, hi
 ∈ (,∞), M < M′

 and M < M′
, then for each

λ ∈ (M,∞), μ ∈ (M, M′
), ν ∈ (M, M′

) there exists a positive solution
(u(t), v(t), w(t)), t ∈ [, ] for problem (S)-(BC).

() If gs∞ = , f s∞, hs∞, f i
, gi

, hi
 ∈ (,∞), M < M′′

 and M < M′′
 , then for each

λ ∈ (M, M′′
), μ ∈ (M,∞), ν ∈ (M, M′′

) there exists a positive solution
(u(t), v(t), w(t)), t ∈ [, ] for problem (S)-(BC).

() If hs∞ = , f s∞, gs∞, f i
, gi

, hi
 ∈ (,∞), M < M′′′

 and M < M′′′
 , then for each

λ ∈ (M, M′′′
 ), μ ∈ (M, M′′′

 ), ν ∈ (M,∞) there exists a positive solution
(u(t), v(t), w(t)), t ∈ [, ] for problem (S)-(BC).

() If f s∞ = gs∞ = , hs∞, f i
, gi

, hi
 ∈ (,∞), M < M̃, then for each λ ∈ (M,∞),

μ ∈ (M,∞), ν ∈ (M, M̃) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ]
for problem (S)-(BC).

() If f s∞ = hs∞ = , gs∞, f i
, gi

, hi
 ∈ (,∞), M < M̃, then for each λ ∈ (M,∞),

μ ∈ (M, M̃), ν ∈ (M,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ]
for problem (S)-(BC).

() If gs∞ = hs∞ = , f s∞, f i
, gi

, hi
 ∈ (,∞), M < M̃, then for each λ ∈ (M, M̃),

μ ∈ (M,∞), ν ∈ (M,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ]
for problem (S)-(BC).

() If f s∞ = gs∞ = hs∞ = , f i
, gi

, hi
 ∈ (,∞), then for each λ ∈ (M,∞), μ ∈ (M,∞),

ν ∈ (M,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for problem
(S)-(BC).

() If f s∞, gs∞, hs∞ ∈ (,∞) and at least one of f i
, gi

, hi
 is ∞, then for each λ ∈ (, M),

μ ∈ (, M), ν ∈ (, M) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for
problem (S)-(BC).

() If f s∞ = , gs∞, hs∞ ∈ (,∞) and at least one of f i
, gi

, hi
 is ∞, then for each

λ ∈ (,∞), μ ∈ (, M′
), ν ∈ (, M′

) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If gs∞ = , f s∞, hs∞ ∈ (,∞) and at least one of f i
, gi

, hi
 is ∞, then for each

λ ∈ (, M′′
), μ ∈ (,∞), ν ∈ (, M′′

) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If hs∞ = , f s∞, gs∞ ∈ (,∞) and at least one of f i
, gi

, hi
 is ∞, then for each

λ ∈ (, M′′′
 ), μ ∈ (, M′′′

 ), ν ∈ (,∞) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If f s∞ = gs∞ = , hs∞ ∈ (,∞) and at least one of f i
, gi

, hi
 is ∞, then for each

λ ∈ (,∞), μ ∈ (,∞), ν ∈ (, M̃) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).
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() If f s∞ = hs∞ = , gs∞ ∈ (,∞) and at least one of f i
, gi

, hi
 is ∞, then for each

λ ∈ (,∞), μ ∈ (, M̃), ν ∈ (,∞) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If gs∞ = hs∞ = , f s∞ ∈ (,∞) and at least one of f i
, gi

, hi
 is ∞, then for each

λ ∈ (, M̃), μ ∈ (,∞), ν ∈ (,∞) there exists a positive solution (u(t), v(t), w(t)),
t ∈ [, ] for problem (S)-(BC).

() If f s∞ = gs∞ = hs∞ =  and at least one of f i
, gi

, hi
 is ∞, then for each λ ∈ (,∞),

μ ∈ (,∞), ν ∈ (,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] for
problem (S)-(BC).

Proof We consider again the above cone P ⊂ Y and the operators Q, Q, Q and Q. We
will also prove for this theorem some illustrative cases.

Case () We consider f i
, gi

, hi
, f s∞, gs∞, hs∞ ∈ (,∞). Let λ ∈ (M, M), μ ∈ (M, M), ν ∈

(M, M). We choose ε >  a positive number such that ε < f i
, ε < gi

, ε < hi
 and

α

θσα–(f i
 – ε)A

≤ λ,
α

θσβ–(gi
 – ε)C

≤ μ,
α

θσ γ –(hi
 – ε)E

≤ ν,

α̃

(f s∞ + ε)B
≥ λ,

α̃

(gs∞ + ε)D
≥ μ,

α̃

(hs∞ + ε)F
≥ ν.

By using (H) and the definition of f i
, gi

, hi
, we deduce that there exists R >  such

that f (t, u, v, w) ≥ (f i
 – ε)(u + v + w), g(t, u, v, w) ≥ (gi

 – ε)(u + v + w), h(t, u, v, w) ≥ (hi
 –

ε)(u + v + w) for all u, v, w ≥  with u + v + w ≤ R and t ∈ [σ , ]. We denote  = {(u, v, w) ∈
Y ,‖(u, v, w)‖Y < R}.

Let (u, v, w) ∈ P ∩ ∂, that is, ‖(u, v, w)‖Y = R or, equivalently, ‖u‖ + ‖v‖ + ‖w‖ = R.
Because u(t)+v(t)+w(t) ≤ R for all t ∈ [, ], then by Lemma . we obtain for all t ∈ [σ , ]

Q(u, v, w)(t) ≥ λ

∫ 


tα–J(s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λσα–
∫ 

σ

J(s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λσα–
∫ 

σ

J(s)
(
f i
 – ε

)(
u(s) + v(s) + w(s)

)
ds

≥ λσα–θ
(
f i
 – ε

)
∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= λσα–θ
(
f i
 – ε

)
A

∥
∥(u, v, w)

∥
∥

Y ≥ α
∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≥ μ

∫ 


tβ–J(s)g

(
s, u(s), v(s), w(s)

)
ds

≥ μσβ–
∫ 

σ

J(s)g
(
s, u(s), v(s), w(s)

)
ds

≥ μσβ–
∫ 

σ

J(s)
(
gi

 – ε
)(

u(s) + v(s) + w(s)
)

ds

≥ μσβ–θ
(
gi

 – ε
)
∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= μσβ–θ
(
gi

 – ε
)
C

∥
∥(u, v, w)

∥
∥

Y ≥ α
∥
∥(u, v, w)

∥
∥

Y ,
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Q(u, v, w)(t) ≥ ν

∫ 


tγ –J(s)h

(
s, u(s), v(s), w(s)

)
ds

≥ νσ γ –
∫ 

σ

J(s)h
(
s, u(s), v(s), w(s)

)
ds

≥ νσ γ –
∫ 

σ

J(s)
(
hi

 – ε
)(

u(s) + v(s) + w(s)
)

ds

≥ νσ γ –θ
(
hi

 – ε
)
∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= νσ γ –θ
(
hi

 – ε
)
E
∥
∥(u, v, w)

∥
∥

Y ≥ α
∥
∥(u, v, w)

∥
∥

Y .

So

∥
∥Q(u, v, w)

∥
∥ ≥ Q(u, v, w)(σ ) ≥ α

∥
∥(u, v, w)

∥
∥

Y ,
∥
∥Q(u, v, w)

∥
∥ ≥ Q(u, v, w)(σ ) ≥ α

∥
∥(u, v, w)

∥
∥

Y ,
∥
∥Q(u, v, w)

∥
∥ ≥ Q(u, v, w)(σ ) ≥ α

∥
∥(u, v, w)

∥
∥

Y .

Then, for an arbitrary element (u, v, w) ∈ P ∩ ∂, we deduce

∥
∥Q(u, v, w)

∥
∥

Y ≥ (α + α + α)
∥
∥(u, v, w)

∥
∥

Y =
∥
∥(u, v, w)

∥
∥

Y . ()

Now we define the functions f ∗, g∗, h∗ : [, ] × R+ → R+, f ∗(t, x) = max≤u+v+w≤x f (t, u,
v, w), g∗(t, x) = max≤u+v+w≤x g(t, u, v, w), h∗(t, x) = max≤u+v+w≤x h(t, u, v, w), t ∈ [, ], x ∈
R+. Then f (t, u, v, w) ≤ f ∗(t, x), g(t, u, v, w) ≤ g∗(t, x), h(t, u, v, w) ≤ h∗(t, x) for all t ∈ [, ],
u, v, w ≥  and u + v + w ≤ x. The functions f ∗(t, ·), g∗(t, ·), h∗(t, ·) are nondecreasing for
every t ∈ [, ], and they satisfy the conditions

lim sup
x→∞

max
t∈[,]

f ∗(t, x)
x

≤ f s
∞, lim sup

x→∞
max
t∈[,]

g∗(t, x)
x

≤ gs
∞,

lim sup
x→∞

max
t∈[,]

h∗(t, x)
x

≤ hs
∞.

Therefore, for ε > , there exists R̄ >  such that, for all x ≥ R̄ and t ∈ [, ], we have
f ∗(t, x) ≤ (f s∞ + ε)x, g∗(t, x) ≤ (gs∞ + ε)x, h∗(t, x) ≤ (hs∞ + ε)x.

We consider R = max{R, R̄}, and we denote  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}. Let
(u, v, w) ∈ P ∩ ∂. By the definition of f ∗, g∗, h∗, we conclude

f
(
t, u(t), v(t), w(t)

) ≤ f ∗(t,
∥
∥(u, v, w)

∥
∥

Y

)
, g

(
t, u(t), v(t), w(t)

) ≤ g∗(t,
∥
∥(u, v, w)

∥
∥

Y

)
,

h
(
t, u(t), v(t), w(t)

) ≤ h∗(t,
∥
∥(u, v, w)

∥
∥

Y

)
, ∀t ∈ [, ].

Then, for all t ∈ [, ], we obtain

Q(u, v, w)(t) ≤ λ

∫ 


J(s)f

(
s, u(s), v(s), w(s)

)
ds ≤ λ

∫ 


J(s)f ∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ λ
(
f s
∞ + ε

)
∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds ≤ α̃
∥
∥(u, v, w)

∥
∥

Y ,
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Q(u, v, w)(t) ≤ μ

∫ 


J(s)g

(
s, u(s), v(s), w(s)

)
ds ≤ μ

∫ 


J(s)g∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ μ
(
gs
∞ + ε

)
∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds ≤ α̃
∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ ν

∫ 


J(s)h

(
s, u(s), v(s), w(s)

)
ds ≤ ν

∫ 


J(s)h∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ ν
(
hs

∞ + ε
)
∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds ≤ α̃
∥
∥(u, v, w)

∥
∥

Y .

Therefore, we deduce ‖Q(u, v, w)‖ ≤ α̃‖(u, v, w)‖Y , ‖Q(u, v, w)‖ ≤ α̃‖(u, v, w)‖Y ,
‖Q(u, v, w)‖ ≤ α̃‖(u, v, w)‖Y .

Hence, for (u, v, w) ∈ P ∩ ∂, we conclude that

∥
∥Q(u, v, w)

∥
∥

Y ≤ (̃α + α̃ + α̃)
∥
∥(u, v, w)

∥
∥

Y =
∥
∥(u, v, w)

∥
∥

Y . ()

By using Lemma ., Theorem .(ii) and relations (), (), we deduce that Q has a
fixed point (u, v, w) ∈ P ∩ ( \ ), which is a positive solution for our problem (S)-(BC).

Case (). We consider gs∞ = , hi
 = ∞, f s∞, hs∞, f i

, gi
 ∈ (,∞). Let λ ∈ (, M′′

), μ ∈ (,∞),
ν ∈ (, M′′

). We choose ε >  such that ε ≤ νθσ γ –E and

ε ≤ α̃′′
 – λf s∞B

λB
, ε ≤  – λf s∞B – νhs∞F

μD
, ε ≤ α̃′′

 – νhs∞F
νF

.

The numerators of the above fractions are positive because λ < α̃′′


f s∞B , that is, α̃′′
 > λf s∞B,

ν < α̃′′


hs∞F , that is, α̃′′
 > νhs∞F , and  –λf s∞B –νhs∞F = α̃′′

 + α̃′′
 –λf s∞B –νhs∞F = (̃α′′

 –λf s∞B) +
(̃α′′

 – νhs∞F) > .
By using (H) and the definition of hi

, we deduce that there exists R >  such that
h(t, u, v, w) ≥ 

ε
(u + v + w) for all u, v, w ≥  with u + v + w ≤ R and t ∈ [σ , ]. We denote

 = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}.
Let (u, v, w) ∈ P ∩ ∂, that is, ‖(u, v, w)‖Y = R. Because u(t) + v(t) + w(t) ≤ R for all

t ∈ [, ], then by using Lemma ., we obtain

Q(u, v, w)(t) ≥ ν

∫ 


tγ –J(s)h

(
s, u(s), v(s), w(s)

)
ds

≥ νσ γ –
∫ 

σ

J(s)h
(
s, u(s), v(s), w(s)

)
ds

≥ νσ γ –
∫ 

σ

J(s)

ε

(
u(s) + v(s) + w(s)

)
ds

≥ νσ γ –θ

ε

∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= νσ γ –θ

ε

E
∥
∥(u, v, w)

∥
∥

Y ≥ ∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [σ , ].

Then ‖Q(u, v, w)‖ ≥ Q(u, v, w)(σ ) ≥ ‖(u, v, w)‖Y , and

∥
∥Q(u, v, w)

∥
∥

Y ≥ ∥
∥Q(u, v, w)

∥
∥ ≥ ∥

∥(u, v, w)
∥
∥

Y . ()
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Now, using the functions f ∗, g∗, h∗ defined in the proof of case (), we have

lim sup
x→∞

max
t∈[,]

f ∗(t, x)
x

≤ f s
∞, lim

x→∞ max
t∈[,]

g∗(t, x)
x

= ,

lim sup
x→∞

max
t∈[,]

h∗(t, x)
x

≤ hs
∞.

Therefore, for ε > , there exists R̄ >  such that, for all x ≥ R̄ and t ∈ [, ], we deduce
f ∗(t, x) ≤ (f s∞ + ε)x, g∗(t, x) ≤ εx, h∗(t, x) ≤ (hs∞ + ε)x. We consider R = max{R, R̄}, and
we denote  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}. Let (u, v, w) ∈ P ∩ ∂. Then, for all t ∈
[, ], we obtain

Q(u, v, w)(t) ≤ λ

∫ 


J(s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


J(s)f ∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ λ
(
f s
∞ + ε

)
∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds

≤ λ

(

f s
∞ +

α̃′′
 – λf s∞B

λB

)

B
∥
∥(u, v, w)

∥
∥

Y

=


(
λf s

∞B + α̃′′

)∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ μ

∫ 


J(s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


J(s)g∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ με

∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds

≤ μ
 – λf s∞B – νhs∞F

μD
D

∥
∥(u, v, w)

∥
∥

Y

=


(
 – λf s

∞B – νhs
∞F

)∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ ν

∫ 


J(s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ν

∫ 


J(s)h∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ ν
(
hs

∞ + ε
)
∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds

≤ ν

(

hs
∞ +

α̃′′
 – νhs∞F

νF

)

F
∥
∥(u, v, w)

∥
∥

Y

=


(
νhs

∞F + α̃′′

)∥
∥(u, v, w)

∥
∥

Y .

Therefore

∥
∥Q(u, v, w)

∥
∥ ≤ 


(
λf s

∞B + α̃′′

)∥
∥(u, v, w)

∥
∥

Y ,
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∥
∥Q(u, v, w)

∥
∥ ≤ 


(
 – λf s

∞B – νhs
∞F

)∥
∥(u, v, w)

∥
∥

Y ,

∥
∥Q(u, v, w)

∥
∥

Y ≤ 

(
νhs

∞F + α̃′′

)∥
∥(u, v, w)

∥
∥

Y .

Then, for (u, v, w) ∈ P ∩ ∂, we conclude that

∥
∥Q(u, v, w)

∥
∥

Y ≤ 

(
λf s

∞B + α̃′′
 +  – λf s

∞B – νhs
∞F + νhs

∞F + α̃′′

)∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y . ()

By using Lemma ., Theorem .(ii) and relations (), (), we deduce that Q has a
fixed point (u, v, w) ∈ P ∩ ( \ ), which is a positive solution for our problem (S)-(BC).

Case (). We consider f s∞ = hs∞ = , gi
 = ∞, gs∞, f i

, hi
 ∈ (,∞). Let λ ∈ (,∞), μ ∈

(, M̃), ν ∈ (,∞). We choose ε >  such that ε ≤ μθσβ–C and

ε ≤  – μgs∞D
λB

, ε ≤  – μgs∞D
μD

, ε ≤  – μgs∞D
νF

.

The numerator of the above fractions is positive because μ < 
gs

D , that is,  – μgs∞D > .
By using (H) and the definition of gi

, we deduce that there exists R >  such that
g(t, u, v, w) ≥ 

ε
(u + v + w) for all u, v, w ≥  with u + v + w ≤ R and t ∈ [σ , ]. We denote

 = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}.
Let (u, v, w) ∈ P ∩ ∂, that is, ‖(u, v, w)‖Y = R. Because u(t) + v(t) + w(t) ≤ R for all

t ∈ [, ], then by using Lemma ., we obtain

Q(u, v, w)(t) ≥ μ

∫ 


tβ–J(s)g

(
s, u(s), v(s), w(s)

)
ds

≥ μσβ–
∫ 

σ

J(s)g
(
s, u(s), v(s), w(s)

)
ds

≥ μσβ–
∫ 

σ

J(s)

ε

(
u(s) + v(s) + w(s)

)
ds

≥ μσβ–θ

ε

∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= μσβ–θ

ε

C
∥
∥(u, v, w)

∥
∥

Y ≥ ∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [σ , ].

Then ‖Q(u, v, w)‖ ≥ Q(u, v, w)(σ ) ≥ ‖(u, v, w)‖Y , and

∥
∥Q(u, v, w)

∥
∥

Y ≥ ∥
∥Q(u, v, w)

∥
∥ ≥ ∥

∥(u, v, w)
∥
∥

Y . ()

Now, using the functions f ∗, g∗, h∗ defined in the proof of case (), we have

lim
x→∞ max

t∈[,]

f ∗(t, x)
x

= , lim sup
x→∞

max
t∈[,]

g∗(t, x)
x

≤ gs
∞, lim

x→∞ max
t∈[,]

h∗(t, x)
x

= .

Therefore, for ε > , there exists R̄ >  such that, for all x ≥ R̄ and t ∈ [, ], we deduce
f ∗(t, x) ≤ εx, g∗(t, x) ≤ (gs∞ + ε)x, h∗(t, x) ≤ εx.
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We consider R = max{R, R̄}, and we denote  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}. Let
(u, v, w) ∈ P ∩ ∂. Then, for all t ∈ [, ], we obtain

Q(u, v, w)(t) ≤ λ

∫ 


J(s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


J(s)f ∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ λε

∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds

= λεB
∥
∥(u, v, w)

∥
∥

Y ≤ λ
 – μgs∞D

λB
B
∥
∥(u, v, w)

∥
∥

Y

=



(
 – μgs

∞D
)∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ μ

∫ 


J(s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


J(s)g∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ μ
(
gs
∞ + ε

)
∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds

= μ
(
gs
∞ + ε

)
D

∥
∥(u, v, w)

∥
∥

Y

≤ μ

(

gs
∞ +

 – μgs∞D
μD

)

D
∥
∥(u, v, w)

∥
∥

Y

=


(
μgs

∞D + 
)∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ ν

∫ 


J(s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ν

∫ 


J(s)h∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ νε

∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds

= νεF
∥
∥(u, v, w)

∥
∥

Y ≤ ν
 – νgs∞D

νF
F
∥
∥(u, v, w)

∥
∥

Y

=



(
 – μgs

∞D
)∥
∥(u, v, w)

∥
∥

Y .

Therefore
∥
∥Q(u, v, w)

∥
∥ ≤ 


(
 – μgs

∞D
)∥
∥(u, v, w)

∥
∥

Y ,

∥
∥Q(u, v, w)

∥
∥ ≤ 


(
 + μgs

∞D
)∥
∥(u, v, w)

∥
∥

Y ,

∥
∥Q(u, v, w)

∥
∥ ≤ 


(
 – μgs

∞D
)∥
∥(u, v, w)

∥
∥

Y .

Then, for (u, v, w) ∈ P ∩ ∂, we conclude that

∥
∥Q(u, v, w)

∥
∥

Y ≤ 


(
–μgs

∞D++μgs
∞D+–μgs

∞D
)∥
∥(u, v, w)

∥
∥

Y =
∥
∥(u, v, w)

∥
∥

Y . ()
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By using Lemma ., Theorem .(ii) and relations () and (), we deduce that Q has a
fixed point (u, v, w) ∈ P ∩ ( \ ), which is a positive solution for our problem (S)-(BC).

Case (). We consider f s∞ = gs∞ = hs∞ = , f i
 = gi

 = ∞ and hi
 ∈ (,∞). Let λ ∈ (,∞),

μ ∈ (,∞), ν ∈ (,∞). We choose ε >  such that

ε ≤ λθσα–A, ε ≤ 
λB

, ε ≤ 
μD

, ε ≤ 
νF

.

By using (H) and the definition of f i
, we deduce that there exists R >  such that

f (t, u, v, w) ≥ 
ε
(u + v + w) for all u, v, w ≥  with u + v + w ≤ R and t ∈ [σ , ]. We denote

 = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}.
Let (u, v, w) ∈ P ∩ ∂, that is, ‖(u, v, w)‖Y = R. Because u(t) + v(t) + w(t) ≤ R for all

t ∈ [, ], then by using Lemma ., we obtain

Q(u, v, w)(t) ≥ λ

∫ 


tα–J(s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λσα–
∫ 

σ

J(s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λσα–
∫ 

σ

J(s)

ε

(
u(s) + v(s) + w(s)

)
ds

≥ λσα–θ

ε

∫ 

σ

J(s)
∥
∥(u, v, w)

∥
∥

Y ds

= λσα–θ

ε

A
∥
∥(u, v, w)

∥
∥

Y ≥ ∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [σ , ].

Then ‖Q(u, v, w)‖ ≥ Q(u, v, w)(σ ) ≥ ‖(u, v, w)‖Y , and

∥
∥Q(u, v, w)

∥
∥

Y ≥ ∥
∥Q(u, v, w)

∥
∥ ≥ ∥

∥(u, v, w)
∥
∥

Y . ()

Now, using the functions f ∗, g∗, h∗ defined in the proof of case (), we have

lim
x→∞ max

t∈[,]

f ∗(t, x)
x

= , lim
x→∞ max

t∈[,]

g∗(t, x)
x

= , lim
x→∞ max

t∈[,]

h∗(t, x)
x

= .

Therefore, for ε > , there exists R̄ >  such that f ∗(t, x) ≤ εx, g∗(t, x) ≤ εx, h∗(t, x) ≤ εx
for all x ≥ R̄ and t ∈ [, ].

We consider R = max{R, R̄}, and we denote  = {(u, v, w) ∈ Y ,‖(u, v, w)‖Y < R}. Let
(u, v, w) ∈ P ∩ ∂. Then, for all t ∈ [, ], we obtain

Q(u, v, w)(t) ≤ λ

∫ 


J(s)f

(
s, u(s), v(s), w(s)

)
ds ≤ λ

∫ 


J(s)f ∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ λε

∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds = λεB
∥
∥(u, v, w)

∥
∥

Y ≤ 

∥
∥(u, v, w)

∥
∥

Y ,

Q(u, v, w)(t) ≤ μ

∫ 


J(s)g

(
s, u(s), v(s), w(s)

)
ds ≤ μ

∫ 


J(s)g∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ με

∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds = μεD
∥
∥(u, v, w)

∥
∥

Y ≤ 

∥
∥(u, v, w)

∥
∥

Y ,
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Q(u, v, w)(t) ≤ ν

∫ 


J(s)h

(
s, u(s), v(s), w(s)

)
ds ≤ ν

∫ 


J(s)h∗(s,

∥
∥(u, v, w)

∥
∥

Y

)
ds

≤ νε

∫ 


J(s)

∥
∥(u, v, w)

∥
∥

Y ds = νεF
∥
∥(u, v, w)

∥
∥

Y ≤ 

∥
∥(u, v, w)

∥
∥

Y .

Therefore ‖Q(u, v, w)‖ ≤ 
‖(u, v, w)‖Y , ‖Q(u, v, w)‖ ≤ 

‖(u, v, w)‖Y , ‖Q(u, v, w)‖ ≤

‖(u, v, w)‖Y . Then, for (u, v, w) ∈ P ∩ ∂, we conclude that

∥
∥Q(u, v, w)

∥
∥

Y ≤ ∥
∥(u, v, w)

∥
∥

Y . ()

By using Lemma ., Theorem .(ii) and relations () and (), we deduce that Q has a
fixed point (u, v, w) ∈ P ∩ (̄ \ ), which is a positive solution for our problem (S)-(BC).

�

Remark . Each of the cases ()-() of Theorem . contains seven cases as follows:
{f i

 = ∞, gi
, hi

 ∈ (,∞)}, or {gi
 = ∞, f i

, hi
 ∈ (,∞)}, or {hi

 = ∞, f i
, gi

 ∈ (,∞)}, or {f i
 =

gi
 = ∞, hi

 ∈ (,∞)}, or {f i
 = hi

 = ∞, gi
 ∈ (,∞)}, or {gi

 = hi
 = ∞, f i

 ∈ (,∞)}, or {f i
 =

gi
 = hi

 = ∞}. So the total number of cases from Theorem . is , which we grouped in
 cases.

Each of the cases ()-() contains four subcases because α,α,α ∈ (, ), or α =  and
α = α = , or α =  and α = α = , or α =  and α = α = .

Remark . In the paper [], the authors present only  cases (Theorems .-. from
[]) from  cases, namely the first nine cases of our Theorem .. They did not study the
cases when some extreme limits are  and other are ∞. Besides, compared to Theorems
.-. and .-. from [], our intervals for parameters λ,μ,ν presented in Theo-
rem . (our cases ()-() and ()) are better than the corresponding ones from [].

Remark . One can formulate existence results for the general case of the system of n
fractional differential equations (̃S) with the boundary conditions (B̃C) from Remark ..
According to the values of f s

j∞ = lim supu+···+un→∞ supt∈[,]
fj(t,u,...,un)
u+···+un

∈ [,∞), and f i
j =

lim infu+···+un→ inft∈[σ ,]
fj(t,u,...,un)
u+···+un

∈ (,∞], j = , . . . , n, we have n cases, which can be
grouped in n+ cases.

4 Nonexistence of positive solutions
We present in this section intervals for λ, μ and ν , for which there exist no positive solu-
tions of problem (S)-(BC), viewed as fixed points of operator Q.

Theorem . Assume that (H) and (H) hold. If there exist positive numbers A, A, A

such that

f (t, u, v, w) ≤ A(u + v + w), g(t, u, v, w) ≤ A(u + v + w),

h(t, u, v, w) ≤ A(u + v + w), ∀t ∈ [, ], u, v, w ≥ ,
()

then there exist positive constants λ, μ, ν such that, for every λ ∈ (,λ), μ ∈ (,μ),
ν ∈ (,ν) the boundary value problem (S)-(BC) has no positive solution.
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Proof We define λ = 
AB , μ = 

AD , ν = 
AF , where B =

∫ 
 J(s) ds, D =

∫ 
 J(s) ds, F =

∫ 
 J(s) ds. We will show that for any λ ∈ (,λ), μ ∈ (,μ), ν ∈ (,ν), problem (S)-(BC)

has no positive solution.
Let λ ∈ (,λ), μ ∈ (,μ), ν ∈ (,ν). We suppose that (S)-(BC) has a positive solution

(u(t), v(t), w(t)), t ∈ [, ]. Then we have

u(t) = Q(u, v, w)(t) = λ

∫ 


G(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λ

∫ 


J(s)f

(
s, u(s), v(s), w(s)

)
ds

≤ λA

∫ 


J(s)

(
u(s) + v(s) + w(s)

)
ds

≤ λA
(‖u‖ + ‖v‖ + ‖w‖)

∫ 


J(s) ds

= λAB
∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [, ],

v(t) = Q(u, v, w)(t) = μ

∫ 


G(t, s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μ

∫ 


J(s)g

(
s, u(s), v(s), w(s)

)
ds

≤ μA

∫ 


J(s)

(
u(s) + v(s) + w(s)

)
ds

≤ μA
(‖u‖ + ‖v‖ + ‖w‖)

∫ 


J(s) ds

= μAD
∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [, ],

w(t) = Q(u, v, w)(t) = ν

∫ 


G(t, s)h

(
s, u(s), v(s), w(s)

)
ds

≤ ν

∫ 


J(s)h

(
s, u(s), v(s), w(s)

)
ds

≤ νA

∫ 


J(s)

(
u(s) + v(s) + w(s)

)
ds

≤ νA
(‖u‖ + ‖v‖ + ‖w‖)

∫ 


J(s) ds

= νAF
∥
∥(u, v, w)

∥
∥

Y , ∀t ∈ [, ].

Therefore we conclude

‖u‖ ≤ λAB
∥
∥(u, v, w)

∥
∥

Y < λAB
∥
∥(u, v, w)

∥
∥

Y =


∥
∥(u, v, w)

∥
∥

Y ,

‖v‖ ≤ μAD
∥
∥(u, v, w)

∥
∥

Y < μAD
∥
∥(u, v, w)

∥
∥

Y =


∥
∥(u, v, w)

∥
∥

Y ,

‖w‖ ≤ νAF
∥
∥(u, v, w)

∥
∥

Y < νAF
∥
∥(u, v, w)

∥
∥

Y =


∥
∥(u, v, w)

∥
∥

Y .

Hence we deduce ‖(u, v, w)‖Y = ‖u‖ + ‖v‖ + ‖w‖ < ‖(u, v, w)‖Y , which is a contradiction.
So the boundary value problem (S)-(BC) has no positive solution. �
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Remark . In the proof of Theorem . we can also define λ = α
AB , μ = α

AD , ν = α
AF

with α,α,α >  and α + α + α = .

Remark . If f s
 , gs

, hs
, f s∞, gs∞, hs∞ < ∞, then there exist positive constants A, A, A such

that () holds (see also [] for a system with two equations), and then we obtain the
conclusion of Theorem ..

Theorem . Assume that (H) and (H) hold. If there exist positive numbers σ ∈ (, )
and m >  such that

f (t, u, v, w) ≥ m(u + v + w), ∀t ∈ [σ , ], u, v, w ≥ , ()

then there exists a positive constant λ̃ such that, for every λ > λ̃, μ >  and ν > , the
boundary value problem (S)-(BC) has no positive solution.

Proof We define λ̃ = 
θσα–mA , where A =

∫ 
σ

J(s) ds. We will show that for every λ > λ̃,
μ >  and ν > , problem (S)-(BC) has no positive solution.

Let λ > λ̃, μ >  and ν > . We suppose that (S)-(BC) has a positive solution (u(t), v(t),
w(t)), t ∈ [, ]. Then we obtain

u(t) = Q(u, v, w)(t) = λ

∫ 


G(t, s)f

(
s, u(s), v(s), w(s)

)
ds

≥ λtα–
∫ 

σ

J(s)f
(
s, u(s), v(s), w(s)

)
ds

≥ λσα–
∫ 

σ

J(s)m
(
u(s) + v(s) + w(s)

)
ds

≥ λθσα–m

∫ 

σ

J(s)
(‖u‖ + ‖v‖ + ‖w‖)ds

= λθσα–mA
∥
∥(u, v, w)

∥
∥

Y .

Therefore we deduce

‖u‖ ≥ u(σ ) ≥ λθσα–mA
∥
∥(u, v, w)

∥
∥

Y > λ̃θσα–mA
∥
∥(u, v, w)

∥
∥

Y =
∥
∥(u, v, w)

∥
∥

Y ,

and so, ‖(u, v, w)‖Y = ‖u‖ + ‖v‖ + ‖w‖ > ‖(u, v, w)‖Y , which is a contradiction. Therefore
the boundary value problem (S)-(BC) has no positive solution. �

In a similar manner, we obtain the following theorems.

Theorem . Assume that (H) and (H) hold. If there exist positive numbers σ ∈ (, )
and m >  such that

g(t, u, v, w) ≥ m(u + v + w), ∀t ∈ [σ , ], u, v, w ≥ , ()

then there exists a positive constant μ̃ such that, for every λ > , μ > μ̃ and ν > , the
boundary value problem (S)-(BC) has no positive solution.
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In Theorem . we define μ̃ = 
θσβ–mC , where C =

∫ 
σ

J(s) ds.

Theorem . Assume that (H) and (H) hold. If there exist positive numbers σ ∈ (, )
and m >  such that

h(t, u, v, w) ≥ m(u + v + w), ∀t ∈ [σ , ], u, v, w ≥ , ()

then there exists a positive constant ν̃ such that, for every λ > , μ >  and ν > ν̃, the
boundary value problem (S)-(BC) has no positive solution.

In Theorem . we define ν̃ = 
θσγ –mE , where E =

∫ 
σ

J(s) ds.

Remark .
(a) If for σ ∈ (, ), f i

, f i∞ >  and f (t, u, v, w) >  for all t ∈ [σ , ] and u, v, w ≥  with
u + v + w > , then relation () holds, and we obtain the conclusion of Theorem ..

(b) If for σ ∈ (, ), gi
, gi∞ >  and g(t, u, v, w) >  for all t ∈ [σ , ] and u, v, w ≥  with

u + v + w > , then relation () holds, and we obtain the conclusion of Theorem ..
(c) If for σ ∈ (, ), hi

, hi∞ >  and h(t, u, v, w) >  for all t ∈ [σ , ] and u, v, w ≥  with
u + v + w > , then relation () holds, and we obtain the conclusion of Theorem ..

Theorem . Assume that (H) and (H) hold. If there exist positive numbers σ ∈ (, )
and m, m >  such that

f (t, u, v, w) ≥ m(u + v + w),

g(t, u, v, w) ≥ m(u + v + w), ∀t ∈ [σ , ], u, v, w ≥ ,
()

then there exist positive constants ˜̃λ and ˜̃μ such that, for every λ > ˜̃λ, μ > ˜̃μ and ν > ,
the boundary value problem (S)-(BC) has no positive solution.

Proof We define ˜̃λ = 
θσα–mA (= λ̃

 ) and ˜̃μ = 
θσβ–mC (= μ̃

 ). Then, for every λ > ˜̃λ,

μ > ˜̃μ and ν > , problem (S)-(BC) has no positive solution. Indeed, let λ > ˜̃λ, μ > ˜̃μ and
ν > . We suppose that (S)-(BC) has a positive solution (u(t), v(t), w(t)), t ∈ [, ]. Then, in
a similar manner as in the proof of Theorem ., we deduce

‖u‖ ≥ λθσα–mA
∥
∥(u, v, w)

∥
∥

Y , ‖v‖ ≥ μθσβ–mC
∥
∥(u, v, w)

∥
∥

Y ,

and so

∥
∥(u, v, w)

∥
∥

Y = ‖u‖ + ‖v‖ + ‖w‖ ≥ ‖u‖ + ‖v‖
≥ (

λθσα–mA + μθσβ–mC
)∥
∥(u, v, w)

∥
∥

Y

>
(̃
λ̃θσα–mA + ˜̃μθσβ–mC

)∥
∥(u, v, w)

∥
∥

Y

=
(




+



)
∥
∥(u, v, w)

∥
∥

Y =
∥
∥(u, v, w)

∥
∥

Y ,

which is a contradiction. Therefore the boundary value problem (S)-(BC) has no positive
solution. �
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Remark . In the proof of Theorem . we can also define ˜̃λ = α̃
θσα–mA , ˜̃μ = α̃

θσβ–mC
with α̃, α̃ >  with α̃ + α̃ = .

In a similar manner we obtain the following theorems.

Theorem . Assume that (H) and (H) hold. If there exist positive numbers σ ∈ (, )
and m, m >  such that

f (t, u, v, w) ≥ m(u + v + w),

h(t, u, v, w) ≥ m(u + v + w), ∀t ∈ [σ , ], u, v, w ≥ ,
()

then there exist positive constants ˜̃λ
′
 and ˜̃ν

′
 such that, for every λ > ˜̃λ

′
 , μ >  and ν >˜̃ν

′
,

the boundary value problem (S)-(BC) has no positive solution.

In Theorem . we define ˜̃λ
′
 = 

θσα–mA (= λ̃
 ) and ˜̃ν

′
 = 

θσγ –mE (= ν̃
 ), or in general

˜̃λ
′
 = α̃

θσα–mA and ˜̃ν
′
 = α̃

θσγ –mE with α̃, α̃ > , α̃ + α̃ = .

Theorem . Assume that (H) and (H) hold. If there exist positive numbers σ ∈ (, )
and m, m >  such that

g(t, u, v, w) ≥ m(u + v + w),

h(t, u, v, w) ≥ m(u + v + w), ∀t ∈ [σ , ], u, v, w ≥ ,
()

then there exist positive constants ˜̃μ
′′
 and ˜̃ν

′′
 such that, for every λ > , μ > ˜̃μ

′′
 and ν >˜̃ν

′′
,

the boundary value problem (S)-(BC) has no positive solution.

In Theorem . we define ˜̃μ
′′
 = 

θσβ–mC (= μ̃
 ) and ˜̃ν

′′
 = 

θσγ –mE (= ν̃
 ), or in general

˜̃μ
′′
 = α̃

θσβ–mC and ˜̃ν
′′
 = α̃

θσγ –mE with α̃, α̃ > , α̃ + α̃ = .

Remark .
(a) If for σ ∈ (, ), f i

, f i∞, gi
, gi∞ >  and f (t, u, v, w) > , g(t, u, v, w) >  for all t ∈ [σ , ]

and u, v, w ≥  with u + v + w > , then relation () holds, and we obtain the
conclusion of Theorem ..

(b) If for σ ∈ (, ), f i
, f i∞, hi

, hi∞ >  and f (t, u, v, w) > , h(t, u, v, w) >  for all t ∈ [σ , ]
and u, v, w ≥  with u + v + w > , then relation () holds, and we obtain the
conclusion of Theorem ..

(c) If for σ ∈ (, ), gi
, gi∞, hi

, hi∞ >  and g(t, u, v, w) > , h(t, u, v, w) >  for all t ∈ [σ , ]
and u, v, w ≥  with u + v + w > , then relation () holds, and we obtain the
conclusion of Theorem ..

Theorem . Assume that (H) and (H) hold. If there exist positive numbers σ ∈ (, )
and m, m, m >  such that

f (t, u, v, w) ≥ m(u + v + w), g(t, u, v, w) ≥ m(u + v + w),

h(t, u, v, w) ≥ m(u + v + w), ∀t ∈ [σ , ], u, v, w ≥ ,
()
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then there exist positive constants λ̂, μ̂ and ν̂ such that, for every λ > λ̂, μ > μ̂ and
ν > ν̂, the boundary value problem (S)-(BC) has no positive solution.

Proof We define λ̂ = 
θσα–mA , μ̂ = 

θσβ–mC , ν̂ = 
θσγ –mE . Then, for every λ > λ̂,

μ > μ̂, ν > ν̂, problem (S)-(BC) has no positive solution. Indeed, let λ > λ̂, μ > μ̂ and
ν > ν̂. We suppose that (S)-(BC) has a positive solution (u(t), v(t), w(t)), t ∈ [, ]. Then,
in a similar manner as in the proof of Theorem ., we deduce

‖u‖ ≥ λθσα–mA
∥
∥(u, v, w)

∥
∥

Y , ‖v‖ ≥ μθσβ–mC
∥
∥(u, v, w)

∥
∥

Y ,

‖w‖ ≥ νθσ γ –mE
∥
∥(u, v, w)

∥
∥

Y ,

and so

∥
∥(u, v, w)

∥
∥

Y = ‖u‖ + ‖v‖ + ‖w‖
≥ (

λθσα–mA + μθσβ–mC + νθσ γ –mE
)∥
∥(u, v, w)

∥
∥

Y

>
(
λ̂θσα–mA + μ̂θσβ–mC + ν̂θσ γ –mE

)∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y ,

which is a contradiction. Therefore, the boundary value problem (S)-(BC) has no positive
solution. �

Remark . In the proof of Theorem ., we can also define λ̂ = α′


θσα–mA , μ̂ = α′


θσβ–mC ,

ν̂ = α′


θσγ –mF , where α′
,α′

,α′
 >  with α′

 + α′
 + α′

 = .

Remark . If for σ ∈ (, ), f i
, f i∞, gi

, gi∞, hi
, hi∞ >  and f (t, u, v, w) > , g(t, u, v, w) > ,

h(t, u, v, w) >  for all t ∈ [σ , ], u, v, w ≥ , u + v + w > , then relation () holds, and we
have the conclusion of Theorem ..

Remark . The conclusions of Theorems .-. and .-. remain valid for general
systems of Hammerstein integral equations of the form

⎧
⎪⎪⎨

⎪⎪⎩

u(t) = λ
∫ 

 G(t, s)f (s, u(s), v(s), w(s)) ds, t ∈ [, ],

v(t) = μ
∫ 

 G(t, s)g(s, u(s), v(s), w(s)) ds, t ∈ [, ],

w(t) = ν
∫ 

 G(t, s)h(s, u(s), v(s), w(s)) ds, t ∈ [, ],

()

with positive parameters λ,μ,ν , and instead of assumptions (H)-(H), the following as-
sumptions are satisfied:

(H̃) The functions G, G, G : [, ] × [, ] →R are continuous, and there exist the con-
tinuous functions J, J, J : [, ] → R and σ ∈ (, ), α,β ,γ >  such that

(a)  ≤ Gi(t, s) ≤ Ji(s), ∀t, s ∈ [, ], i = , , ;
(b) G(t, s) ≥ tα–J(s), G(t, s) ≥ tβ–J(s), G(t, s) ≥ tγ –J(s), ∀t, s ∈ [, ];
(c)

∫ 
σ

Ji(s) ds > , i = , , .
(H̃) The functions f , g, h : [, ] ×R+ ×R+ ×R+ →R+ are continuous.
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5 Examples
Let n = , m = , l = , α = 

 , β = 
 , γ = 

 , p = , q = 
 , p = 

 , q = 
 , p = 

 , q = 
 ,

N = , M = , L = , ξ = 
 , ξ = 

 , a = , a = 
 , η = 

 , b = , ζ = 
 , ζ = 

 , ζ = 
 , c = ,

c = , c = .
We consider the system of fractional differential equations

(S)

⎧
⎪⎪⎨

⎪⎪⎩

D/
+ u(t) + λf (t, u(t), v(t), w(t)) = , t ∈ (, ),

D/
+ v(t) + μg(t, u(t), v(t), w(t)) = , t ∈ (, ),

D/
+ w(t) + νh(t, u(t), v(t), w(t)) = , t ∈ (, ),

with the multi-point boundary conditions

(BC)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u() = u′() = , u′() = D/
+ u(t)|t= 


+ 

 D/
+ u(t)|t= 


,

v() = v′() = v′′() = v′′′() = , D/
+ v(t)|t= = D/

+ v(t)|t= 


,

w() = w′() = w′′() = ,

D/
+ w(t)|t= = D/

+ w(t)|t= 


+ D/
+ w(t)|t= 


+ D/

+ w(t)|t= 


.

We have 
 = –
√

π

 ≈ . > , 
 = �(/)
�(/) – /�(/)

�(/) ≈ . > , 
 =
�(/)
�(/) – ( + / + /) �(/)

/�(/) ≈ . > . So assumption (H) is satisfied.
Besides we deduce

g(t, s) =


�(/)

⎧
⎨

⎩

t/( – s)/ – (t – s)/,  ≤ s ≤ t ≤ ,

t/( – s)/,  ≤ t ≤ s ≤ ,

g(t, s) =

⎧
⎨

⎩

t( – s)/ – (t – s),  ≤ s ≤ t ≤ ,

t( – s)/,  ≤ t ≤ s ≤ ,

g(t, s) =


�(/)

⎧
⎨

⎩

t/( – s)/ – (t – s)/,  ≤ s ≤ t ≤ ,

t/( – s)/,  ≤ t ≤ s ≤ ,

g(t, s) =


�(/)

⎧
⎨

⎩

t/( – s)/ – (t – s)/,  ≤ s ≤ t ≤ ,

t/( – s)/,  ≤ t ≤ s ≤ ,

g(t, s) =


�(/)

⎧
⎨

⎩

t/( – s)/ – (t – s)/,  ≤ s ≤ t ≤ ,

t/( – s)/,  ≤ t ≤ s ≤ ,

g(t, s) =


�(/)

⎧
⎨

⎩

t/( – s)/ – (t – s)/,  ≤ s ≤ t ≤ ,

t/( – s)/,  ≤ t ≤ s ≤ .

Then we obtain

G(t, s) = g(t, s) +
t/




(

g

(



, s
)

+



g

(



, s
))

,

G(t, s) = g(t, s) +
t/



g

(



, s
)

,
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G(t, s) = g(t, s) +
t/




(

g

(



, s
)

+ g

(



, s
)

+ g

(



, s
))

,

h(s) =



√

π
s( – s)/, h(s) =


�(/)

( – s)/( – ( – s)/),

h(s) =


�(/)
( – s)/( – ( – s)/),

J(s) =



√

π
s( – s)/ +





(

g

(



, s
)

+



g

(



, s
))

=

⎧
⎪⎪⎨

⎪⎪⎩



√

π
s( – s)/ + 



[( – s)/ + s – ],  ≤ s < 

 ,



√

π
s( – s)/ + 



[( – s)/ + s – ], 

 ≤ s < 
 ,



√

π
s( – s)/ + 



( – s)/, 

 ≤ s ≤ ,

J(s) =


�(/)
( – s)/( – ( – s)/) +





g

(



, s
)

=

⎧
⎨

⎩


�(/) ( – s)/( – ( – s)/) + /


�(/) [( – s)/ – ( – s)/],  ≤ s < 
 ,


�(/) ( – s)/( – ( – s)/) + /


�(/) ( – s)/, 
 ≤ s ≤ ,

J(s) =


�(/)
( – s)/( – ( – s)/) +





(

g

(



, s
)

+ g

(



, s
)

+ g

(



, s
))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


�(/) ( – s)/( – ( – s)/) + 

/
�(/)

× [( + / + /)( – s)/ – ( – s)/

– /( – s)/ – ( – s)/],  ≤ s < 
 ,


�(/) ( – s)/( – ( – s)/) + 

/
�(/)

× [( + / + /)( – s)/ – /( – s)/ – ( – s)/], 
 ≤ s < 

 ,


�(/) ( – s)/( – ( – s)/) + 
/
�(/)

× [( + / + /)( – s)/ – ( – s)/], 
 ≤ s < 

 ,


�(/) ( – s)/( – ( – s)/)

+ 
/
�(/) ( + / + /)( – s)/, 

 ≤ s ≤ .

Now we choose σ = 
 ∈ (, ) and then θ = –/ ≈ .. We also obtain A =

∫ 
/ J(s) ds ≈ ., B =

∫ 
 J(s) ds ≈ ., C =

∫ 
/ J(s) ds ≈ ., D =

∫ 
 J(s) ds ≈ ., E =

∫ 
/ J(s) ds ≈ ., F =

∫ 
 J(s) ds ≈ ..

Example  We consider the functions

f (t, u, v, w) =
(t + )[̃p(u + v + w) + ](u + v + w)(̃q + sin v)

u + v + w + 
,

g(t, u, v, w) =
√

t + [̃p(u + v + w) + ](u + v + w)(̃q + cos w)
u + v + w + 

,

h(t, u, v, w) =
t[̃p(u + v + w) + ](u + v + w)(̃q + sin u)

u + v + w + 
,

for t ∈ [, ], u, v, w ≥ , where p̃, p̃, p̃ > , q̃, q̃, q̃ > .
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We have f s
 = ̃q, gs

 =
√

(̃q + ), hs
 = q̃, f i∞ = 

 p̃(̃q – ), gi∞ =
√


 p̃(̃q – ), hi∞ =


 p̃(̃q – ). For α = α = α = α̃ = α̃ = α̃ = 

 , we obtain L = /

̃p(̃q–)A , L = 
̃qB , L =




√

̃p(̃q–)C
, L = 


√

(̃q+)D , L = /

̃p(̃q–)E , and L = 
̃qF .

The conditions L < L, L < L and L < L become

p̃(̃q – )
q̃

>
/B

A
,

p̃(̃q – )
q̃ + 

>
/D
/C

,
p̃(̃q – )

q̃
>

/F
E

.

For example, if p̃(̃q–)
q̃

≥ , p̃(̃q–)
q̃+ ≥  and p̃(̃q–)

q̃
≥ , then the above con-

ditions are satisfied.
As an example, we consider q̃ = , q̃ = , q̃ = , p̃ = , p̃ = , p̃ = ,

and then the inequalities L < L, L < L and L < L are satisfied. In this case, L ≈
., L ≈ ., L ≈ ., L ≈ ., L ≈ .,
L ≈ .. By Theorem .() we deduce that for every λ ∈ (L, L), μ ∈ (L, L)
and ν ∈ (L, L) there exists a positive solution (u(t), v(t), w(t)), t ∈ [, ] of problem (S)-
(BC).

Because f s
 = ̃q, f s∞ = ̃p(̃q + ), gs

 =
√

(̃q + ), gs∞ =
√

̃p(̃q + ), hs
 = q̃, hs∞ =

p̃(̃q + ), then by Theorem . and Remark ., we conclude that for any λ ∈ (,λ),
μ ∈ (,μ) and ν ∈ (,ν), problem (S)-(BC) has no positive solution, where λ = 

AB ,
μ = 

AD , ν = 
AF . If we consider as above p̃ = , q̃ = , p̃ = , q̃ = , p̃ =

, q̃ = , then A = , A = 
√

 ≈ , A = . Therefore we
obtain λ ≈ . × –, μ ≈ . × –, ν ≈ . × –.

Because f i
, f i∞, gi

, gi∞, hi
, hi∞ >  and f (t, u, v, w) > , g(t, u, v, w) > , h(t, u, v, w) >  for all

t ∈ [/, ] and u, v, w ≥  with u+v+w > , we can also apply Theorem . and Remark ..
Here λ̂ = 

θσα–mA , μ̂ = 
θσβ–mC and ν̂ = 

θσγ –mE . For the functions f , g , h presented
above, we have m = , m = 

√
, m = 

 , λ̂ ≈ ., μ̂ ≈ ., ν̂ ≈
.. So, if λ > ., μ > . and ν > ., problem (S)-(BC) has no
positive solution.

Example  We consider the functions

f (t, u, v, w) = ta(u + v + w), g(t, u, v, w) = ( – t)b(eu+v+w – 
)
,

h(t, u, v, w) = (u + v + w)c, t ∈ [, ], u, v, w ≥ ,

where a, b > , c > . We have f s
 = , f i∞ = ∞, gs

 = b, gi∞ = ∞, hs
 = , hi∞ = ∞.

By Theorem .(), for any λ ∈ (,∞), μ ∈ (, L̃) and ν ∈ (,∞), with L̃ = 
bD , prob-

lem (S)-(BC) has a positive solution. Here D =
∫ 

 J(s) ds ≈ .. For example, if
b = , we obtain L̃ = 

D ≈ ..
We can also use Theorem ., because g(t, u, v, w) ≥ u + v + w for all t ∈ [/, ] and

u, v, w ≥ , that is, m = . Because μ̃ = 
θσβ–mC ≈ ., we deduce that for every

λ > , μ > . and ν > , the boundary value problem (S)-(BC) has no positive
solution.

6 Conclusion
By using the Guo-Krasnosel’skii fixed point theorem, in this paper, we present conditions
for the nonlinearities f , g and h, and intervals for the positive parameters λ, μ and ν such
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that problem (S)-(BC) has positive solutions. In addition, we investigate the nonexistence
of positive solutions for this problem. The novelties of our paper are the system (S) (a sys-
tem with three fractional differential equations, unlike the well-studied case of a system
with two equations) and the boundary conditions (BC) which, in contrast with other re-
cent papers, contain fractional derivatives in t =  and in various intermediate points. The
obtained theorems improve and extend the results from paper [], where only a few cases
are presented for the existence of positive solutions. Our results remain valid, with simi-
lar proofs, for general systems of Hammerstein integral equations of the form () under
assumptions (H̃) and (H̃).
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