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Abstract
In this paper, we study the following coupled Schrödinger system:

⎧
⎪⎨

⎪⎩

–�u + u = u2
∗–1 + βu

2∗
2 –1v

2∗
2 + f (u), x ∈R

N ,

–�v + v = v2
∗–1 + βu

2∗
2 v

2∗
2 –1 + g(v), x ∈R

N ,

u, v > 0, x ∈R
N ,

where N ≥ 5 and 2∗ = 2N
N–2 . Note that the nonlinearity and the coupling terms are both

of critical growth. Using the mountain pass theorem, Ekeland’s variational principle
and the concentration-compactness principle, we show that this system has at least
one positive least energy solution for each β ∈ (–1, 0)∪ (0, +∞).

MSC: 35J60; 35A15; 35B33

Keywords: coupled Schrödinger system; critical exponent; positive solution

1 Introduction
In this paper, we consider the following coupled nonlinear Schrödinger system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + u = u∗– + βu ∗
 –v ∗

 + f (u), x ∈ R
N ,

–�v + v = v∗– + βu ∗
 v ∗

 – + g(v), x ∈ R
N ,

u, v > , x ∈ R
N ,

(.)

where N ≥ , ∗ = N
N– and β ∈ (–, +∞) \ {}. The functions f , g satisfy the following

conditions:

(F) f , g ∈ C(R), limt→+
f (t)

t = , limt→∞ f (t)
t∗– =  for t ≥ ,

lim
t→+

g(t)
t

= , lim
t→∞

g(t)
t∗– =  for t ≥ ;

(F) There exist θ, θ >  small enough such that

tf ′(t) ≥ ( + θ)f (t) > , tg ′(t) ≥ ( + θ)g(t) >  for t > ;

(F) f (t), g(t) are odd.
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In recent years, there have been a lot of studies on the following coupled system of non-
linear Schrödinger equations:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + λu = μup– + βup–vp, x ∈ �,

–�v + λv = μvp– + βupvp–, x ∈ �,

u, v > , x ∈ �, u = v = , x ∈ ∂�,

(.)

where � = R
N (N ≥ ) or � is a smooth bounded domain in R

N ,  < p ≤ ∗
 , μ,μ > 

and β 
= . For the case p = , system (.) arises in the Hartree-Fock theory for a binary
mixture of Bose-Einstein condensates in two different hyperfine states, see more details
in [–]. The sign of β determines whether the interactions of the two states are attractive
if β >  or repulsive if β < .

For problem (.), we are interested in the existence of a nontrivial solution (u, v), i.e.
u 
≡  and v 
≡ . However, one easily sees that (.) may admit a semitrivial solution of the
form (u, ) or (, v), which may cause some difficulties. When  < p < ∗, system (.) is a
problem of subcritical growth. The existence and multiplicity of nontrivial solutions have
been extensively studied, see [–] and the references therein.

For the critical case p = ∗, when � is a smooth bounded domain, there exist papers
[–] studying this case. In [], Chen and Zou studied problem (.) with N = . In
[], Chen and Zou studied problem (.) with N ≥  and they showed that if –λ(�) <
λ ≤ λ < , then (.) has a positive least energy solution for any β 
= , where λ(�) is the
first eigenvalue of –� with the Dirichlet boundary condition. In [], by a minimization
method, Ye and Peng showed the existence of positive least energy solution for the special
case λ = λ. When p = ∗ and � = R

N , by the Pohozaev identity, we see that problem (.)
has only a trivial solution if λλ > . To get nontrivial solutions, one usually adds lower
order perturbation terms to the right-hand side of system (.), i.e. considering problem
(.). Problem (.) can be seen as a counterpart of the following single equation:

–�u + u = |u|∗–u + f (u), x ∈R
N (.)

or

–�v + v = |v|∗–v + g(v), x ∈ R
N . (.)

Deng in [] proved that if N ≥  and (F)-(F) hold, then (.) (or (.)) has at least one
positive least energy radial solution, denoted by u (or v) and the corresponding energy
denoted by B (or B). Hence we deduce that (u, ) and (, v) are semitrivial solutions
to problem (.), which may be an interference in the process of searching for nontrivial
solutions. Recently, the author proves the special case N =  in []. In this paper, we
consider (.) with higher dimensions N ≥ . To state our main results, we denote H :=
H(RN ) × H(RN ) with the norm defined as ‖(u, v)‖H = [

∫

RN (|∇u| + |u|) +
∫

RN (|∇v| +
|v|)] 

 , ∀(u, v) ∈ H . It is well known that weak solutions of (.) correspond to critical
points of the functional I : H →R defined as follows:

I(u, v) =


∥
∥(u, v)

∥
∥

H –


∗

∫

RN

(|u|∗ + |v|∗ + β|u| ∗
 |v| ∗


)

–
∫

RN
F(u) –

∫

RN
G(v),
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for any (u, v) ∈ H , where F(s) =
∫ s

 f (t) dt, G(s) =
∫ s

 g(t) dt. We say (u, v) ∈ H is a positive
least energy solution of (.) if (u, v) is a nontrivial solution of (.) with u > , v >  and

I(u, v) = inf
{

I(ϕ,ψ)|(ϕ,ψ) is a nontrivial solution of (.)
}

.

Our main result is as follows.

Theorem . Suppose that (F)-(F) hold and N ≥ .
() For any β > , problem (.) has at least one positive least energy solution.
() For any β ∈ (–, ), problem (.) has at least one radial and positive least energy

solution.

Remark .
() For β < , we do not know whether the solution obtained in Theorem . is a least

energy solution of (.) in H or not.
() When N = , it is proved in [] that (.) has a radially positive solution for any

β >  and β 
= . Comparing this with Theorem .(), we see that the case N ≥  is
completely different from the case N = . In the proof of Theorem .(), we should
point out that ∗ <  is an essential condition, which makes the method not
applicable to the case N = .

() The method to prove Theorem .() can be similarly used to show that when N = 
and – < β < , (.) has at least one radially positive least energy solution.

By (F), (F), for any ε > , there exists Cε >  such that

f (t)t ≤ ε|t| + Cε|t|∗
, g(t)t ≤ ε|t| + Cε|t|∗

, ∀t ∈R, (.)

F(t) ≤ ε
|t|


+ Cε

|t|∗

∗ , G(t) ≤ ε
|t|


+ Cε

|t|∗

∗ , ∀t ∈R. (.)

By (F), (F), we have

 < ( + θ)F(t) ≤ tf (t),  < ( + θ)G(t) ≤ tg(t), ∀t ∈R (.)

(see Remark . in []), then F(t)
t and f (t)

|t| is nondecreasing on t ∈R \ {}.
Since the nonlinearity and the coupling terms in problem (.) are both critical, the ex-

istence of nontrivial solutions to (.) depends heavily on the least energy solutions of the
corresponding limit problem

⎧
⎪⎪⎨

⎪⎪⎩

–�u = |u|∗–u + β|u| ∗
 –u|v| ∗

 , x ∈ R
N ,

–�v = |v|∗–v + β|u| ∗
 |v| ∗

 –v, x ∈ R
N ,

u, v ∈ D,(RN ),

(.)

where D,(RN ) = {u ∈ L(RN )||∇u| ∈ L(RN )}.
Recall that S is the best constant of D,(RN ) ↪→ L∗ (RN ), i.e.

S = inf
u∈D,(RN )\{}

∫

RN |∇u|
(
∫

RN |u|∗ )


∗
.
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For any ε >  and y ∈R
N , S is achieved by the Aubin-Talenti instanton (see [, ])

Uε,y(x) =
[N(N – )ε] N–



(ε + |x – y|) N–


(.)

and
∫

RN
|∇Uε,y| =

∫

RN
|Uε,y|∗

= S
N
 . (.)

As showed in [], the following manifold

P =

⎧
⎨

⎩
(u, v) ∈ D,(

R
N) × D,(

R
N)

∣
∣
∣
∣
∣
∣

u, v 
≡ ,

⎧
⎨

⎩

∫

RN |∇u| =
∫

RN (|u|∗ + β|u| ∗
 |v| ∗

 ),
∫

RN |∇v| =
∫

RN (|v|∗ + β|u| ∗
 |v| ∗

 )

⎫
⎬

⎭
(.)

contains all nontrivial solutions to problem (.). Set A := inf(u,v)∈P J(u, v), where J(u, v) is
the corresponding energy functional. It is proved in [] that when N ≥ , A is attained
and A < 

N S N
 for each β > ; and while β < , A = 

N S N
 is not attained. This fact brings

about the difference of the existence result in Theorem . between β >  and β < . To
prove Theorem ., we easily see that the functional I possesses a mountain pass geom-
etry and then a (PS) sequence exists. For β > , we could pull the mountain pass energy
down below min{A, B, B}, then the (PS) condition holds for I . However, the above en-
ergy estimate cannot be directly applied to the case β <  since A is not attained when
β < . We overcome this difficulty by working in the radially symmetric Sobolev subspace
Hr = H

r (RN ) × H
r (RN ), where H

r (RN ) = {u ∈ H(RN )|u(x) = u(|x|)} and using the con-
strained minimization on the following manifold defined similarly to (.):

M =

⎧
⎨

⎩
(u, v) ∈ Hr

∣
∣
∣
∣
∣
∣

u, v 
≡ ,

⎧
⎨

⎩

∫

RN (|∇u| + |u|) =
∫

RN (|u|∗ + β|u| ∗
 |v| ∗

 + f (u)u),
∫

RN (|∇v| + |v|) =
∫

RN (|v|∗ + β|u| ∗
 |v| ∗

 + g(v)v)

⎫
⎬

⎭
.

Then Theorem . is proved. It is necessary to point out that due to the existence of the
perturbation terms in I , we need the assumption β > – to show that the manifold M is a
suitable one for our problem, i.e. a minimizer of I constrained on M is a nontrivial solution
of (.).

Throughout this paper, we use standard notations. For simplicity, we write
∫

�
h to mean

the Lebesgue integral of h(x) over a domain � ⊂ R
N . Lp := Lp(RN ) ( ≤ p < +∞) is the

usual Lebesgue space with the standard norm | · |p. We use ‘→’ and ‘⇀’ to denote the
strong and weak convergence in the related function space, respectively. C, {Ci}+∞

i= will
denote a positive constant unless specified. We use ‘:=’ to denote definitions. Br(x) := {y ∈
R

N ||y – x| < r}. We use ‘X–’ to denote the dual space of X. We denote a subsequence of a
sequence {un} as {un} to simplify the notation unless specified.
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The paper is organized as follows. In Section , we prove Theorem . with β > ; in
Section , we give the proof of Theorem . with β ∈ (–, ).

2 Proof of Theorem 1.1 with β > 0
In this section, we consider the case β > . We first give some preliminary results.

Lemma . Suppose that (F)-(F) hold and β > , then I possesses a mountain pass ge-
ometry around (, ):

() There exist ρ,σ >  such that inf‖(u,v)‖H =ρ I(u, v) ≥ σ ;
() There exists (u, v) ∈ H such that ‖(u, v)‖H > ρ and I(u, v) < .

Proof For any (u, v) ∈ H \ {(, )}, by (.) and the Sobolev embedding inequality, there is
a constant C >  such that

I(u, v) ≥ 


∥
∥(u, v)

∥
∥

H –
C( + β)

∗
∥
∥(u, v)

∥
∥∗

H ,

then there exist σ ,ρ >  such that I(u, v) ≥ σ for all ‖(u, v)‖H = ρ .
By (.), there exists C >  such that

F(s) ≥ C|s|+θ , G(s) ≥ C|s|+θ , ∀s ∈R. (.)

For any t ≥ , we see that I(tu, tv) → –∞ as t → +∞. Then there exists t >  such that
I(tu, tv) <  and ‖(tu, tv)‖H > ρ . �

By the mountain pass theorem (see, e.g., Theorem . in []), there exists a (PS)B
sequence {(un, vn)} ⊂ H such that

I(un, vn) → B, I ′(un, vn) →  in H–,

where

B = inf
γ∈�

max
t∈[,]

I
(
γ (t)

)
> ,

and � = {γ ∈ C([, ], H)|γ () = , I(γ (t)) < }.

Lemma . Suppose that (F)-(F) hold and β > , then for any (u, v) ∈ H \ {(, )}, there
exists a unique t̃ = t̃(u,v) >  such that �(t̃u, t̃v) =  and I(t̃u, t̃v) = maxt≥ I(tu, tv), where

�(u, v) =
∥
∥(u, v)

∥
∥

H –
∫

RN

(|u|∗ + |v|∗ + β|u| ∗
 |v| ∗


)

–
∫

RN
f (u)u –

∫

RN
g(v)v.

Proof For any (u, v) ∈ H \ {(, )} and any t ≥ , by (F)-(F), we see that

h(t) =
t


∥
∥(u, v)

∥
∥

H –
t∗

∗

∫

RN

(|u|∗
+ |v|∗

+ β|u| ∗
 |v| ∗


)

–
∫

RN
F(tu) –

∫

RN
G(tv)

has a unique critical point t̃ >  corresponding to its maximum. Then h(t̃) = maxt≥ h(t)
and h′(t̃) = . So �(t̃u, t̃v) = . �
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Set

M =
{

(u, v) ∈ H \ {
(, )

}|�(u, v) = 
}

.

By Lemma ., M 
= ∅. Indeed, M contains all nontrivial and semitrivial solutions of (.).
For any (u, v) ∈ M, by β >  and (.), we have I(u, v) = I(u, v) – 

�(u, v) ≥ , i.e. I(u, v) is
bounded from below on M. Moreover, it is easy to check that

B = inf
(u,v) 
=(,)

(u,v)∈H

max
t≥

I(tu, tv) = inf
(u,v)∈M

I(u, v).

For each β > , as showed in [], we set

Sβ := inf
u,v∈D,(RN )\{}

∫

RN (|∇u| + |∇v|)

[
∫

RN (|u|∗ + |v|∗ + β|u| ∗
 |v| ∗

 )]


∗
.

Then Sβ ≥  is well defined.

Lemma . (Lemma ., Lemma ., []) For each β > ,

Sβ =
 + τ 



( + τ
N

N–
 + βτ

N
N–

 )
N–

N

S

and Sβ is attained by (τUε,y, Uε,y), where τ is the unique positive zero point of ϕ(τ ) =
 + βτ

N
N– – βτ

–N
N– – τ


N– .

For ρ > , let ψ ∈ C∞
 (Bρ()) be a cut-off function with  ≤ ψ ≤  and ψ ≡  for |x| ≤ ρ .

For ε > , denote

wε := ψUε,. (.)

Then, by [], we have

∫

RN
|∇wε| = S

N
 + O

(
εN–),

∫

RN
|wε|∗

= S
N
 + O

(
εN)

,
∫

RN
|wε| = Cε

 + O
(
εN–),

(.)

where C >  is a constant independent of ε.

Lemma . (Lemma ., []) Suppose that (F) holds. For any sequences {tε}, {sε} sat-
isfying that there exist two constants  < C < C < +∞ independent of ε such that C ≤
tε , sε ≤ C for ε small enough, then

lim
ε→+

∫

RN F(tεwε)
ε = +∞, lim

ε→+

∫

RN G(sεwε)
ε = +∞.
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As mentioned in Section , u, v ∈ H(RN ) are respectively radially positive least energy
solutions of (.) and (.) with the corresponding energy denoted by B, B, i.e.

I(u, ) = B <

N

S
N
 , I(, v) = B <


N

S
N
 . (.)

By standard regularity arguments, u, v ∈ C(RN ) and u() = maxx∈RN u(x), v() =
maxx∈RN v(x).

Lemma . Suppose that (F)-(F) hold and β > , then

B < min

{

B, B,

N

S
N

β

}

.

Proof The proof consists of two steps.
Step : We prove that B < 

N S
N

β .

For ε > , denote (uε , vε) := (τwε , wε), where τ is given in Lemma .. By Lemma .,
there exists a unique tε >  such that

(tεuε , tεvε) ∈M (.)

and I(tεuε , tεvε) = maxt≥ I(tuε , tvε).
We claim that {tε}ε> is bounded from below by a positive constant. Otherwise,

there exists a sequence {εn} ⊂ R+ satisfying limn→+∞ tεn =  and I(tεn uεn , tεn vεn ) =
maxt≥ I(tuεn , tvεn ), then by (.)-(.) and (F), (F), we have  < B ≤ limn→+∞ I(tεn uεn ,
tεn vεn ) = , which is impossible. So there exist  < C < C independent of ε satisfying that

C ≤ tε ≤ C for all ε > . (.)

Then, by (.)-(.) and Lemmas . and ., we see that

B ≤ I(tεuε , tεvε)

≤ max
t>

{
t


∥
∥(uε , vε)

∥
∥

H –
t∗

∗

∫

RN

(|uε|∗
+ |vε|∗

+ β|uε| ∗
 |vε| ∗


)
}

–
∫

RN

[
F(tεuε) + G(tεvε)

]

≤ ‖(uε , vε)‖
H

N

[ ‖(uε , vε)‖
H

∫

RN (|uε|∗ + |vε|∗ + β|uε| ∗
 |vε| ∗

 )

] 
∗–

–
∫

RN
F(tεuε) –

∫

RN
G(tεvε)

≤ 
N

[( + τ 
 )S N

 + C( + τ 
 )ε + O(εN–)] N



[( + βτ
N

N–
 + τ

N
N–

 )S N
 + O(εN )] N–



–
∫

RN
F(tεuε) –

∫

RN
G(tεvε)

≤ 
N

( + τ 
 ) N

 S N


( + βτ
N

N–
 + τ

N
N–

 ) N–


+ Cε
 + O

(
εN–) –

∫

RN
F(tεuε) –

∫

RN
G(tεvε)

<

N

S
N

β for ε >  small enough.
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Step : We prove that B < B and B < B.
The idea of this proof follows from Lemma . in [].
We define a function H : R →R by

H(t, s) = �(tu, tsv).

It is easy to check that H(, ) =  and Ht(, ) 
= . Then, by the implicit function theorem,
there exist δ >  and a function t(s) ∈ C(–δ, δ) such that

t() = , t′(s) = –
Hs(t, s)
Ht(t, s)

and H
(
t(s), s

)
= , ∀s ∈ (–δ, δ),

which implies that

(
t(s)u, t(s)sv

) ∈M, ∀s ∈ (–δ, δ). (.)

Since ∗
 <  < ∗ and β > , by direct calculation and (F), (F), we have

lim
s→

t′(s)

|s| ∗
 –s

=
–∗β

∫

RN |u| ∗
 |v| ∗



(∗ – )
∫

RN |u|∗ +
∫

RN [f ′(u)u
 – f (u)u]

< ,

i.e.

t′(s) =
–∗β

∫

RN |u| ∗
 |v| ∗



(∗ – )
∫

RN |u|∗ +
∫

RN [f ′(u)u
 – f (u)u]

|s| ∗
 –s

(
 + o()

)
as s → .

So

t(s) =  –
β

∫

RN |u| ∗
 |v| ∗



(∗ – )
∫

RN |u|∗ +
∫

RN [f ′(u)u
 – f (u)u]

|s| ∗

(
 + o()

)
as s → . (.)

Then

t∗
(s) = –

∗β
∫

RN |u| ∗
 |v| ∗



(∗ – )
∫

RN |u|∗ +
∫

RN [f ′(u)u
 – f (u)u]

|s| ∗

(
+o()

)
as s → . (.)

By (F), we see that the function F̃(t) := 
 f (t)t – F(t) is nondecreasing on (, +∞). By

(.), we may assume that  < t(s) ≤  for |s| small enough. So

F̃
(
t(s)u

) ≤ F̃(u) for |s| small enough. (.)

By (F), (F), we have lims→
g(t(s)sv)t(s)sv

|s| ∗


= lims→
G(t(s)sv)

|s| ∗


= . Thus, by (.), (.)-(.)

and β > , we see that for ∀s ∈ (–δ, δ),

B ≤ I
(
t(s)u, t(s)sv

)
–



�

(
t(s)u, t(s)sv

)

=

N

t∗ (s)
∫

RN

(|u|∗ + |s|∗ |v|∗ + β|s| ∗
 |u| ∗

 |v| ∗

)



Peng and Ye Boundary Value Problems  (2017) 2017:104 Page 9 of 18

+
∫

RN

[



f
(
t(s)u

)
t(s)u – F

(
t(s)u

)
]

+
∫

RN

[



g
(
t(s)sv

)
t(s)sv – G

(
t(s)sv

)
]

≤ 
N

∫

RN
|u|∗

+
∫

RN

[



f (u)u – F(u)
]

– |s| ∗


β

∗

∫

RN
|u| ∗

 |v| ∗
 + o

(|s| ∗

)

<

N

∫

RN
|u|∗

+
∫

RN

[



f (u)u – F(u)
]

= B as |s| >  small enough.

Hence B < B. Similarly, we have B < B. Therefore the proof of the lemma is completed. �

Lemma . ([], Vanishing lemma) Let r >  and  ≤ q < ∗. If {un} is bounded in H(RN )
and

sup
y∈RN

∫

Br(y)
|un|q → , n → +∞,

then un →  in Lp(RN ) for  < p < ∗.

Proof of Theorem . with β >  By Lemma ., there exists a sequence {(un, vn)} ⊂ H such
that

lim
n→+∞ I(un, vn) = B, lim

n→+∞ I ′(un, vn) = . (.)

By (.), we easily see that {(un, vn)} is uniformly bounded in H .
Let

δ := lim
n→+∞ sup

y∈RN

∫

B(y)
|un|, δ := lim

n→+∞ sup
z∈RN

∫

B(z)
|vn|, (.)

then δ, δ ∈ [, +∞). If δ = δ = , then by the vanishing lemma ., we have un →  in
Lp(RN ) and vn →  in Lp(RN ), ∀ < p < ∗. By (F), (F), for any ε > , there exists Cε > 
such that

∣
∣F(t)

∣
∣ ≤ ε

(|t| + |t|∗) + Cε|t|p,
∣
∣G(t)

∣
∣ ≤ ε

(|t| + |t|∗) + Cε|t|p. (.)

Then

lim sup
n→+∞

∫

RN

∣
∣F(un)

∣
∣ ≤ lim sup

n→+∞

[

ε

∫

RN

(|un| + |un|∗) + Cε

∫

RN
|un|p

]

≤ Cε,

which shows that limn→+∞
∫

RN F(un) =  since ε >  is arbitrary. Similarly,

lim
n→+∞

∫

RN
G(vn) = .

By (.) and the boundedness of {(un, vn)}, we see that

lim
n→+∞

∥
∥(un, vn)

∥
∥

H = lim
n→+∞

∫

RN

(|un|∗ + |vn|∗ + β|un| ∗
 |vn| ∗


)

= NB. (.)
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For n large, we may assume that un, vn ∈ D,(RN ) \ {}. Hence, by (.), we see that

Sβ ≤ ‖(un, vn)‖
H

[
∫

RN (|un|∗ + |vn|∗ + β|un| ∗
 |vn| ∗

 )]


∗
→ (NB)


N ,

i.e. B ≥ 
N S

N

β , which contradicts Lemma ..

So we deduce that at least one of the following two inequalities δ >  and δ >  holds.
Without loss of generality, we may assume that δ > . There exists a sequence {yn} ⊂ R

N

such that
∫

B(yn)
|un| ≥ δ


> . (.)

Set

ũn(x) := un(x + yn), ṽn(x) := vn(x + yn).

Then {(ũn, ṽn)} is also a bounded (PS)B sequence for I . Up to a subsequence, we may as-
sume that there exists (ũ, ṽ) ∈ H such that (ũn, ṽn) ⇀ (ũ, ṽ) in H , then I ′(ũ, ṽ) = . Moreover,
by the Sobolev embedding theorem, we have

⎧
⎨

⎩

(ũn, ṽn) → (ũ, ṽ) in Lp
loc(RN ) × Lp

loc(RN ),∀ ≤ p < ∗,

ũn(x) → ũ(x), ṽn(x) → ṽ(x) a.e. in R
N ,

which and (.) imply that ũ 
≡ .
If ṽ ≡ , then ũ is a nontrivial solution of –�u + u = |u|∗–u + f (u) in R

N . Then I(ũ, ) ≥
B. Hence, by β > , (.) and Fatou’s lemma, we have

B = lim
n→+∞

(

I(ũn, ṽn) –


〈
I ′(ũn, ṽn), (ũn, ṽn)

〉
)

= lim
n→+∞

[

N

∫

RN

(|ũn|∗
+ |ṽn|∗

+ β|ũn| ∗
 |ṽn| ∗


)

+
∫

RN

(



f (ũn)ũn – F(ũn)
)

+
∫

RN

(



g(ṽn)ṽn – G(ṽn)
)]

≥ lim inf
n→+∞

[

N

∫

RN
|ũn|∗

+
∫

RN

(



f (ũn)ũn – F(ũn)
)]

≥ 
N

∫

RN
|ũ|∗

+
∫

RN

(



f (ũ)ũ – F(ũ)
)

= I(ũ, ) ≥ B,

which contradicts Lemma .. So ṽ 
≡ . Then (ũ, ṽ) is a nontrivial solution to (.). Thus
(ũ, ṽ) ∈M and

B ≤ I(ũ, ṽ) –


〈
I ′(ũ, ṽ), (ũ, ṽ)

〉

=

N

∫

RN

(|ũ|∗ + |ṽ|∗ + β|ũ| ∗
 |ṽ| ∗


)
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+
∫

RN

(



f (ũ)ũ – F(ũ)
)

+
∫

RN

(



g(ṽ)ṽ – G(ṽ)
)

≤ lim inf
n→+∞

{

N

∫

RN

(|ũn|∗
+ |ṽn|∗

+ β|ũn| ∗
 |ṽn| ∗


)

+
∫

RN

(



f (ũn)ũn – F(ũn)
)

+
∫

RN

(



g(ṽn)ṽn – G(ṽn)
)}

= lim inf
n→+∞

(

I(ũn, ṽn) –


〈
I ′(ũn, ṽn), (ũn, ṽn)

〉
)

= B,

which shows that I(ũ, ṽ) = B. Moreover,

I(ũ, ṽ) = m := inf
{

I(u, v)|(u, v) is a nontrivial solution of (.)
}

.

Indeed, since (ũ, ṽ) is a nontrivial solution to (.), I(ũ, ṽ) ≥ m. On the other hand, for any
nontrivial solution (u, v) to (.), then (u, v) ∈ M, which shows that I(u, v) ≥ B. Hence
m ≥ B = I(ũ, ṽ) since (u, v) is arbitrary. So I(ũ, ṽ) = m.

Since the functional I and the manifold M are symmetric, we see that (|ũ|, |ṽ|) is also
a nontrivial solution to (.) and I(|ũ|, |ṽ|) = B. By regularity and the maximum principle,
we obtain that |ũ|, |ṽ| >  in R

N . �

3 Proof of Theorem 1.1 with β ∈ (–1, 0)
In this section, we study the existence of radially positive least energy solutions to (.)
when – < β < . Denote Hr := H

r (RN ) × H
r (RN ). To prove the theorem, we set

M =
{

(u, v) ∈ Hr

∣
∣
∣
∣u 
≡ , v 
≡ ,

∫

RN

(|∇u| + |u|) =
∫

RN

(|u|∗
+ β|u| ∗

 |v| ∗
 + f (u)u

)
,

∫

RN

(|∇v| + |v|) =
∫

RN

(|v|∗
+ β|u| ∗

 |v| ∗
 + g(v)v

)
}

.

Then M 
= ∅. In fact, taking u, v ∈ C∞
 (RN ), u, v ∈ H

r (RN ) with u, v 
≡  and supp(u) ∩
supp(v) = ∅, then by (F)-(F), there exist t, t >  such that (tu, tv) ∈ M. For any (u, v) ∈
Hr , by β ∈ (–, ), the Hölder inequality and the Cauchy inequality, we have

|β|
∫

RN
|u| ∗

 |v| ∗
 ≤ |β|

(∫

RN
|u|∗

) 

(∫

RN
|v|∗

) 


<
∫

RN

(|u|∗
+ |v|∗)

. (.)

Then the minimization problem

B := inf
(u,v)∈M

I(u, v)

is well defined and B ≥ .

Lemma . Suppose that (F)-(F) hold and β ∈ (–, ), then B >  and I is coercive on M.
Moreover, there exists C >  such that

∫

RN |u|∗ ,
∫

RN |v|∗ ≥ C for any (u, v) ∈ M.
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Proof Since β ∈ (–, ), for each (u, v) ∈ M, by (.) and (.), we have

I(u, v) =

N

∫

RN

(|u|∗ + |v|∗ +β|u| ∗
 |v| ∗


)

+
∫

RN

(



f (u)u–F(u)+



g(v)v–G(v)
)

> ,

which implies that B >  and I is coercive on M.
For any (u, v) ∈ M, by β < , (.) and the Sobolev embedding inequality, we have

‖u‖ ≤
∫

RN
|u|∗ +

∫

RN
f (u)u ≤ 


‖u‖ + C

∫

RN
|u|∗ ≤ 


‖u‖ + CS– ∗

 ‖u‖∗ ,

which implies that ‖u‖ ≥ C for some C >  and then
∫

RN |u|∗ ≥ 
C ‖u‖ ≥ C for some

C > . Similarly,
∫

RN |v|∗ ≥ C for some C > . Set C = min{C, C}, then the lemma is
proved. �

Lemma . Suppose that (F)-(F) hold and β ∈ (–, ), then B < min{B + 
N S N

 , B +

N S N

 }.

Proof We first prove that there exist (tεu, swε) ∈ M, where u, wε are defined in (.) and
(.). It is enough to prove that there exist tε , sε >  solving the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ∫

RN (|∇u| + u
 )

= t∗ ∫

RN |u|∗ + t ∗
 s ∗

 β
∫

RN |u| ∗
 |wε| ∗

 +
∫

RN f (tu)tu,

s ∫

RN (|∇wε| + w
ε)

= s∗ ∫

RN |wε|∗ + t ∗
 s ∗

 β
∫

RN |u| ∗
 |wε| ∗

 +
∫

RN g(swε)swε ,

t, s > .

(.)

Since
∫

RN (|∇u| + u
 ) =

∫

RN (|u|∗ + f (u)u) and ∗
 < , by (F) and the second equation

of (.), we have  < s ∗
 = h(t), t > , where

h(t) :=
(t– ∗

 – t ∗
 )

∫

RN |u|∗ + t– ∗


∫

RN ( f (u)
u

– f (tu)
tu

)u


β
∫

RN |u| ∗
 |wε| ∗


.

Moreover, h() =  and limt→+∞ h(t) = +∞. Then (.) is equivalent to

h̃ε(t) :=
∫

RN

(|∇wε| + w
ε

)
–

[
h(t)

] (∗–)
∗

∫

RN
|wε|∗ – β

[
h(t)

] ∗–
∗ t

∗


∫

RN
|u| ∗

 |wε| ∗


–
∫

RN

g([h(t)]


∗ wε)

[h(t)]


∗ wε

w
ε = , t > .

We see that limt→+ h̃ε(t) = +∞ >  and limt→+∞ h̃ε(t) = –∞, so there exists tε >  such
that h̃ε(tε) = . Set sε = [h(tε)]


∗ > . Then (.) has a solution (tε , sε).

If limε→+ sε = , then by (.) and (.), we have

 ≤
∫

RN

g(sεwε)
sεwε

w
ε ≤

∫

RN
w

ε + s∗–
ε C

∫

RN
|wε|∗ →  as ε → +.
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We deduce from the second equation of system (.) that

S
N
 = lim

ε→+

∫

RN

(|∇wε| + w
ε

) ≤ lim
ε→+

(

s∗–
ε

∫

RN
|wε|∗

+
∫

RN

g(sεwε)
sεwε

w
ε

)

= , (.)

which is impossible. So there exists s >  independent of ε such that sε ≥ s for ε small.
If limε→+ tε = +∞, then limε→+ sε = limε→+ [h(tε)]


∗ = +∞. Note that

∫

RN
|u| ∗

 |wε| ∗
 ≤ max

x∈RN
u(x)

∫

RN
|wε| ∗

 ≤ o
(
ε) →  as ε → +,

where we have used the fact that
∫

RN |wε| ∗
 ≤ o(ε), which is given in Lemma . of [].

Then, by the second equation of (.) and (F), we have

 = lim
ε→+

s–∗
ε

∫

RN

(|∇wε| + w
ε

)

≥ lim
ε→+

(∫

RN
|wε|∗

+
(

tε
sε

) ∗

β

∫

RN
|u| ∗

 |wε| ∗


)

≥ lim
ε→+

(∫

RN
|wε|∗

+
(β

∫

RN |u| ∗
 |wε| ∗

 )

(t–∗
ε – )

∫

RN |u|∗ + t–∗
ε

∫

RN f (u)u –
∫

RN
f (tεu)

(tεu)∗– u∗


)

= S
N
 ,

which is a contradiction. So there exist t, s independent of ε such that  ≤ tε ≤ t and
s ≤ sε ≤ s for ε small. Then we have

|β|t ∗


ε s
∗


ε

∫

RN
|u| ∗

 |wε| ∗
 ≤ |β|s ∗

 –


(
t max

x∈RN
u(x)

) ∗
 s

ε

∫

RN
|wε| ∗

 ≤ s
εo

(
ε).

Therefore,

B ≤ I(tεu, sεvε)

≤ max
t>

(
t
ε



∫

RN

(|∇u| + |u|
)

–
t∗
ε

∗

∫

RN
|u|∗

–
∫

RN
F(tεu)

)

+ max
s>

[
s



(∫

RN

(|∇wε| + |wε|
)

+ o
(
ε)

)

–
s∗

∗

∫

RN
|wε|∗

]

–
∫

RN
G(sεwε)

≤ I(u, ) +

N

S
N
 + O

(
ε) + O

(
εN–) –

∫

RN
G(sεwε)

< B +

N

S
N
 for ε >  small. (.)

Similarly, we can also prove that B < B + 
N S N

 . �

Lemma . Suppose that (F)-(F) hold and β ∈ (–, ), then there exists a bounded (PS)B

sequence {(un, vn)} ⊂ M for I .
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Proof By Lemma . and Ekeland’s variational principle (see []), there exists a minimiz-
ing sequence {(un, vn)} ⊂ M satisfying that

I(un, vn) ≤ B +

n

, (.)

I(u, v) ≥ I(un, vn) –

n

∥
∥(un, vn) – (u, v)

∥
∥

H , ∀(u, v) ∈ M. (.)

Lemma . shows that {(un, vn)} is uniformly bounded in Hr . For any (ϕ,φ) ∈ Hr with ‖ϕ‖,
‖φ‖ ≤  and each n ∈N, define hn, jn : R → R by

hn(t, s, l) =
∫

RN

(∣
∣∇(un + tϕ + sun)

∣
∣ + |un + tϕ + sun|

)
–

∫

RN
|un + tϕ + sun|∗

– β

∫

RN
|un + tϕ + sun| ∗

 |vn + tφ + lvn| ∗


–
∫

RN
f (un + tϕ + sun)(un + tϕ + sun),

jn(t, s, l) =
∫

RN

(∣
∣∇(vn + tφ + lvn)

∣
∣ + |vn + tφ + lvn|

)
–

∫

RN
|vn + tφ + lvn|∗

– β

∫

RN
|un + tϕ + sun| ∗

 |vn + tφ + lvn| ∗


–
∫

RN
g(vn + tφ + lvn)(vn + tφ + lvn).

Let  = (, , ). Then hn, jn ∈ C(R,R) satisfy that hn() = jn() =  and

∂hn

∂s
() =

(
 – ∗)

∫

RN
|un|∗

+
 – ∗


β

∫

RN
|un| ∗

 |vn| ∗
 +

∫

RN

[
f (un)un – f ′(un)u

n
]
,

∂hn

∂l
() =

∂jn
∂s

() = –
∗


β

∫

RN
|un| ∗

 |vn| ∗
 ,

∂jn
∂l

() =
(
 – ∗)

∫

RN
|vn|∗

+
 – ∗


β

∫

RN
|un| ∗

 |vn| ∗
 +

∫

RN

[
g(vn)vn – g ′(vn)v

n
]
.

Define the matrix

An :=

(
∂hn
∂s () ∂hn

∂l ()
∂ jn
∂s () ∂ jn

∂l ()

)

.

We see that (F), (F) show that f (un)un – f ′(un)u
n <  and g(vn)vn – g ′(vn)v

n < . Then, by
– < β < , (.) and Lemma ., we have

det An ≥ (
∗ – 

)
∫

RN
|un|∗

∫

RN
|vn|∗

+
[(

 – ∗



)

–
(

∗



)]

β
(∫

RN
|un| ∗

 |vn| ∗


)

+
(
 – ∗) – ∗


β

∫

RN
|un| ∗

 |vn| ∗


(∫

RN
|un|∗

+
∫

RN
|vn|∗

)
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≥ (
∗ – 

)
∫

RN
|un|∗

∫

RN
|vn|∗

–
(
∗ – 

)
β

(∫

RN
|un| ∗

 |vn| ∗


)

≥ (
∗ – 

)( – β)
∫

RN
|un|∗

∫

RN
|vn|∗ ≥ (

∗ – 
)( – β)C

 > .

By the implicit function theorem, there exist δn >  and functions sn(t), ln(t) ∈ C(–δn, δn)
such that sn() = ln() = ,

hn
(
t, sn(t), ln(t)

)
= , jn

(
t, sn(t), ln(t)

)
= , ∀t ∈ (–δn, δn)

and
⎧
⎨

⎩

s′
n() = 

det An
( ∂ jn

∂t () ∂hn
∂l () – ∂ jn

∂l () ∂hn
∂t ())

l′n() = 
det An

( ∂ jn
∂s () ∂hn

∂t () – ∂ jn
∂t () ∂hn

∂s ()).

Since {(un, vn)} is uniformly bounded in H , we see that

∣
∣s′

n()
∣
∣,

∣
∣l′n()

∣
∣ ≤ C, (.)

where C >  is independent of n. Denote

ϕn,t := un + tϕ + sn(t)un, φn,t := vn + tφ + ln(t)vn,

then (ϕn,t ,φn,t) ∈ M for ∀t ∈ (–δn, δn). It follows from (.) that

I(ϕn,t ,φn,t) – I(un, vn) ≥ –

n

∥
∥
(
tϕ + sn(t)un, tφ + ln(t)vn

)∥
∥

H . (.)

By (un, vn) ∈ M and the Taylor expansion, we have

I(ϕn,t ,φn,t) – I(un, vn) =
〈
I ′(un, vn),

(
tϕ + sn(t)un, tφ + ln(t)vn

)〉
+ r(n, t)

= t
〈
I ′(un, vn), (ϕ,φ)

〉
+ r(n, t), (.)

where r(n, t) = o(‖(tϕ + sn(t)un, tφ + ln(t)vn)‖H ) as t → . By (.), we see that

lim sup
t→

∥
∥
∥
∥

(

ϕ +
sn(t)

t
un,φ +

ln(t)
t

vn

)∥
∥
∥
∥

H
≤ C, (.)

where C is independent of n. Hence r(n, t) = o(t). By (.)-(.) and letting t → , we have

∣
∣
〈
I ′(un, vn), (ϕ,φ)

〉∣
∣ ≤ C

n
,

where C is independent of n. Hence I ′(un, vn) → , i.e. {(un, vn)} is a bounded (PS)B se-
quence for I . �

Proof of Theorem . with β ∈ (–, ) By Lemmas . and ., there exists a bounded (PS)B

sequence {(un, vn)} ⊂ M satisfying that
∫

RN
|un|∗ ,

∫

RN
|vn|∗ ≥ C, (.)
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where C >  is given in Lemma .. Up to a subsequence, there exists (u, v) ∈ Hr such that
(un, vn) ⇀ (u, v) in Hr . Then I ′(u, v) = . Moreover, by (F), (F) we see that

⎧
⎨

⎩

∫

RN F(un) → ∫

RN F(u),
∫

RN f (un)un → ∫

RN f (u)u,
∫

RN G(vn) → ∫

RN G(v),
∫

RN g(vn)vn → ∫

RN g(v)v.
(.)

If u ≡  and v ≡ , then
⎧
⎨

⎩

∫

RN |∇un| ≤ ∫

RN |un|∗ + β
∫

RN |un| ∗
 |vn| ∗

 + on(),
∫

RN |∇vn| ≤ ∫

RN |vn|∗ + β
∫

RN |un| ∗
 |vn| ∗

 + on(),
(.)

where on() →  as n → +∞. Similarly to the proof of (.) in Lemma ., there exist
tn, sn >  such that (tnun, snvn) ∈ P, i.e.

⎧
⎨

⎩

t
n
∫

RN |∇un| = t∗
n

∫

RN |un|∗ + t
∗


n s
∗


n β
∫

RN |un| ∗
 |vn| ∗

 ,

s
n
∫

RN |∇vn| = s∗
n

∫

RN |vn|∗ + t
∗


n s
∗


n β
∫

RN |un| ∗
 |vn| ∗

 .
(.)

So J(tnun, snvn) = 
N

∫

RN (|∇(tnun)| + |∇(snvn)|) ≥ A. Set

c := lim
n→+∞

∫

RN
|∇un|, c := lim

n→+∞

∫

RN
|∇vn|,

d := lim
n→+∞

∫

RN
|un|∗

, d := lim
n→+∞

∫

RN
|vn|∗

, e := lim
n→+∞|β|

∫

RN
|un| ∗

 |vn| ∗
 .

By (.), we see that c + e ≤ d and c + e ≤ d. By (.) we have e < dd. If tn → +∞
as n → +∞, then the first equation of (.) implies that sn → +∞. Hence, by the second
equation of (.), we show that

 = lim
n→+∞

∫

RN |∇vn|
s∗–

n
= lim

n→+∞

(∫

RN
|vn|∗

–
t∗
n (β

∫

RN |un| ∗
 |vn| ∗

 )

t∗
n

∫

RN |un|∗ – t
n
∫

RN |∇un|
)

=
dd – e

d
> , (.)

which is a contradiction. So we may assume that tn → t∞ ≥  and sn → s∞ ≥ .
If e = , then (.) and (.) imply that t∞, s∞ ≤ . If e > , we assume that t∞ > . Then,

by the first equation of (.), we have s∞ > . Similarly to the proof of (.), we see that

c > s–∗
∞ c ≥ d –

e

d – c
≥ d – e = c,

which is a contradiction. Therefore, t∞ ≤ . Similarly, s∞ ≤ . So we have

B = lim
n→+∞


N

∥
∥(un, vn)

∥
∥

H ≥ 
N

lim
n→+∞

∫

RN

(∣
∣∇(tnun)

∣
∣ +

∣
∣∇(snvn)

∣
∣) ≥ A.

By Lemma . and Section , we have 
N S N

 = A ≤ B < B + 
N S N

 , which implies that 
N S N

 ≤
B. It contradicts (.). Therefore the case u, v ≡  does not occur.
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If u 
≡  and v ≡ , then u is a nontrivial solution of –�u + u = |u|∗–u + f (u) in R
N .

Then I(u, ) ≥ B. By (un, vn) ∈ M and β < , we have

‖vn‖ =
∫

RN
|vn|∗

+ β

∫

RN
|un| ∗

 |vn| ∗
 + on() ≤ S– ∗

 ‖vn‖∗
+ on(),

where on() →  as n → +∞. By (.) we have ‖vn‖ ≥ S N
 . So by (.) we see that

B = lim
n→+∞

(

I(un, vn) –


∗
〈
I ′(un, vn), (un, vn)

〉
)

= lim
n→+∞

{

N

‖vn‖ +
∫

RN

(


∗ g(vn)vn

)

– G(vn)
)

+

N

‖un‖ +
∫

RN

(


∗ f (un)un – F(un)
)}

≥ 
N

S
N
 +


N

‖u‖ +
∫

RN

(


∗ f (u)u – F(u)
)

=

N

S
N
 + I(u, ) ≥ 

N
S

N
 + B,

which is a contradiction to Lemma .. So u 
≡  and v ≡  do not occur. Similarly, u ≡ 
and v 
≡  do not occur. Therefore, u 
≡  and v 
≡ , i.e. (u, v) is a nontrivial solution to (.).
Similarly to the proof in Section , we get that (u, v) is a radial and positive least energy
solution of (.) with I(u, v) = B. �
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