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1 Introduction

We consider the system of nonlinear ordinary fractional differential equations

D&, u(t) + Af (¢, u(t), v(t), w(t)) =0, te(0,1),
(S)  { D5 v(t) + gt u(t), v(t), w(t)) =0, te(0,1),
D} w(t) + vh(t, u(t), v(t),w(t)) =0, te(0,1),

with the multi-point boundary conditions which contain fractional derivatives

uP(0)=0, j=0,....n-2  Dhu(t)|ir = Yy aiDE: u(O)s=s,
(BC) 1v(0)=0, j=0,....m=2;  DRv(t)|se1 = 32 BiDEV(E) 1=,
w(0)=0, j=0,...,1-2  DREw(t)ler =Y 1 cDEWE),»

where L, u,v>0,a,8,y eR,ae n-1,nl,Be(m-1,ml,y e((-LI,nmleN,nml>
3,p1,P2:P3:91,92:93 € R, p1 € [Ln=2],p, € [1,m-2],p3 € [1,1-2],q1 € [0, p1], g2 € [0, p2],
q3 € [0,p3], &,a; eRforalli=1,...,N (NeN),0<é& <--- <& <1, n;,b; € R for all
i=L,...MMeN),0<m<--<ngyu=<1,¢,c;eRforalli=1,...,L(LeN),0< < --<
¢r < 1,and Df, denotes the Riemann-Liouville derivative of order k.

Under some assumptions on f, g and /4, we give intervals for the parameters A, u and v
such that positive solutions of (S)-(BC) exist. By a positive solution of problem (S)-(BC),
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we mean a triplet of functions (, v, w) € (C([0,1],R,))3, (R, = [0, 00)) satisfying (S) and
(BC) with u(£) > 0 for all £ € (0,1], or v(¢) > 0 for all ¢ € (0,1], or w(¢) > 0 for all ¢ € (0,1].
The nonexistence of positive solutions for the above problem is also studied. Our results
generalize the results from the paper [1], where the authors investigated a system with
two fractional differential equations and multi-point boundary conditions. Besides, our
results improve and extend the results from [2], where only a few cases are presented for
the existence of positive solutions for a system of integral equations and, as an application,
for a system with three fractional equations subject to some boundary conditions in points
t=0and ¢t =1 (Application 4.3 from [2]).

Systems with two fractional differential equations with multi-point or Riemann-Stieltjes
integral boundary conditions were also studied in [3—13], etc. Fractional differential equa-
tions describe many phenomena in various fields of engineering and scientific disciplines
such as physics, biophysics, chemistry, biology, economics, control theory, signal and im-
age processing, aerodynamics, viscoelasticity, electromagnetics, and so on (see [14—22]).

The paper is organized as follows. In Section 2, we present some auxiliary results which
investigate a nonlocal boundary value problem for fractional differential equations. Sec-
tion 3 contains the main existence theorems for positive solutions with respect to a cone
for our problem (S)-(BC). In Section 4, we investigate the nonexistence of positive solu-
tions of (S)-(BC); and in Section 5, some examples are given to support our results. The
main conclusions for our investigations from this paper are presented in Section 6.

2 Auxiliary results
We present firstly some auxiliary results from [23] that will be used to prove our main
results.

We consider the fractional differential equation
Dy, u(t) +x(t)=0, 0<t<l, (1)

with the multi-point boundary conditions

N
u0)=0, j=0,...,n-2%  Dpu®|m =) @D u(®)-, )
i=1

where a e (n—1Lnl,neN,n>3,a,& R, i=1,.... N(NeN),0<& < <&y <

1L, p.q1 €R, p1 € [Ln - 2], ¢1 € [0,p1], and x € C[0,1]. We denote A; = FF(oz) _

@) N . (a=p1)
« a-q1-
Faqn i 46 -
Lemma 2.1 ([23]) If A1 # 0, then the function u € C[0,1] given by
1
ue)- [ Gie9wods te o] ®)
0

is solution of problem (1)-(2), where

1 N
Gl(t’s) =g1(t»3) + taA_ll ;aigZ(éi!S)i V(t, S) S [O’ 1] X [07 1]! (4)
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and

1 |t Q-s Pt - (-5, 0<s<r<l,

(t,S) =R/
& I'(a) 211 — g)am, 0<t<s<],
(5)
1 [eertaoger o mgent, 0zs=es,
gz(t,S) =5 N
I —q1) -] — gyl 0<t<s<l

Lemma 2.2 ([23]) The functions g, and g, given by (5) have the properties:
(@) @(t,s) <hs) forallt,s € [0,1], where

Iy(s) = ﬁ(l )" P 1-1-s)), se[0,1];

(b) @(t,s) > t“ L hy(s) for all t,s € [0,1];
ta—l

(©) &i(t,s) < gy for all t,s € [0,1];
(d) g(t,s) > t* 1y (s) for all t,s € [0,1], where

hy(s) = A=) 1-1-sP1), s€[0,1];

M -q1)

(e) g(t,s) < r(Otl_ql)t"“‘“‘lfor allt,s € [0,1];
(f) The functions g1 and g, are continuous on [0,1] x [0,1]; g1(¢,s) > 0, &(t,s) > 0 for all
t,s€[0,1]; g@1(t,s) > 0, & (t,s) > 0 for all t,s € (0,1).

Lemma 2.3 ([23]) Assume thata; >0 foralli=1,...,N and A; > 0. Then the function G,
given by (4) is a nonnegative continuous function on [0,1] x [0,1] and satisfies the inequal-
ities:

(@) Gi(t,s) < Ji(s) for all t,s € [0,1], where Ji(s) = i (s) + A% SN ag(E,s), s €[0,1];

(b) Gi(t,s) > t*i(s) forall t,s € [0,1];

(¢) Gi(t,s) <o1t*L, forall t,s € [0,1], where o, = ﬁ + m >N a,-&f‘fqu.
Lemma 2.4 ([23]) Assume that a; >0 foralli=1,...,N, A; >0, x € C[0,1] and x(t) > 0
forall t € [0,1]. Then the solution u of problem (1)-(2) given by (3) satisfies the inequality
u(t) > t*u(t') forall t, ¢ € [0,1].

We can also formulate similar results as Lemmas 2.1-2.4 for the fractional boundary

value problems
DEw(t) +y(H)=0, 0<t<l, (6)

M
W©O)=0, j=0,om=2  DEvOlet =Y bDEVO ey (7)
i=1

and

Dy w(t)+2z(t)=0, 0<t<l, (8)



Luca Boundary Value Problems (2017) 2017:102 Page 4 of 35

L
w(0)=0, j=0,...,0-2  DREw®|e =) cDEwE)lis, ©)

i=1

where e (m-1,m]|, y e (-1, mleN, ml>3,b,neR,i=1,....M(MeN),0<
m<-<nmu=LecGeRi=1L..,L(LeN),0<s < < =L pngnpsqs €R, pr €
(1,m~2],q2 €10,p2], ps € [1,1 - 2], q3 € [0, p3], and y,z € C[0, 1].

We denote by Ay, g3, g4, Ga, h3, ha, J» and 0y, and As, g5, g6, Gs, ks, hs, J3 and o3 the cor-
responding constants and functions for problem (6)-(7) and problem (8)-(9), respectively,
defined in a similar manner as Ay, g1, &2, G1, /11, h2, 1 and o3, respectively. More precisely,
we have

re T b
- - b,
N TG T &

1 | Q-5 lo(t-s)fl, 0<s<t<l,

&)= ——
L(B) | 811 — s)pr21, 0<t<s<l,
1 (1 —g)frl _(—g)f07l, 0<s<t<]1,
&(t,s) = = ———
LB —q) | tp-a2-1(1 — 5)fP27L, 0<t<s<l,
p-1 M

Galt,5) = a6+ = > bga(n,9), V(6:9) 10,11 % [0,1],
i=1

h3(s) = %ﬁ)(l —s)f 21— (1-92), sel0,1],

ha(s) = ﬁa —s)f 21— (152 2), sel0,1],

1 M
Ja(s) = ha(6) + > biga(nis), sel0,],
i=1

1 1 M
B-q2-1
Oy = + b?’} )
L(B) AT (B-qo) Zl o
and
T(y) ry) «
3= - ch{i}/i%il’
Iy -ps) T(y-a3) 3
1 |l A-s)y Pl (t-s)7!, 0<s<t<],
&(t,s) = ——
L) |1 - s)r»s1, 0<t<s<l,
1 B —s)y Pt (t—s)y B, 0<s<t<l,
&(t,s) = ——
Ly —q3) | gr-as-1(1 = s)r—»s1, 0<t<s<l,

y-1 L

GB(t: S) =g5(t: S) + tA_3 ZC:;%(Q:S): V(t,S) S [0: ]-] X [O; 1]:
i=1

_L —_ P31 _ (1 — 53
h5(s)-r(y)(1 s)/ 31— (1-93), sel0,1],
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he(s) = ﬁ(l )’ (1-(1-s)*B), sel0,1],

1 L
Ja(s) = hs(s) + <= Y cigeltns), s€0,1],
i=1

1 L
ro) " M(y 4) Z

Vqsl

03 =

The inequalities from Lemmas 2.3 and 2.4 for the functions G,, Gs3, v and w are the
following Gy (t,s) < Ja(s), Ga(t,s) = tP7)a(s), Ga(t,s) < out?™, Gs(t,s) < J3(s), Galt,s) >
£ 1s(s), Gs(t,s) < ost?™! for all t,s € [0,1], and v(t) > tP~1u(t'), w(t) > "~ 'w(t') for all
t,t' €[0,1].

In the proof of our main existence results, we shall use the following theorem (the Guo-
Krasnosel’skii fixed point theorem, see [24]).

Theorem 2.1 Let X be a Banach space, and let C C X be a cone in X. Assume Q2 and 2,
are bounded open subsets of X with 0 € Q; C Q) CQy,andlet A:CN(Qy\ Q)= Chea
completely continuous operator such that either

@) Al < |lull, u € CN O, and || Au| > ||u|l, u € CN 3y, or

(i) | Aull > ull, u € CN 3Ry, and || Au|l < ||u|l, u € CNIR,.
Then A has a fixed point in C N (Q \ Q).

3 Existence of positive solutions
In this section, we give sufficient conditions on A, u, v, f, g and 4 such that positive solu-
tions with respect to a cone for our problem (S)-(BC) exist.

We present the assumptions that we shall use in the sequel.

H) o8,y eR,aem-1,n, Bem-1,m], y e ((-L1, n,mleN, nml > 3,
PP 49 €ER, preLn-2],ppe[lL,m-2],ps€[L,I-2], 1 €[0,p1], g2 €
[0,p2), g3 €[0,p3), & €R,a; >0foralli=1,..., N(NeN),0<& <---<éy <1,y €
R,b;>0foralli=1,.... M(MeN),0<m<---<ny<1l,and; €R,¢; >0foralli=

N —q1-1
L..,L(LeN),0<y << <L Au,v>0 A= (a;l) F(Z(f;l)z, a:g! ™" >
) B-q2-1 C(y) C(y) L y-q3-1
0, A = F(ﬁﬂpz - ﬂqz)zllb‘nl T>0, A= gy il >0

(H2) The functions f,g,4:[0,1] x R, x R, x R, — R, are continuous.

For o € (0,1), we introduce the following extreme limits:

ft,u,v,w)
f5 = limsup max ———,
wiviw—04 tEl0] U+ V+ W

B h(t,u,v,w)
hy = limsup max ———

)
wiviw—s04+ LE[01] U+ V+W

g, = liminf min
u+viw—0+telo,l] U+ V + W

ft,u,v,w)

g(t,u,v, w)

f5 = limsup max

)
urviw—oo t€lOl] U+ V+ W
h(t, u,v,w)

7
u+v+w—>oot€[0 11 u+v+w

K, = limsup max

; g(t,u,v, w)
g = liminf min =——
utviw—ootelol] U+ V + W

gt u,v,w )
g; = limsup max =——
wsviw—0+ 26101 U+ V+W

; f(t u,v, w)
fo = liminf min
utv+w—0+telo,l] U+ V + W

. h(t,u,v,w
hy = liminf min g,

utviw—0+telol] U+ V+W
g(t,u,v, w)

g, = limsup max
wiviwoootelOl] U+V+W

: t,u,v,w
foo = liminf min ACLA) )
utviw—ootelo,l] U+ V + W

i _ . . .
hl, = liminf min

h(t,u,v,w)

utviw—ootelo,l] U+ V+ W ’
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In the definition of the extreme limits above, the variables u, v and w are nonnegative.
By using the Green functions G;, i = 1,2, 3, from Section 2, we consider the following
nonlinear system of integral equations:

u(t) = Afol Gy(t,9)f (s, u(s), v(s), w(s))ds, te]0,1],
v(t) = fol Ga (2, 8)g(s, u(s), v(s), w(s))ds, tel0,1],
w(t)=v fol Gs(t, s)h(s, u(s), v(s), w(s))ds, te[0,1].

If (u,v,w) is a solution of the above system, then by Lemma 2.1 and the corresponding
lemmas for problems (6)-(7) and (8)-(9), we deduce that (i, v, w) is a solution of problem
(S)-(BQ).

We consider the Banach space X = C[0, 1] with the supremum norm || - || and the Banach
space Y = X x X x X with the norm ||(, v, w)|ly = |||l + ||| + ||w]. We define the cones

Py

{ueX,u(t) = t*ull,vt € [0,1]} C X,

Py={veX,v(t) =" |v|,Vt€[0,1]} C X,

Py ={weX,we) =t |w|,Vee[0,1]} C X,

and P=P; x Py, xP3CY.
For A,u,v > 0, we define now the operator Q : P — Y by Q(u,v,w) = (Q1(x, v, w),
Qo (u, v, w), Q3(u, v, w)) with

1
Qi(u, v, w)(t) = 1 / Gi(t, s)f(s, u(s), v(s), w(s)) ds, tel0,1],(u,v,w)ePp,
0
1
Qa(u, v, w)(t) = / Ga(t,9)g (s, u(s), v(s), w(s)) ds, t€[0,1],(u,v,w) € P,
0
1
Qs(u, v, w)(t) = v/ Gg(t,s)h(s, u(s), v(s), w(s)) ds, tel0,1],(u,v,w) € P.
0

Lemma 3.1 If (H1)-(H2) hold, then Q : P — P is a completely continuous operator.

Proof Let (u,v,w) € P be an arbitrary element. Because Qi(u,v,w), Qa2(u, v, w) and Qs(u,
v, w) satisfy problem (1)-(2) for x(t) = Af(¢, u(t), v(t), w(t)), t € [0,1], problem (6)-(7) for
y(t) = ug(t, u(t), v(e), w(t)), t € [0,1], and problem (8)-(9) for z(t) = va(t, u(t), v(t), w(t)), t €
[0,1], respectively, then by Lemma 2.4 and the corresponding ones for problems (6)-(7)
and (8)-(9), we obtain

Qi v, w)(¢) = Qv (), Qv w)(') = 7 Qalu, v, w)(¢),
Qs(u, v, w)(¢) = ' Qs(w, v, w)(¢), V&t € (0,11, (w,v,w) €P,

and so

Qi(u, v, w)(t) > t*7 ax Qi(w, v, w)(¥)
t'€[0,1

= tOFl || Ql(u: v, W)

, Vtel0,1],(u,v,w)€P,



Luca Boundary Value Problems (2017) 2017:102 Page 7 of 35

Qa(u, v, w)(8) = £~ max Qu(u, v, w)(t)
t'e[0,1]
=" Qu(w,v,w)||, Vte[0,1],(u,v,w) € P,

Q3(ur v, W)(t) = ty_l m[ax] Q3(u1 v, W) (t/)
t'e[0,1

= ty71 || Q3(u’ v, W)

, Vtel0,1],(u,v,w) € P.

Therefore, Q(u, v, w) = (Q1 (&, v, w), Qa2 (1, v, w), Q3(u, v, w)) € P, and then Q(P) C P. By us-
ing standard arguments, we can easily show that Q;, Q, and Qs are completely continuous
(continuous and compact, that is, map bounded sets into relatively compact sets), and then
Q is a completely continuous operator. O

If (u,v,w) € P is a fixed point of operator Q, then (i, v, w) is a solution of problem (S)-
(BC). So, we will investigate the existence of fixed points of operator Q.

For o € (0,1), we denote A = f;]l(s) ds, B = foljl(s) ds, C = f;]z(s) ds, D = folfz(s) ds, E =
fgl Js(s)ds, F = follg(s) ds, where J;, J, and J5 are defined in Section 2.

First, for f3,85, 1, fL,g.., i, € (0,00) and numbers a1, a0y, 03 > 0 with a; + oy + a3 = 1,
0,0,003 > 0 with o + 0y + @3 = 1, &, a4 >0 with @y + o0y =1, oy, a5 > 0 with & + &5 =1,

~n

o),y >0 with @ + &’ = 1, we define the numbers

~

) Y
' o A *T 9obig C’ " 9orhi E’ T B
L= g @& @& &, w8
@D’ hyF’ tgD’ ® " myF’ > B ¢ myF’
~I a/// ~ 1 ~ 1 ~ 1
L/// — _1’ L/// — _2’ L, = —, L= S Le = —_—
27 fB * 7 gD *"fsB YT gD *"iF

where 8 = min{c*!,a#1, 07 1}.

Theorem 3.1 Assume that (H1) and (H2) hold, o € (0,1), o1, 09,003 > O with o + otg + 03 =
1,01, 0,003 > 0 with o +0p + 03 = 1, &y, a5 > O with oy + a5 =1, o, 08 >0 witha) +af =1,
a,ay >0 witha) +al =1.
Q) Iffs, g5, by fin gl i, € (0,00), Ly < Ly, Ly < Ly and Ls < Le, then for each
A€ (Ly,Ly), u € (L3, Ly), v € (Ls, Lg) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).
(2) Iffs =0, g5, k. fL, gL, by € (0,00), Ly < Ly and Ls < L, then for each A € (Ly,00),
w € (L3, Ly), v € (Ls, Ly) there exists a positive solution (u(t), v(t), w(z)), t € [0,1] for
problem (S)-(BC).
(3) If gy =0, f5, 1, fL, 8., by, € (0,00), Ly < LY and Ls < L}, then for each € (Ly,L}),
w € (L3, 00), v € (Ls, LY) there exists a positive solution (u(t), v(t), w(t)), t € [0,1] for
problem (S)-(BC).
(4) If iy =0, 15,85, f, 8, ., € (0,00), Ly < L and Ly < LY, then for each A € (Ly,LY)),
w € (Ls, L), v € (Ls,00) there exists a positive solution (u(t), v(t), w(t)), t € [0,1] for
problem (S)-(BC).
() Iffs =gy = 0, k), fi g’ i € (0,00), Ls < Lg, then for each € (Ly,00), i € (L3, 00),
v € (Ls, Lg) there exists a positive solution (u(t), v(t), w(t)), t € [0,1] for problem

(5)-(BO).
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6) Iffs =y =0,8,f g, b €(0,00), Ls < Ly, then for each € (Ly,00), i € (Ls, Ly),
v € (Ls, 00) there exists a positive solution (u(t), v(t), w(t)), t € [0,1] for problem
(S)-(BC). ~ ~

(7) If gy =hy=0,15,f%, 850, M, € (0,00), Ly < Ly, then for each A € (Ly,Ly), u € (L3, 00),
v € (Ls, 00) there exists a positive solution (u(t), v(t), w(t)), t € [0,1] for problem
(S)-(BC).

(8) Iffs=g5=hy=0,f,g K €(0,00), then for each A € (Ly,00), u € (L3, 00),

v € (Ls, 00) there exists a positive solution (u(t), v(t), w(t)), t € [0,1] for problem
(S)-(BC).

9) Iff5, g5 ly € (0,00) and at least one of f5, gL, b’ is oo, then for each )\ € (0,Ls),
w €(0,L4), v €(0,Lg) there exists a positive solution (u(t), v(¢), w(t)), t € [0,1] for
problem (S)-(BC).

(10) Iff5 =0, g5, K € (0,00) and at least one of fL, g’ , hi,, is 0o, then for each
A €(0,00), u €(0,L}), v € (0,Ly) there exists a positive solution (u(z), v(t), w(z)),
t € [0,1] for problem (S)-(BC).

(11) Ifgs =0, f5, k) € (0,00) and at least one of f1, g, Wi, is 0o, then for each
A €(0,L7), n €(0,00), v € (0,LY) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).

(12) Ifh§ =0, 15,85 € (0,00) and at least one of [, g, W’ is o0, then for each
A €(0,LY), ue(0,Ly), v € (0,00) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).

(13) Iff5 = g5 =0, i € (0,00) and at least one of fL, g, W’ is oo, then for each
1 € (0,00), i € (0,00), v € (0,L¢) there exists a positive solution (u(t), v(t), w(¢)),
t € [0,1] for problem (S)-(BC).

(14) Iffs =h} =0, g5 € (0,00) and at least one of f,, g’ , hi,_ is 0o, then for each
A €(0,00), n e (O,Z4), v € (0, 00) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).

(15) Ifgy =h =0, f3 € (0,00) and at least one of f., g’ , W', is 00, then for each
A€ (O,Zz), w € (0,00), v € (0,00) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).

(16) Iffs = g5 = k) = 0 and at least one of fL,, g.., h. is 0o, then for each ) € (0,00),
€ (0,00), v € (0,00) there exists a positive solution (u(t), v(¢), w(t)), t € [0,1] for
problem (S)-(BC).

Proof We consider the above cone P C Y and the operators Q;, Q2, Qs and Q. We will
prove some illustrative cases of this theorem.

Case (1). We consider f3,g5, 1, fL, g, il € (0,00). Let A € (L1,Ls), i € (L3,Ls) and v €
(Ls,Ls). We choose ¢ > 0 a positive number such that e < f, e < g’ , & <hl_ and

& da ds

s Z ) —ZlL; S—Zv’
(fy +¢)B (g5 +e)D (hy + )F

oy (6%) a3
———— <, — = =W — = =<V
Ooe(fi - e)A Oob1(gl, —e)C Oo7r-L(hi, —¢)E

By using (H2) and the definition of fj, g; and /j, we deduce that there exists R; > 0
such that f(¢,u,v,w) < (fy + e)(u + v+ w), glt,u,v,w) < (g + &) + v +w), h(t,u,v,w) <



Luca Boundary Value Problems (2017) 2017:102 Page 9 of 35

(hy + €)(u +v+w) for all £ € [0,1] and u,v,w > O with u + v + w < R;. We define the set
Q ={wv,w) €Y, |(u,v,w)lly <Ri}.

Now let (1, v, w) € PN 32y, thatis, ||(u, v, w)|ly = Ry or, equivalently, [lu| + |[v] + [|[w] = R;.
Then u(t) + v(¢) + w(t) < Ry for all t € [0,1], and by Lemma 2.3, we obtain

1
QU0 < [ A (551 v(5) wls) ds
0
1
< A/ ]1(s)(f05 + e) (u(s) +v(s) + w(s)) ds
0

1
<5 +8)f0 Js)(llull + 11Vl + lwll) ds

:)\'(fg +8)B||(M,V,W)||Y S&1||(M,V,W)

vy ¥te[0,1],

1
Qality 1 w)(0) < 11 /0 Jo(6)g (s, 1(5), vs), wls) ds

1
< /L/ J2(s) (g5 + &) (u(s) +v(s) + w(s)) ds
0

1
<ulg+ e)/o ) (lull + vl + 1wl ds

vVt € [0,1],

= (g +&)D|w v, =@ @wv.w],,

1
Qult0)0) = v [ JoMh(51(5, (5 wis) s
0
1
< v/ J3(s) (hf) + 8) (u(s) +v(s) + w(s)) ds
0

1
<v(hg+ 8)/0 Ja(s)(llaell + VIl + Iwll) s

= v(hf) + £)F||(u, v, W) HY <03 || (w,v,w)|,, Vtel0,1].
Thereforer ”QI(M:V; W)” = &1||(M:V7 W)”Y: ”QZ(”:Vr W)” = aZ”(MrVrW)”Y’ ”QB(M! V,W)” =
a3 (v, w)|ly.

Then, for (u,v,w) € PN 32, we deduce

[Quuv.wy = |Quwvw)] + Qe v.w)] + ]| Qs v, W]

< (ai + 0y +az) ||(u, v, W) Hy = ||(u, v, W) HY (10)

By the definition of £, g’ and ki, there exists R, > 0 such that f(t,u,v,w) > (f. -
e)u+v+w), gt,u,v,w) > (gh, — &) +v+w), h(t,u,v,w) > (hi, — &)(u + v + w) for all
uw,v,w>0 with u + v+ w >R, and ¢ € [0,1]. We consider R, = max{2R;,R,/0}, and we
define 2, = {(u,v,w) € Y, ||(i, v, w)|ly < Rz}. Then, for (i, v,w) € P with ||(&,v,w)|ly = R,
we obtain

u(®) + v(e) + w(t) = o ul + ol + o Hwll = 0 (lull + V] + lIwl])

=0|(wv,w)|, =0R >Ry, Vtelo,1].
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Then, by Lemma 2.3, we conclude

1
Qi(u, v, w)(t) = )L/ t"“lh(s)f(s, u(s), v(s), w(s)) ds

0
1
> Aa"‘_lf ]l(s)f(s, u(s), v(s), w(s)) ds

> ro % /1]1(5)(}”0"0 - s) (u(s) +v(s) + w(s)) ds

1
= 10" 0 (7L —e) [ 76w m],

=rc%10 (féo - E)A ” (u, v, w) H v

> o |(@wv,w)|,, Vielo,1],

1
Qx(u, v, w)(t) > /L/(; t’s’llg(s)g(s, u(s), v(s), w(s)) ds
1
> pot / Ta()g (5, 4(s), vs), w(s)) dis
1 .
> [L(Iﬂ_l / J(s) (gfx) - s) (u(s) +v(s) + w(s)) ds

1
> o 6(g—<) [ 26| @], ds

- o 0(g, ~e)Clamm],
vVt € [o,1],

> oy || (l/l, v, W) y’

1
Qul, v, w)(t) = v / Vs V(s u(s), vs), w(s)) ds
0
1
> voV’I/ J3()h(s, u(s), v(s), w(s)) ds
l .
> vaV’I/ Ja(s) (Ml — €) (u(s) + v(s) + w(s)) ds

1
=007 0 ) [ 6] )] ds
= UO’yilg(héo - S)F“ (l/l, v, W) || Y

> o3| (, v, W) | v Yte[o,1].

So ”Ql(ur v, W)” > Ql(ul v, W)(U) > 0[1”(14, v, W)”Y! ”QZ(M’ v, W)” > QZ(ur v, W)(O) = 0‘2”(”!
v, W)y, 1Qs(u, v, w)|| > Qs(u, v, w)(0) > a3 l(u, v, w)||y.
Hence, for (u,v,w) € PN 32, we obtain
Qv W, = [ Qi v, w)| + [ Qv W) + [|Qs(u, v, )|
> (0 +0p + a3) ||(u, v, W)“Y = ||(u, v, W) HY (11)

By using Lemma 3.1, Theorem 2.1 i) and relations (10), (11), we deduce that Q has a
fixed point (i, v,w) € PN (Qy \ Q1), u(t) > 2 ull, v(t) > tP71||v|, w(t) > "1 ||w]| for all
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t € [0,1],and Ry < |lu|| + |[v|| + W]l < Ry.If |u|| > O, then u(t) > 0 for all £ € (0,1], if ||v]| > O,
then v(¢) > 0 for all ¢ € (0,1], and if ||w| > 0, then w(¢) > O for all £ € (0,1]. So, (4, v,w) is a
positive solution for our problem (S)-(BC).

Case (10). We consider f3 = 0, £, = 00, g, ki), g, il € (0,00). Let A € (0,00), u € (0,L})

and v € (0,L;). We choose ¢ > 0 a positive number such that ¢ < A00*~'A and

8<1—ug‘5D—vh5F 8<&§—uggD 8<(Yé—vhf)F
= 21B ’ - 2uD '’ -  2vF

The numerators of the above fractions are positive because u < g%’ that is, @, > ugyD,
V< %, that is, o} > viiyF, and 1 — ugoD — vy F = @) + g — ugsD — vhyF = (@5 — nggD) +
(o — vhyF) > 0.

By using (H2) and the definition of fj, g5, /), we deduce that there exists R; > 0 such
that f(¢,u,v,w) <e(w+v+w), glt, u,v,w) < (g +e)u+v+w), h(t,u,v,w) < (Il + &)(u +
v+ w) for all £ € [0,1], u,v,w > 0 with u + v + w < R;. We define the set ; = {(u,v,w) €
Y, [(u, v, w)|ly <Ri}.

Now let (i, v,w) € PN 9L, that is, || (&, v, w)|ly = R;. Then u(t) + v(¢) + w(t) < R; for all
t € [0,1], and by Lemma 2.3 we obtain

1
Qut, v, w)(8) < 1 / TS (5,4(5), s), wls)) ds
0
1
< A/ ]l(s)a(u(s) +v(s) + w(s)) ds
0
1
< Asfo T (Il + vl + wl) ds

= kaB”(u, v, W) H y < (1 - ugoD - vhf)F) H (u, v, w)’

y?

N =

1
Qult 10 < [ Jo61g (5169, (9, w(9)) ds
1
< ;Lfo ]z(s)(gf) + 8) (u(s) +v(s) + w(s)) ds

1
<u(g+ e)/o Tl + V1l + 1wl ds

(g + ) v w],

o
<+ 2552 Dl m,

1 ~
- L (gD @) vl

1
Qalut v w)0) = [ 6B, ), (9, w(5) s
0
1
< v/ J3(s) (hf) + 8) (u(s) +v(s) + w(s)) ds
0

1
<v(i +a)/0 J() (llell + 11 + 1wl ds
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>/ S
as — vhyF

:v(hf,+8)F||(u,v,w)HY§v(hg_,_ 2,)]:

)L,

vt e [0,1].

1 »
- L omE ) fwn ],

Therefore

(1 - ngD — viyF) || (u, v, w)|

| Qv

IA

NR N~ N

Y’

[Qute )] = 2 (ugi+ )] )

IA

y?

(vEyF +a3) || (u, v, w)| -

|| QS(M’ v, W) || =

Then, for (u,v,w) € PN 924, we conclude

[Qv.wy = |Quwvw)] + Qv w)] + ]| Qs v, W]

%(l — ugsD — vEYF + ugyD + &y + viyF + @3) | (u, v, w)||,

IA

= [y, W), (12)

By the definition of f%, there exists R, > 0 such that f(¢,u,v,w) > %(u +v+w) for all
u,v,w>0 with u + v+ w >R, and ¢ € [0,1]. We consider R, = max{2R;,R,/6}, and we
define @, = {(u,v,w) € Y, ||(&r, v, w)|ly < Rz}. Then, for (,v,w) € P with ||(z, v, w)|ly = R,
we obtain u(t) + v(t) + w(t) > 0||(u, v, )|y = Ry > R, for all £ € [5,1]. Then by Lemma 2.3

we deduce

1
Qi1(u, v, w)(t) > k/ 7 () (s, u(s), v(s), w(s)) ds

0

> hoo! f 6 (5,105, () wls)) dis
:
> ho! / 1)~ (1l5) + v(5) + w(s) ds
23007 [ 6l ml, o
= ro oA wr ], = [rw], Ve (o,
Then Q126 v, W)l = Qi %,W)(@) = I, W)y, and
| Qv )|, = Qv w)| = | v, w)] .- (13)

By using Lemma 3.1, Theorem 2.1(i) and inequalities (12), (13), we conclude that Q has
a fixed point (&, v, w) € PN (2, \ ©1) which is a positive solution of problem (S)-(BC).

Case (15). We consider g} = ki = 0, g’ = oo, f3,fi ,hi_ € (0,00). Let & € (0,L,), i €
(0,00), v € (0,00). We choose ¢ > 0 a positive number such that ¢ < u6o?-1C and

£ £ £
<1 )»fOB, €<1 AOB, 8<1 AOB.
~ 2)AB ~ 4uD - 4vF

&
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The numerator of the above fractions is positive because A < fgLB’ thatis, 1 - Af§B > 0.

By using (H2) and the definition of f§, gj, /1), we deduce that there exists R; > 0 such that
fEu,v,w) <(f§ +e)u+v+w), glt,u,v,w) <em+v+w), h(t,u,v,w) < e(u + v+ w) for all
t €[0,1], u,v,w > 0 with u + v+ w < R;. We define the set Q; = {(i,v,w) € Y, |[(, v, )|y <
Ry}.

Now let (i, v,w) € PN 3Ry, that is, |[(z, v, w)|ly = R;. Then u(t) + v(¢t) + w(t) < R; for all
t €[0,1], and by Lemma 2.3, we obtain

1
Qv W)(0) < 1 f Y (5 1(s), V), w(s)) ds
0
1
< )L/ ]1(s)(f05 + 8) (u(s) +v(s) + w(s)) ds
0

1
<5 + s)f0 Ju(s) (lell + 11 + 1wil) s

1-2f;B
21B

=A(f(f+8)B||(u,v,w)||Y§)»(fg+ )BH(M,V,W)”Y

= %(AféB +1) H(u, v, w)| -

1
Qa(u, v, w)(t) < fo J2(8)g (s, u(s), v(s), w(s)) ds
1
< u/ J(s)e (u(s) +v(s) + w(s)) ds
0

1
< usfo L6l + vl + 1wll) ds

1- B
4uD

- neDl v m, = =2 bl m],

1
= ;(l—kaB) |G, v,m)]

1
Qult 1 )(0) =v [ BB )6, w6
1
< v/ J3(s)e (u(s) + v(s) + w(s)) ds
0

1
< vefo Jo(6) (Il + vl + 1wl s

“ve|nm], < v |,
= i(l—)»ng) |G, v,w)||,, Vtelo,1].
Therefore
Q] < 5658+l wrwl,,
Qs ] = 3 (1-2738) [ ]

4
|| Qs(u, v, w) || < i(l - A]”SB) H(u, v, w)|| v
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Then, for (u,v,w) € PN 321, we deduce

[ Qv Wy = Qs vw)] + [ Qauv, w]| + | Qs e v, )]

1
< 1(2 +2M3B+1-Af;B+1- kng) || (e, v, w) ” y = || (u, v, w) ” v (14)

By the definition of géo, there exists Ry > 0 such that gt,u,v,w) > %(u + v+ w) for all
w,v,w>0 with u + v+ w >R, and ¢ € [0,1]. We consider R, = max{2R;,R,/6}, and we
define Q, = {(&,v,w) € Y, ||(i, v, w)|ly < R2}. Then, for (u,v,w) € P with ||(z,v,w)||y = Ro,
we obtain u(¢) + v(£) + w(t) > 0||(u, v, w)||y = OR, > R, for all ¢ € [5,1].

Then, by Lemma 2.3, we conclude

1
Qulte v w)(t) > 1 f P2 (6)g (5, 1(5), v(s), wls)) dis
0
1
> pof! / J2(5)g (s, u(s), v(s), w(s)) ds
1
> pof / Jz(S)E(M(S) +v(s) + w(s)) ds

1 1
> o9 f ()| @, v,w)|, ds

vVt € [o,1].

1
- o0 vl = [ ml,

Then ”QZ(M! v, W)” = Q2(u7 v, W)(U) > ||(Lt, v, W)”Y’ and

[QUav. )y = [Qelae, v w)| = v W] - (1)

By using Lemma 3.1, Theorem 2.1(i) and inequalities (14), (15), we deduce that Q has a
fixed point (u,v,w) € PN (Q, \ ©1) which is a positive solution of problem (S)-(BC).

Case (16) We consider f§ = g5 = h§ = 0, bl = oo, f1, gl € (0,00). Let A € (0,00), u €
(0,00) and v € (0, 00). We choose ¢ > 0 such that

& <vlo?E, e < L, e < L, 8<L.
31B 3uD

By using (H2) and the definition of f, gj, /1, we deduce that there exists R; > 0 such that
ft,u,v,w) <ew+v+w),glt,u,v,w) <e(u+v+w), h(t,u,v,w) < e(u+v+w)forallt € [0,1],
u,v,w >0 with u + v+ w < R;. We define the set Q; = {(u,v,w) € Y, ||(&r, v, W) |ly < Ry1}.

Now let (i, v,w) € PN 3Ry, that is, ||(z, v, w)|ly = Ri. Then u(t) + v(¢t) + w(t) < R; for all
t €[0,1], and by Lemma 2.3 we obtain

1
Qut, v, w)(8) < 1 / TS (5,4(5), vs), w(s)) ds
0
1
< A/ ]l(s)s(u(s) +v(s) + w(s)) ds
0

1
< As/ Rl + vl + 1wl) ds
0
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= reB] @y m], < 3 o
1
Qult v w)(8) < 1 /0 Ta(6)g (5, 4(5), v(s), wis)) ds
1
< /L/ Ja ()¢ (u(s) + v(s) + w(s)) ds
0

1
< /w/o L) (lull + vl + [wl) ds

= ueD| v m, = 3 [ rml),,

1
Qsty v, WD) < v / Js(s)h(s, u(s), v(s), wls)) ds

0
1

< v/o ]3(s)s(u(s) +v(s) + w(s)) ds

1
< uefo Js)(lull + vl + 1wl ds

vt e [0,1].

1
= veF”(u,v, w)HY < 3 H (u, v,

Therefore ||Q1(u, v, w)|| < %H(M,V,W)HY, Qe v, W)|| < %H(M,V,W)HY, 1Qs(u, v, w)|| <
v, w)lly.
Then, for (1, v,w) € PN 32, we conclude

Q. v,w)|, < | @v,w)],. (16)

By the definition of /., there exists R, > 0 such that A(t, u, v, w) > %(u + v + w) for all
u,v,w>0 with u + v+ w >R, and ¢ € [0,1]. We consider R, = max{2R;,R,/6}, and we
define Q, = {(&r,v,w) € Y, ||(u,v,w)|ly < Ry}. Then, for (u,v,w) € P with ||(&, v, w)|ly = Ry,

we obtain u(¢) + v(t) + w(t) > 0||(u,v,w)|ly =0R, > R, for all ¢ € [0, 1].
Then, by Lemma 2.3, we deduce

1
Qulttr, w)(0) = v / 7 Ys(5) (s, u(s), v(s), wis) ds
0
1
> po? ! / ]3(s)h(s, u(s), v(s), w(s)) ds
>vo?” 1/ J5(s) u(s +v(s) + w(s)) ds

> UUV’IQ—/ ]3(5)”(”:"’“’)”1/‘13

=vo? 9= E” u,v,w)“Y ||(u v,w)Hy, vVt € [o,1].
Then [|Qs(, v, w) || = Q3(u, v, w)(o') > ||(1, v, w)]ly, and

[QUuv. )y = [Qatas, v w)| = [y W] - 17)
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By using Lemma 3.1, Theorem 2.1(i) and inequalities (16), (17), we conclude that Q has
a fixed point (u,v,w) € PN (Q, \ 1) which is a positive solution of problem (S)-(BC).
O

Remark 3.1 Each of the cases (9)-(16) of Theorem 3.1 contains seven cases as follows:
{foo = 00,85, s € (0,00}, or {gl, = 00,2, hi, € (0,00)}, or {i, = 00,f3, g5 € (0,00)},
or {fi =gl =00,k €(0,00)}, or {fi =hi_ =o00,g, €(0,00)}, or {g =h _ =o00fs €
(0,00)}, or {fL, = gl = hi_ = 00}. So the total number of cases from Theorem 3.1 is 64,
which we grouped in 16 cases.

Each of the cases (1)-(8) contains four subcases because o1, a3, a3 € (0,1), or @; =1 and

ay=0a3=0,0oras=land oy =3 =0,0raz =1and o = ap = 0.

Remark 3.2 In the paper [2], the authors present only 15 cases (Theorems 2.1-2.15 from
[2]) from 64 cases, namely the first nine cases of our Theorem 3.1. They did not study the
cases when some extreme limits are 0 and other are co. Besides, compared to Theorems
2.2-2.7 and 2.9-2.15 from [2], our intervals for parameters A, u, v presented in Theorem 3.1
(our cases (2)-(7) and (9)) are better than the corresponding ones from [2]. In addition, the
cone used in [2] implies the existence of nonnegative solutions which satisfy the condition
infyeqe y (u(t) + v(t) + w(t)) > 0, which is different from our definition of positive solutions.

Remark 3.3 One can formulate existence results for the general case of the system of n

fractional differential equations
) D.ui(t) + Mfi(t (D), ..., un(t)) =0, j=1,...,m,
with the boundary conditions

k ,
u](. )(O)=0, k=0,...,m—=2,j=1,...,n,

(BC) , N ,
DY, (i1 = Yy 4D, (Bl =gy =100,

where o € (m; — 1,m;], mj e N, m; > 3; E,ap e R forall k=1,...,N;, (N; eN); 0 < §; <
Ep<---<&n,pelln-2],4,€l0,pl,j=1,...,N.
Sfi(tu1seentin

According to the values of f = limsup, ..., 0. SUPse(o,1] 7lu1+~-+un) € [0,00), and];éo =

Siu1,attn

. . ) . )
iminfy, 1...su,— o0 Infrefoy 7570 € (0,00, j =1,..., 1, we have 22" cases, which can be

grouped in 2"*! cases.

In what follows, for fi,gd, hh,f5, g5, hS, € (0,00) and numbers o, 02,003 > 0 with oy +

Oy + 03 = 1, &1,&2,&3 > 0 with &1 +&2 +&3 =1, &é,&é > 0 with &§ +aé =1, &'f,&'g > 0 with

o) +af =1,a),ay >0 with @]" + &}’ =1, we define the numbers

M = —2 My = — 22 My = — 23
' goefia’ > hobigic’ * " o HiE’
(71 &2 &3 4 &/2
My = —, =——, Mg=—, M= ,
*fiB YT gD " F *T gD
5/ 5// &’// a///
M/ — 3 , M// — 1 , M// — 3 , M/// _ 1 ,
8" s F > fsB 8" ms F 2 fsB
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ay ~ 1 ~ 1 ~ 1

" _ 2

= , My = —, My = ——, M
Y@ D > f3.B gD hs F

where 6 = min{c® !,/ a7 1}.

Theorem 3.2 Assume that (H1) and (H2) hold, o € (0,1), oy, 002, 3 > O with oy + g + a3 =
1,01,00,05 > 0 with o + 0y + 03 = 1, 00,005 > O with oy + a5 = 1, 04 >0 with oy + o} =1,
a,ay >0 witha) +a) =1.

) Iffe, g, H, 13,850, he, € (0,00), My < My, M3 < My and Ms < Mg, then for each
A€ (M, M), u € (M3, My), v € (Ms, M) there exists a positive solution
(u(t), v(t), w(2)), t € [0,1] for problem (S)-(BC).

(2) IffS, =0, g5, iy, fi, gb, i € (0,00), M3 < M), and Ms < My, then for each
A€ (My,00), u € (Ms, My), v € (Ms, My) there exists a positive solution
(u(t), v(t), w(2)), t € [0,1] for problem (S)-(BC).

(3) Ifgs, = 0,15, k., 1L, 85, Hh € (0,00), My < MY and Ms < MY, then for each
A€ (M, M), i € (M3, 00), v € (Ms, M{) there exists a positive solution
(u(t), v(t), w(2)), t € [0,1] for problem (S)-(BC).

(4) IfhS, = 0,15, 85, fa, 85, hly € (0,00), My < My and Mz < MY, then for each
A€ (M, M), n € (Ms, M}'), v € (Ms, 00) there exists a positive solution
(u(t), v(t), w(2)), t € [0,1] for problem (S)-(BC).

(5) Iffs, =g5, =0, K, fi,gb, hiy € (0,00), Ms <M6, then for each ) € (M, 00),

u € (Ms,00),v e (M5,M6) there exists a positive solution (u(t), v(t), w(t)), t € [0,1]
for problem (S)-(BC).

(6) Iffs, =k, =0, g1t gh hi € (0,00), M3 < My, then for each i € (M, 00),

w € (Ms, My), v € (Ms, 00) there exists a positive solution (u(t), v(t), w(t)), t € [0,1]
for problem (S)-(BC).

(7) Ifgs, =, =0, £, fi,gb, hiy € (0,00), My < My, then for each 1 € (My, M),

u € (Ms, 00), v € (Ms,00) there exists a positive solution (u(t), v(t), w(t)), t € [0,1]
for problem (S)-(BC).

(8) Iffs, =g, =hs, =0, fl,gb hi e (0,00), then for each \ € (Mi,00), u € (M3, 00),

v € (Ms, 00) there exists a positive solution (u(t), v(t), w(t)), t € [0,1] for problem
(S)-(BQ).

9) Iffs, g5, 1, € (0,00) and at least one of f§, g, hy, is 00, then for each A € (0,M,),
€ (0,My), v € (0, M) there exists a positive solution (u(t), v(t), w(t)), t € [0,1] for
problem (S)-(BC).

(10) Iffs =0, g5, kS, € (0,00) and at least one of fi, gb, Hi) is 0o, then for each
A €(0,00), u € (0,M}), v € (0,My) there exists a positive solution (u(t), v(t), w(z)),
t € [0,1] for problem (S)-(BC).

(1) Ifgs, =0, f5, ks, € (0,00) and at least one of f3, gb, hly is 0o, then for each
A€ (0,M3), u €(0,00), v € (0, My) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).

(12) Ifks, = 0,158, € (0,00) and at least one of f, gb, hi) is oo, then for each
A e (0,M}), ne(0,M]"), v e (0,00) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).

(13) Iffs, =g, =0, K5, € (0,00) and at least one of f, gb, hi) is oo, then for each
A €(0,00), u €(0,00), v € (0, Mg) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).
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(14) Iffs, =k, =0, g, €(0,00) and at least one of f, g, hi) is oo, then for each
A €(0,00), ue (O,ZT/LL), v € (0, 00) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).

(15) IfgS, =hs, =0, f3 € (0,00) and at least one of f3, gb, hiy is oo, then for each
A€ (0,]~V12), € (0,00), v € (0,00) there exists a positive solution (u(t), v(t), w(t)),
t € [0,1] for problem (S)-(BC).

(16) Iffs =g, =, = 0 and at least one of fy, gb, i, is 00, then for each A € (0,00),
€ (0,00), v € (0,00) there exists a positive solution (u(t), v(t), w(t)), t € [0,1] for
problem (S)-(BC).

Proof We consider again the above cone P C Y and the operators Q;, Q,, Q3 and Q. We
will also prove for this theorem some illustrative cases.

Case (1) We consider fi,gb, hi, f3., 85, 5, € (0,00). Let A € (My, My), o € (M3, My), v €
(Ms, Me). We choose ¢ > 0 a positive number such that ¢ < f{, & < g}, ¢ < i and

o o o3
— <}, ——=<u, <V
fo1(fy — e)A 0o h-1(g) —e)C Oor-Y(hf — e)E

o o o3
S— 2 )\" Si Z M) S— Z V.
(fs, +¢)B (g5, +€)D (hS, +€)F

’

By using (H2) and the definition of f{, g}, /i, we deduce that there exists R3 > 0 such
that £ (¢, u,v,w) > (fi — &)(u + v +w), g(t,u,v,w) > (g) — &)(u +v +w), h(t,u,v,w) > (b —
g)u+v+w)forall u,v,w>0withu+v+w<Rzandt € [o0,1]. We denote Q23 = {(i,v,w) €
Y, (v, w)lly < Rs}.

Let (u,v,w) € PN 3Qs3, that is, ||(u, v, w)|ly = R3 or, equivalently, ||u«|| + ||v|| + |[w] = Rs.
Because u(t) + v(£) + w(t) < Rs forall £ € [0,1], then by Lemma 2.3 we obtain for all ¢ € [o,1]

1
Qi(u, v, w)(t) = X /(; 7 ($)f (s, u(s), v(s), w(s)) ds
1
> Aot / TS (5, 16), v(s), wls) dis
1 .
> ro%! / Ji(s)(f — €) (u(s) + v(s) + w(s)) ds

1
= 2070 (f—c) [ A0, ds

= Ao“’le(}’é - £)A|| (v, w)|| y = H(u, v, w)|

Y’

1
Qult v w)(0) > 1 / P (6)g (5, 1), v(s), wls)) dis
0
1
> pot / Ta(s)g (s, (5), v(s), wls)) di
1 .
> poft / J2(s) (g5 — &) (u(s) +v(s) + w(s)) ds

1
= 6(g) —e) [ RO)vw],ds

= Mo'ﬁile(g(l) - S)C”(u, v, W) HY =0 || (M, v, W)| y’
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1
Qs(u, v,w)(t) > v / 7 (s)h(s, u(s), v(s), w(s)) ds
0
1
> vo 7! / ]3(S)h(S, u(s), v(s), w(s)) ds
1 .
> VGV_I/ ]g(S)(hf) - e) (u(s) +v(s) + w(s)) ds
‘ 1
> vo? 710 (hf) - 8) / J3(s) H(u, v, w)H yas
= vay_19(hf) - s)E” (u, v, w) || y >3 ||(u, v, w)|| v

So

Qi v, w)|| = Qulu, v, w)(0) = o || (s, v, w) | .5

|| QZ(M1 v, W) || = QZ(ur v, W)(G) = || (Ll, v, W) | y?

” Qg(l/l, v, W) || > Q3(ur v, W)(O') > a3 ” (I/l, v, W) ” y*
Then, for an arbitrary element (&, v, w) € P N 923, we deduce

[ Qv Wy = (e + ez + a3) [ v, W], = v i
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(18)

Now we define the functions f*,g*, k* : [0,1] x R, — R, f*(t,x) = maxo<yvsw<sf (& 14,
v, w), g5 (t, %) = MaXo<yivrw<s &(& U, v, W), B*(t,x) = Maxo<yviw<x B, u, v, w), t € [0,1], x €
R,. Then f(¢,u,v,w) < f*(t,x), g(t, u,v,w) < g*(t,x), h(t,u,v,w) < h*(¢,x) for all t € [0,1],
u,v,w > 0 and u + v + w < x. The functions f*(¢,-), g*(¢,-), h*(t,-) are nondecreasing for

every ¢t € [0,1], and they satisfy the conditions

* t1x . * t,x
lim sup maxf (&%) <f3 lim sup max gy <g.
x—o00 te[0,1] X x—o00 te[0,1] X
n*(t,x
lim sup max (&%) <h,.
x—o0 t€[0]] X

Therefore, for & > 0, there exists R4 > 0 such that, for all x > R, and ¢ € [0,1], we have

frtx) < (s + e)x, g (t,x) < (g5, + &)x, h*(t,x) < (M, + &)x.

We consider Ry = max{2Rs, Ry}, and we denote Q4 = {(u,v,w) € Y, ||(st, v, W)y < Ry}. Let

(u,v,w) € PN 3K24. By the definition of f*, g*, i*, we conclude

f(t) u(t), v(t), W(t)) <f* (t;
h(t, u(®),v(t), w(t)) < h*(t,

(w,v,w)|,), Vtelo,1].

Then, for all ¢ € [0,1], we obtain

1 1
Qv W)(0) < A /0 T (5, 1(5), (s), wis)) ds < /0 JONC

1
<A+ s)/o 1)@ v W), ds <@ v, W],

}(u, v, W) H Y) ds

wv,w)|,), gt u®),ve),w®) <g* & |wv,w)],)
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1 1
Qulit, v, w)(0) < 1 fo Ta(s)g (5, 4(5), v(s), wls)) ds < i /0 L6 (s @ v w)] ) ds
1
Su(giow)/o 1) |, v, w) ||, ds < @ || (w, v, w) |5
1 1
Qs(u, v, w)(t) < v f J3(8) (s, u(s), v(s), w(s)) ds < v f S5 (s, || (v, )| ) ds
0 0

1
< v(hiO + 8)/0 J5(s) || (u, v, w) ||Yds <a3 || (u, v, w) ||Y

Therefore, we deduce [|Qi(u,v,w)|| < a1ll(u,v,W)lly, Q2@ v,w)|| < &2 ll(us, v, W)y,

Qs (u, v, W)l < asll(u, v, w)|y-
Hence, for (i, v, w) € PN 324, we conclude that

1Qw, v, w)||, < @1 + & +&3) || (v, W), = |, v, W), (19)

By using Lemma 3.1, Theorem 2.1(ii) and relations (18), (19), we deduce that Q has a
fixed point (i, v, w) € PN (4 \ 23), which is a positive solution for our problem (S)-(BC).

Case (11). We consider g5 = 0, ki) = 0o, f5., kS, fi,gb € (0,00). Let A € (0, M3), i1 € (0, 00),
v € (0, MY). We choose ¢ > 0 such that ¢ < vfo”"1E and

& - AfSB _L-MAB-vEF @ -vinF

&< 2%
= 2.B 2uD 2vF

’ = ’

~/
|

B that is, @] > Af3 B,
V< hgc—gF, thatis, o} > vk _F,and 1-AfS B—vhi F = o) +ay — A5 B—vhi F = (&) —Af5.B) +
(&) — vk F) > 0.

By using (H2) and the definition of /), we deduce that there exists R; > 0 such that
h(t,u,v,w) > i(u +v+w) forall u,v,w >0 with z +v+w <R3 and ¢ € [0,1]. We denote
Q3 = {(M! v W) €Y, ”(M! 1) W)”Y <R3}

Let (i, v,w) € PN 0Q3, that is, ||(«, v, w)|ly = R3. Because u(t) + v(t) + w(t) < R3 for all
t € [0,1], then by using Lemma 2.3, we obtain

The numerators of the above fractions are positive because A <

1
Qz(u, v, w)(t) > v/ 7, (s)h(s, u(s), v(s), w(s)) ds
0
1
> po ¥l / ]3(S)h(S, u(s), v(s), w(s)) ds
1
> vo? ! / ]3(3)3(’4(5) +v(s) + w(s)) ds
1
> vo”_lééf J5(s) ”(u,v, w)HYds
= vo? 0 By, = @], Vi€ o1,

Then ”QB(M! v W)” = QS(”: Vs W)(U) = ||(M, v W)”Yr and

[QUuv. )y = [Qatas,v.w)] = [y )] - (20)
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Now, using the functions f*, g*, i* defined in the proof of case (1), we have

£ _ gy _

lim sup max ¢, lim max 0,
xﬁoop tel0]] x Joo x—>00te0]] X
h*(t,x
lim sup max (&%) <h..

x—o0 te[0]] X

Therefore, for ¢ > 0, there exists R4 > 0 such that, for all x > R, and ¢ € [0,1], we deduce
%) < (f + e)x, g5 (8, x) < ex, h*(t,x) < (I, + €)x. We consider Ry = max{2Rs, R,}, and
we denote Q4 = {(&,v,w) € Y, ||(is, v, w)|ly < Ry}. Let (&, v,w) € PN 3RQy. Then, for all £ €
[0,1], we obtain

1
@Wmmmnsy/huy@u@mwm@»w
0

1
SXA J(s)f* (s,

(u, v, w) ” Y) ds

1
<A+ 5)/0 N1(s)|| (v, w) |, ds

& - M5B

5AQ;+_75E_)BW%WWNY

1 ~
=5 (2B +a)) || (v, W),

1
@WNMNHSMALNM@M®N®M@Dﬂ

1
SM/O fz(s)g*(s’ }(urV’W)HY) ds

1
§/L8/ ]2(5)||(M:V’W)”Yds
0

1-A35B-vhi F
sup—p 5 Dlwrw],

= %(1 ~ M5B — vk F) | (u,v,w)| -

1
@WmmmnSgAk@m@uwm®m@»%

1
<o [ 6w 6 v m],)
0

1
<vlti,ve) [ 0w, ds

al —vh' F
< v(th) + 32T°°)F||(u,v,w)||y

1 ~/
= E(Vhéol: +a3) | wv, W),
Therefore

1
Qi (u, v, w)|| < 5 (MEB+a))| (v, w)|

y?
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1
|| Qa(u, v, w) || < 5 (1-Af3,B— vk F) || (v, w)|

Y’

1 ~
Qs vl = 5V + @) [y,

Then, for (4, v,w) € PN 34, we conclude that

1 ~ ~
Qv w)||, < 3 (WfB+a] +1- M35 B— vk F + i F+ &) | (u,v, W),

= |@v.w],. (21)

By using Lemma 3.1, Theorem 2.1(ii) and relations (20), (21), we deduce that Q has a
fixed point (i, v, w) € PN (24 \ 23), which is a positive solution for our problem (S)-(BC).

Case (14). We consider f5 = kS =0, g) = 0o, g5..fi, h) € (0,00). Let A € (0,00), ju €
(0, My), v € (0,00). We choose ¢ > 0 such that ¢ < u80#~1C and

— _ _ s
851 ,ug‘ooD, 851 p,g;oD, 851 ,ugOOD'

4\B 2uD 4vF

The numerator of the above fractions is positive because u < g#, thatis, 1 - ugi D > 0.

By using (H2) and the definition of g, we deduce that there exists R3 > 0 such that
g(t,u,v,w) > %(u +v+w) forall u,v,w> 0 with u+v+w <R3 and ¢ € [0,1]. We denote
Q3 ={(w,v,w) €Y, |(u,v,w)|ly < R3}.

Let (i, v,w) € PN 0Q3, that is, ||(z, v, w)|ly = R3. Because u(t) + v(t) + w(t) < R3 for all
t € [0,1], then by using Lemma 2.3, we obtain

1
QﬂmwwMzu/t&%@m@MQW@wwﬁh
0
1
zuﬁ*fﬁmm@mawnwwﬁh
1
> pofl / b (s)é(u(s) +v(s) + w(s)) ds

1 !
zuofHQg/ ]2(S)||(”’V7W)”yds

1
= pot -l vm], = [ vw)]

vy VEE [o,1].
Then [|Qy (4, v, w)|| = Qa(u, v, w)(0') = || (&1, v, w)]y, and

[QUu v,y = Qe v w)| = v w)] - (22)

Now, using the functions f*, g*, i* defined in the proof of case (1), we have

. * t;x . * t)x . h* t,x
lim maxf (&%) =0, lim sup max ‘M <g. lim max (&,%) =
x—00 te(0,1] X x—o00 t€[0,1] X x—>00 te[0,1] X

0.

Therefore, for ¢ > 0, there exists Ry > 0 such that, for all x > R, and ¢ € [0,1], we deduce
frtx) <ex, g (t,x) < (g5, + &)x, h*(t,x) < ex.
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We consider Ry = max{2Rs, R,}, and we denote €24 = {(&, v, w) € Y, ||, v, W) ||y < R4}. Let
(u,v,w) € PN 3Qy. Then, for all ¢ € [0,1], we obtain

1
Qut,v, w)(t) < /0 TS (5, 1), v(s), wis) s

1
<2 / R (s
0

(u,v,w)|,)ds

1
<ie / 7| v W), ds
0

1- /Lg;oDB
4)\B

- L ng) il

:AsB|

(u,v,w)HY <X

v,

1
Qa(u, v, w)(£) < /0 J2()g (s, us), v(s), w(s)) ds

1
<p / h5)g* (5, |, vw)| ) ds

1
< u(ggo + s)/o J(s) ||(u,v, W)“YdS

- (et +£)D]w v w,

1- gD
5“<gg°+ 2ﬂgp§o >D|
n

(w,v,w) “ Y
1
=5 (ng D+ 1) |@wvw],,
1
Qs(u, v, W)(®) < v / T3 () (s, u(s), vis), wis)) ds
0
1
<y / Ja(* (s | G, v, w)] ) ds
0

1
51)8/0 ]3(S)||(M»V’W)”Yds

1- D
‘)gsoo F
4vF

= veF | v, < v v,
LT[R

Therefore

| Qe v,

IA

= N = |-

(1-ug.D) || (w, v, w)

Y’

| Qatas, v, )]

IA

(L+ ngsD) [ Gavw| .

(1 - 'u“gsooD)|

|| QS(M’ v, W) || S

) (u,v, w)||Y.

Then, for (1, v, w) € PN 94, we conclude that

1Qsv,w)|, < %(l—ugf)oD+2+2ug;OD+l—Mg;oD) |

(u,v, W)H y = | (u, v, w) Hy (23)
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By using Lemma 3.1, Theorem 2.1(ii) and relations (22) and (23), we deduce that Q has a
fixed point (i, v, w) € PN (24 \ 23), which is a positive solution for our problem (S)-(BC).

Case (16). We consider f5 = g5 = hS, =0, f¢ = g = 0o and i) € (0,00). Let A € (0,00),
u € (0,00), v e (0,00). We choose ¢ > 0 such that

vt 1 1 1
e <AOc* A, £ < —, &< ——, £ < ——.
3AB’ 3uD

By using (H2) and the definition of f{, we deduce that there exists R3 > O such that
ft,u,v,w) > %(u +v+w)forall u,v,w>0withu +v+w <R3 and t € [0,1]. We denote
QB = {(M’ v, W) €y, ”(M! v, W)”Y < R3}

Let (u,v,w) € PN 0Q3, that is, ||(«, v, w)|ly = R3. Because u(t) + v(t) + w(t) < R for all
t € [0,1], then by using Lemma 2.3, we obtain

Qu(u, v, w)(1) = A /0 1 () (s, u(s), v(s), wis)) dis
> 30" / Y (5, (9, v W) s
1
Aot / 1) (1ls) + v(5) + w(s) ds
002 [ vml ds
=200 Al @], = [ v, Veelo)
Then [|Qu(t, v, W) = Qi(,v, w)(0) = [[(,v, W)y, and
| Qv )|, = Qv w)| = | v, )], (24)
Now, using the functions f*, g*, i* defined in the proof of case (1), we have
[t x) . *(t,x) . (¢, x)

. g
lim max =0, lim max =0, lim max
x—>00te(0,1] X x—>00te[0,1] X x—00te[0,1] X

=0.

Therefore, for & > 0, there exists Ry > 0 such that f*(¢,x) < ex, g*(t,x) < ex, h*(t,x) < ex
for all x > R, and t € [0,1].

We consider Ry = max{2Rs, Ry}, and we denote Q4 = {(u,v,w) € Y, ||(st, v, w)||y < Ry}. Let
(u,v,w) € PN 3Q,. Then, for all £ € [0,1], we obtain

wy)ds

1 1
Qut,v, w)(t) < / TS (5, 15), v(s), wis)) s < / K6 (s

< )LS/ ]1(s)|| (u, v, w) || yas= )LSBH(M, v, w)|| y = || u,v,

Qul, v, w)(0) < f Ta(5)g (s, ), V), wis)) s < pu / 6 (s

(u, v, w) ” Y) ds

1
< e / 16w v, ds = ueD| @ v w, < 5 |y
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1 1
Qs (et v, (1) < v fo T (s, 1(s), v(s), wls)) ds < v /0 T s,

(u, v, w) || Y) ds
! 1
< vs/o J3(s) ||(u, v, w)||Yds = vsF” (u, v, w) ||Y < 3 ||(u, v, W) HY

Therefore ||Q1(M,V,W)|| = %”(M,V,W)Hy, ||Q2(M¢V!W)” = %”(M)V:W)”Y: ||Q3(M¢V)W)” =

%H(u, v, w)|ly. Then, for (u,v,w) € P N 324, we conclude that

[QUav.wy =[Gy, W] (25)

By using Lemma 3.1, Theorem 2.1(ii) and relations (24) and (25), we deduce that Q has a
fixed point (i, v, w) € PN (€24 \ 23), which is a positive solution for our problem (S)-(BC).
d

Remark 3.4 Each of the cases (9)-(16) of Theorem 3.2 contains seven cases as follows:
{fi = 00,gb, hi) € (0,00)}, or {gh = 00,f¢, hiy € (0,00)}, or {hi) = 0o,fi, gl € (0,00)}, or {fi =
gh = 00,hi € (0,00)}, or {f{ = hi = 00,g} € (0,00)}, or {g} = hi) = 0o,fi € (0,00)}, or {fi =
g = hl) = 00}. So the total number of cases from Theorem 3.2 is 64, which we grouped in
16 cases.

Each of the cases (1)-(8) contains four subcases because a1, a5, a3 € (0,1), or o; =1 and

ay=0a3=0,0oras =land a; =3 =0,0raz =1and a3 = ap = 0.

Remark 3.5 In the paper [2], the authors present only 15 cases (Theorems 2.16-2.30 from
[2]) from 64 cases, namely the first nine cases of our Theorem 3.2. They did not study the
cases when some extreme limits are 0 and other are co. Besides, compared to Theorems
2.17-2.22 and 2.24-2.30 from [2], our intervals for parameters X, i, v presented in Theo-

rem 3.2 (our cases (2)-(7) and (9)) are better than the corresponding ones from [2].

Remark 3.6 One can formulate existence results for the general case of the system of n
fractional differential equations (§) with the boundary conditions (]?C) from Remark 3.3.

. . i(tu1sees n ;
According to the values of jsoo = lim SUPy, 4. t11— 00 SUPe[0,1] f’—ilfidr:n) € [0,00), and f16 =

Situetin

liminf, ... 4,—0 infefo 1) ) €(0,00],j=1,...,1n, we have 22" cases, which can be

Uuyr+-+iup
grouped in 2"*! cases.

4 Nonexistence of positive solutions
We present in this section intervals for A, u and v, for which there exist no positive solu-
tions of problem (S)-(BC), viewed as fixed points of operator Q.

Theorem 4.1 Assume that (H1) and (H2) hold. If there exist positive numbers Ay, Ay, As
such that

flt,u,v,w) <Aj(u+v+w), gt,u,v,w) <Ay (u+v+w),
(26)
h(t,u,v,w) <As(u+v+w), Vtel0,1], u,v,w>0,

then there exist positive constants Lo, (Lo, Vo such that, for every X € (0,X1o), 1 € (0, o),
v € (0,vy) the boundary value problem (S)-(BC) has no positive solution.
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Proof We define A = ﬁ, o = ﬁ, Vo = ﬁ, where B = folll(s)ds, D= follz(s)ds, F=
folj'g(s) ds. We will show that for any A € (0,4¢), i € (0, o), v € (0, vp), problem (S)-(BC)
has no positive solution.

Let A € (0, 4¢), 1 € (0, o), v € (0,v9). We suppose that (S)-(BC) has a positive solution
(ue(2), v(t), w(2)), t € [0,1]. Then we have

1
u(t) = Q1(u, v, w)(t) = k/o Gi(6,5)f (s, u(s), v(s), w(s)) ds
1
<x / T (5, (5), (s), w(s)) ds
0
1
<M / h (s)(u(s) +v(s) + w(s)) ds
0

1
< AA(llull + vl + ||w||)/ Ji(s) ds
0

= )LAIB” (u,v,w)

y VEel[01],
1
v(t) = Qa(u, v, w)(t) = /L/O G, (¢, s)g(s, u(s), V(s),w(s)) ds
1
<u / Ta()g (5 1(s), v(s), wis)) ds
0
1
< Ay / Ja(6) (as) + ) + w(s)) di
0

1
< Ay (Jlull + vl + ||W||)/ J2(s)ds
0
= MAZD”(L‘: v, W) H Yy’ vVt e [01 1];

w(t) = Qz(u, v, w)(t) = v /01 Gs(t, s)h(s,u(s),v(s),w(s)) ds
1
<v / Ts(h(s, u(s), vs), wls)) ds
0
1
<VAjs / J3(8) (uuls) + v(s) + w(s)) ds
0

1
< vA;(|lu| +||V||+||W||)/ J3(s)ds
0

= vA3F|| (u, v, w)

vy Yte[01].

Therefore we conclude

1
llull < *A1B||(u, v, W), < 2oALB| (u, v, w)|, = 3 |G v,w)|

1
vl < MA2D||(u, v, w)|| y < ,quzD” (u, v, w) || y=3 || (v, W)y

1
[lw < l)AgF” (u, v, w) || y < voAgF” (u, v, w) || y=3 || (u, v, w) || -

Hence we deduce ||(u, v, w)|ly = ||«| + |[v] + W < ||(&, v, )|y, which is a contradiction.
So the boundary value problem (S)-(BC) has no positive solution. O
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Remark 4.1 In the proof of Theorem 4.1 we can also define Ag = 1%, Ko = %, Vo = 1%
with o1, 0,03 >0 and a7 + o + 3 = 1.

Remark 4.2 Iff§, g0, 1y, /3, g5, 1S, < 00, then there exist positive constants Ay, A3, A3 such
that (26) holds (see also [3] for a system with two equations), and then we obtain the
conclusion of Theorem 4.1.

Theorem 4.2 Assume that (H1) and (H2) hold. If there exist positive numbers o € (0,1)
and my > 0 such that

fuv,w)>mu+v+w), Vielo,1], u,v,w=>0, (27)

then there exists a positive constant %o such that, for every A > Y0, >0 and v >0, the
boundary value problem (S)-(BC) has no positive solution.

Proof We define XO = ﬁ, where A = fal J1(s) ds. We will show that for every A > 3:0,

0o 1m

u>0and v >0, problem (S)-(BC) has no positive solution.
Let A > Xo, w >0 and v > 0. We suppose that (S)-(BC) has a positive solution (u(z), v(¢),
w(t)), t € [0,1]. Then we obtain

1
u(t) = Qulu, v, w)(t) = )L/ Gy, s)f (s, u(s), v(s), w(s)) ds
0
1
> et / TS (5, 1), v(s), wis)) dis
1
> Ao / Ji(s)my (u(s) + v(s) + w(s)) ds

1
> )»90“‘17111/ J(s)(llull + vl + Iwll) ds

= AMo% I A H(u, v, W)H v
Therefore we deduce

lull = u(o) > A00* A ” (u, v, w) ” y> o0 A ” (u, v, w) ” y= || (u, v, w)’

y?

and so, |[(z, v, w)|ly = |lu|l + V]l + Iwll > ||(z, v, w)|ly, which is a contradiction. Therefore
the boundary value problem (S)-(BC) has no positive solution. d

In a similar manner, we obtain the following theorems.

Theorem 4.3 Assume that (H1) and (H2) hold. If there exist positive numbers o € (0,1)
and my > 0 such that

git,u,v,w) > my(u+v+w), Vtelo,1], u,v,w=>0, (28)

then there exists a positive constant [iy such that, for every A > 0, u > [l and v > 0, the
boundary value problem (S)-(BC) has no positive solution.
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In Theorem 4.3 we define [iy = m, where C = fal Jo(s) ds.

Theorem 4.4 Assume that (H1) and (H2) hold. If there exist positive numbers o € (0,1)
and ms3 > 0 such that

h(t,u,v,w) > mz(u+v+w), Vtelo,1], u,v,w>0, (29)

then there exists a positive constant Vo such that, for every . >0, u > 0 and v > Vy, the
boundary value problem (S)-(BC) has no positive solution.

In Theorem 4.4 we define vy = m, where E = fal Js(s) ds.

Remark 4.3
(a) Ifforo € (0,1),f3, O’O >0and f(t,u,v,w) >0 forall ¢ € [0,1] and u, v, w > 0 with
u+v+w> 0, then relation (27) holds, and we obtain the conclusion of Theorem 4.2.
(b) Iffor o €(0,1), g, g’ >0 and g(t,u,v,w) > 0 forall ¢ € [0,1] and u, v, w > 0 with
u+v+w> 0, then relation (28) holds, and we obtain the conclusion of Theorem 4.3.
(c) Iffor o €(0,1), b, i >0 and h(t,u,v,w) > 0 for all £ € [o,1] and u,v,w > 0 with
u+v+w> 0, then relation (29) holds, and we obtain the conclusion of Theorem 4.4.

Theorem 4.5 Assume that (H1) and (H2) hold. If there exist positive numbers o € (0,1)
and my, my > 0 such that

St u,v,w) > my(u+v+w),
(30)
gt u,v,w) =my(u+v+w), Vtelo,1], u,v,w=>0,

then there exist positive constants ho and L, such that, for every A > ko, it > Ly and v > 0,
the boundary value problem (S)-(BC) has no positive solution.

Proof We define o=t (= %) and ﬁo =

_ Ho >
CTr= (= 32). Then, for every A > Ao,

1
2008-1myC -
> ko and v > 0, problem (S)-(BC) has no positive solution. Indeed, let . > Ao, 1 > £, and
v > 0. We suppose that (S)-(BC) has a positive solution (u(t), v(£), w(t)), t € [0,1]. Then, in

a similar manner as in the proof of Theorem 4.2, we deduce

lull > 100 m A ||(u, v, W) || - vl > u@aﬁ_lmzcn (u,v, w)|

y?

and so

|Gev,w)||, = llall + vl + lIwll = el + vl
> (k@a“’lmlA + MGaﬁ_lmzC) ”(u, v, w)H v
> (;090""1m1A + ﬁoeoﬂ’lmzC) [ (et v, w) | v
1 1
- (343wl = [wnwl,

which is a contradiction. Therefore the boundary value problem (S)-(BC) has no positive
solution. 0
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Remark 4.4 In the proof of Theorem 4.5 we can also define Ko = 9aaizllm1 - Bo = e ﬁiifmz c

with 51,52 > 0 with &1 + &2 =1.
In a similar manner we obtain the following theorems.

Theorem 4.6 Assume that (H1) and (H2) hold. If there exist positive numbers o € (0,1)
and my, ms3 > 0 such that

[t u,v,w) > my(u+ v +w),
(31)
h(t,u,v,w) > ms(u+v+w), Vtelo,1], u,v,w=>0,

=~/ ~ ~/ ~
then there exist positive constants 1, and v, such that, for every A > &y , it > 0 and v > v,
the boundary value problem (S)-(BC) has no positive solution.

~/ oy ~
In Theorem 4.6 we define Ay = 5—2— (= %) and Vo =

- ;
2505-TrA (= %), or in general

1
2007 -1mzE
74

7 & o ¥ L~ o~ ~ o~
)\,0 = m and Vo = Oiay’lm:;E with 1,0 > 0, o] + 0y = 1.

Theorem 4.7 Assume that (H1) and (H2) hold. If there exist positive numbers o € (0,1)
and my, m3z > 0 such that

g(tx u,v, W) Z m2(u tV+ W)r
(32)
h(t,u,v,w)>mz(u+v+w), Vtelo,l], u,v,w>0,

then there exist positive constants ﬁg and 3}; such that, for every 1 >0, > ,ﬁg and v > 53,
the boundary value problem (S)-(BC) has no positive solution.

In Theorem 4.7 we define ﬁg = %0), or in general

1 _ ﬁ_O I~ _ 1 _
2008-1myC (_ 2 )and Vo = 200YLmzE (_
I~ I~

_ a _ ay P vy 5oL
Ko = GoFtme and v, Go7-ImsE with o, > 0, a7 + o = 1.

Remark 4.5

(a) Iffor o € (0,1), fi,fL,gb,g., > 0and f(t,u,v,w) >0, g(t,u,v,w) > 0 for all t € [0,1]
and u,v,w > 0 with # + v + w > 0, then relation (30) holds, and we obtain the
conclusion of Theorem 4.5.

(b) Iffor o € (0,1), f,fL, hi, i >0 and f(t,u,v,w) > 0, h(t,u,v,w) > 0 for all t € [0,1]
and u,v,w > 0 with u + v + w > 0, then relation (31) holds, and we obtain the
conclusion of Theorem 4.6.

(c) Ifforo €(0,1), g, g, ki, bl >0 and g(¢, u,v,w) > 0, h(t,u,v,w) > 0 for all £ € [0,1]
and u,v,w > 0 with u# + v+ w > 0, then relation (32) holds, and we obtain the
conclusion of Theorem 4.7.

Theorem 4.8 Assume that (H1) and (H2) hold. If there exist positive numbers o € (0,1)
and my, my, m3 > 0 such that

[t u,v,w) > my(u+v+w), gt uv,w) = my(u+v+w),

h(t,u,v,w)>mz(u+v+w), Vtelo,l], u,v,w>0,
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then there exist positive constants *o [l and Vo such that, for every X > *o, > o and
Vv > Vg, the boundary value problem (S)-(BC) has no positive solution.

Proof We define A, = 390“}1m1A’ fo = 3aaﬁ}1mzc’ Vg = m.
> fig, v > Vg, problem (S)-(BC) has no positive solution. Indeed, let A > Aq, i > 1o and
v > Dg. We suppose that (S)-(BC) has a positive solution (u(¢), v(¢), w(t)), t € [0,1]. Then,
in a similar manner as in the proof of Theorem 4.5, we deduce

Then, for every X > ):0,

lull > 100 mA| (u, v, w)|| - vl > u@aﬁ_lmzC” (, v, w)|

y?

[l = voo? " msE| (u, v, w)|

Y)
and so
e, v, W)y = llull + V]| + 1wl

> (AHU“‘lmlA + ,quﬁ_lmZC + v@a”_lng) ||(u, v, w)|| v

> ():090“_1141114 + Qo0 \m,C + ﬁOQUV_lrngE) H(u, v, w)|| v

= [Gav.wl,,

which is a contradiction. Therefore, the boundary value problem (S)-(BC) has no positive
solution. 0

/

N (Y/ A
Remark 4.6 In the proof of Theorem 4.8, we can also define A = %a,}mm , o =
~ o
Vo = GovTmsE?

2
00B-1myC’°

where o, o0y, 5 > 0 with o + o + o5 = 1.

Remark 4.7 If for o € (0,1), fi,f%,gb, g, b, ki, > 0 and f(¢,u,v,w) > 0, g(t,u,v,w) > 0,
h(t,u,v,w) >0 forall t € [0,1], u,v,w > 0, u + v + w > 0, then relation (33) holds, and we
have the conclusion of Theorem 4.8.

Remark 4.8 The conclusions of Theorems 3.1-3.2 and 4.1-4.8 remain valid for general

systems of Hammerstein integral equations of the form

u(t) =X fol Gi(t, s)f (s, u(s), v(s), w(s))ds, tel0,1],
v(t)=pu fol Ga(t,5)g(s, u(s),v(s), w(s))ds, tel0,1], (34)
w(t)=v fol Gs (2, 8)h(s, u(s),v(s),w(s))ds, te][0,1],

with positive parameters A, i1, v, and instead of assumptions (H1)-(H2), the following as-
sumptions are satisfied:

(H1) The functions Gi, Gy, Gs : [0,1] x [0,1] — R are continuous, and there exist the con-
tinuous functions /i, /5,/3:[0,1] = R and o € (0,1), &, 8, ¥ > 2 such that
(a) 0 <Gt s) <Ji(s),Vt,s€[0,1],i=1,2,3;
(b) Gi(t,s) = t*7i(s), Ga(t,8) = tP7Va(s), Gs(t,8) = £77V5(s), Ve,5 € [0,1];
(© [ Ji(s)ds>0,i=1,2,3.
(I—TZ) The functions f,g,4: [0,1] x R, x R, x R, — R, are continuous.
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5 Examples
Letn=3m=5/1=4a=3,8=2y=2 p=1L,q=3,pp=L,q2=3,p3=2,q3=2,
N=2,M=1,L=3,&=16& 4, ¢ = = 3
62=2,Cg=1.

We consider the system of fractional differential equations

Dg/fu(t) + Af (¢, u(t), v(t),w(t)) =0, te(0,1),
(So) Dgf*v(t) +ugt,u(t),vt),wt) =0, te(0,1),
DPw(t) + vh(t, u(t), v(t), w(t)) =0, te(0,1),

with the multi-point boundary conditions

u(0) = 4/(0) = 0, W' (1) = 2Dg2u(t)],_1 + %D})/fu(t)ltzg,
v(0) =v/(0) =v'(0) =v"(0) =0,  Dy}v(t)le-1 = 4Dy v(8),
w(0) =w'(0) =w"(0) =0

DYAw(t) |1 = 3DY2w(t)], L 2D2/3w(t)|t,; +D3Pw(t)],_ 3.

’

1
2

We have A; = 2T ~ 0.17065961 > 0, A = W74, _ 2007 5 43672831 > 0, A3 =

(1190/1?’2)) (3+283 4 35/3)45,3(1%:/3 A 0.25945301 > 0. So assumption (H1) is satisfied.
Besides we deduce
1 BRPA-)2—(t-5)3?%, 0<s<t<],
gl(t! S) =
[(5/2) | #2512, 0<t<s<l,
tl-s)2—(t-s), 0<s<t<l,
g2(t,5) =
t(1—s)12, 0<t<s<l,
1 t13/4(1 _S)11/12 _ (t —5)13/4, 0 <s<t< 1,
gB(t’s) =
'17/4) £13/4(1 — g) 1112 0<t<s<l,
1 L‘7/4(1 _ S)11/12 _ (t _3)7/4, 0 <s<t< 1,
g4(t;5) =
ri/4) £7/4(1 — s)1112, 0<t<s<l,
1 t7/3(1 _ S)7/12 _ (t _ 8)7/3, 0 <s<t< 1,
gS(t! S) =
'(10/3) £73(1 - 5)712, 0<t<s<l,
(.9) 1 BPBA-s)"2 —(t-5)3, 0<s<t<]l,
6\l,S) = =<
& I'(8/3) £53(1 - 5)712, 0<t<s<l.

Then we obtain

B2 1
Gi(t,s) =gi(t,s) + . <2g2 <§,
1

)o1o()

4tl3/4
Gz(t,S):gB(t,S)"' A g4<§,5),

2
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£’ 1 1 3
owr-aten- i) (1) ()

W) = == ) = -9 (- 197,

(1 _ S)7/12 (1 _ (1 _ 5)7/4)’

1
is(s) = r(10/3)

stz a1 122

%s(l—s)“2+ ﬁ[2(1—s)1/2+5s—2], 0<s<i2,
= %s(l—s)“2+ 61T1[6(1—S)1/2+3S—2], 1<s<3,
7S1=9)" 4 - (1-9)", $<s<l,

o1 a2y a3y, (1
16) = a9 - 1-) )+A2g4(2,s)

21/ 4

B 17/4 (l _ 5)11/12(1 (1 )7/3) I [( )11/12 _ (1 _ 25)7/4], 0<s< %,
- 1/4
17/4 (1 _ 8)11/12(1 (1 )7/3) + A212“ T (1 _S)11/12 % <s<l1,

J5(s) = F(li)/B) 1 —5)7/12(1— (1—5)7/4) Al <3g6(1,s) + 2g6(1,s) +g6<z,s)>

7/12 714 1
10/3 (1-8)"2A-1=9)"") + 055,155
X [(3 + 28/3 + 35/3)(1 _5)7/12 _ 3(1 _ 45)5/3
—28/3(1—2s)5/3 - (3-4s)°"?], 0<s<iy
7/12 7/4 1
10/3 (1 - S) (1 (1 ) ) + 210/3A3F(8/3)
= X [(3 + 28/3 35/3)(1 _ S)7/12 _ 28/3(1 _ 2s)5/3 _ (3 _ 45)5/3], % <s< %’
7/12 7/4 1
10/3 (1 ) (1 - (1 - S) ) + 210/3A3F(8/3)
x [(3 + 2873 + 353)(1 — 5)712 — (3 — 45)°3], % <s< %,
10/3 (1 _S)7/12(1 (1 )7/4)
+ ZIO/SA EE) (3 + 28/3 + 35/3)(1 )7/12’ % <s<1

Now we choose ¢ = 1 € (0,1) and then 6 = 271%2 ~ 0.01104854. We also obtain A =
f1,4]1 ds~242142749 B= [ Ji(s)ds ~2.80487506, C = fM]z(s )ds ~ 0.11093116, D =
o Ja(s) ds ~ 013771787, E = [;,, J5(s) ds ~1.49070723, F = [, J5(s) ds ~ 1.80167568.

Example 1 We consider the functions

Ftwv,w) = Qt+1)[prw+v+w)+1](u+v+w)(q +sinv)
u+v+w+l
Vt+1[pa(u+v+w) +1](u + v + w) (G, + cosw)

u+v+w+l
Epsu+v+w) +1](uw+v+w)(Gs +sinu)
u+v+w+l

’

glt,u,v,w) =

’

h(t,u,v,w) =

’

for ¢ € [0,1], u,v,w > 0, where p1,P2,P3 > 0, 41,42, 43 > 1.
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We have f3 = 31, g = V2@ + 1), s = @, £ = 301G - 1), gk = LPo(@ - D), b, =
16p3(q3 —1).Forai=ay =z =) =@y = 03 = %, we obtain L; = m, Ly 9q 5 Ls=
214 _ L _ 291/6
3Vsm@@-C’ 4 T 3ﬁ@+1>D’ 5= @s-D sq?
The conditions L; < Ly, L3 < Ly and Ls < Lg become

z,and Lg =

pg-1) 2*72B PG —-1) 2%72D PGz —1) 2°V6F

= > = > , — >
il A g +1 512C q3 E

For example, if ‘% > 1678, ’% > 12865 and ‘% > 44454, then the above con-
ditions are satisfied.

As an example, we consider §; = 2, §» = 3, 43 = 4, p1 = 3356, P = 25730, p3 = 59272,
and then the inequalities L; < Ly, L3 < Ly and L5 < Lg are satisfied. In this case, L; =&
0.01980063, L, ~ 0.01980678, L3 ~ 0.42784885, L, ~ 0.4278716, Ls; =~ 0.04625271,
L¢ =~ 0.04625324. By Theorem 3.1(1) we deduce that for every A € (Ly,Ly), it € (L3, La)
and v € (Ls, Lg) there exists a positive solution (u(t), v(£), w(¢)), ¢ € [0,1] of problem (Sy)-
(BCo).

Because f5 = 341, 3, = 301(G1 + 1), & = V2(G2 + 1), & = V22(Ga + 1), B = G3, K, =
P3(gs + 1), then by Theorem 4.1 and Remark 4.2, we conclude that for any A € (0, Ao)
n e (0, ,uo) and v € (0, vp), problem (Sy)-(BCyp) has no positive solution, where 1 = 3A13’
o = W’ Vg = 3A 7. If we consider as above p; = 3356, 41 = 2, p» = 36386, 4> = 3, p3 =
59272, g3 = 4, then A; = 30204, A, = 1029204/2 ~ 145551, A3 = 296360. Therefore we
obtain Ao A~ 3.9346 x 107, 1o &~ 1.6629 x 107>, vy & 6.24284 x 107,

Because f{,f1, b, g, hb, bl > 0 and f (¢, u, v, w) > 0, g(¢,u,v,w) > 0, h(t,u,v,w) > 0 for all
t € [1/4,1] and u,v,w > O with u+v+w > 0, we can also apply Theorem 4.8 and Remark 4.7.
Here i = 3600‘}1m1A’ fto = 390ﬁ}1m2c m'
above, we have m; = 3, my = 24/5, m3 = i, Ao A 33.22545838, [io ~ 5504.275396, Dy A
2056.117822. So, if A > 33.23, u > 5504.28 and v > 2056.12, problem (Sy)-(BCy) has no

positive solution.

and Dy = For the functions f, g, & presented

Example 2 We consider the functions

f(t, u, v, w ) t* (Lt + V2 + W2) g(t’ u,v, W) _ (2 _ t)b(eu+v+w _ 1),

ht,u,v,w)=(u+v+w), tel0,1],u,v,w>0,

where a,b >0, ¢ > 1. We have f5 = 0, f = 00, g = 2%, g’ =00, i} =0, i} = 00.

By Theorem 3.1(14), for any % € (0,00), u € (0,24) and v € (0, 00), with L= %, prob-
lem (Sp)-(BCy) has a positive solution. Here D = fol Jo(s) ds ~ 0.13771787. For example, if
b =2, we obtain L, = ;5 ~1.8153054.

We can also use Theorem 4.3, because g(¢,u,v,w) > u + v + w for all t € [1/4,1] and
u,v,w > 0, that is, m, = 1. Because [y = m A 73847.6037, we deduce that for every
A >0, u>73847.61 and v > 0, the boundary value problem (Sp)-(BCy) has no positive

solution.

6 Conclusion
By using the Guo-Krasnosel’skii fixed point theorem, in this paper, we present conditions
for the nonlinearities f, g and /4, and intervals for the positive parameters A, u and v such



Luca Boundary Value Problems (2017) 2017:102 Page 34 of 35

that problem (S)-(BC) has positive solutions. In addition, we investigate the nonexistence
of positive solutions for this problem. The novelties of our paper are the system (S) (a sys-
tem with three fractional differential equations, unlike the well-studied case of a system
with two equations) and the boundary conditions (BC) which, in contrast with other re-
cent papers, contain fractional derivatives in ¢ = 1 and in various intermediate points. The
obtained theorems improve and extend the results from paper [2], where only a few cases
are presented for the existence of positive solutions. Our results remain valid, with simi-
lar proofs, for general systems of Hammerstein integral equations of the form (34) under
assumptions (I—Tl) and (l:IVZ).
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