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Abstract
We study the existence of solutions to a nonlinear fractional differential equation in
Hilbert spaces associated with three-point boundary conditions at resonance

x(0) = θ , Dα–1x(1) = ADα–1x(η)

by using Mawhin’s continuation theorem. We propose a new technique to improve
the conditions on A which have been used previously. In addition, a necessary and
sufficient condition for that the fractional differential operator is Fredholm with
zero-index is established, especially for the first time when the fractional differential
operator takes values in an arbitrary Hilbert space.
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1 Introduction
Fractional differential equations arise in various areas of physics and applied mathematics
and have recently become a powerful tool in modeling of many physical phenomena (for
instance, see [–] and the references therein). In this paper, we are concerned with the
existence of solutions to the following fractional three-point boundary value problem at
resonance:

⎧
⎨

⎩

Dαx(t) = f (t, x(t), Dα–x(t)), a.e. t ∈ (, ),  < α ≤ ,

x() = θ , Dα–x() = ADα–x(η),
(.)

where Dα is the Riemann-Liouville differential operator of order α; θ is zero element in a
Hilbert space H; η ∈ (, ) is a given constant; A ∈ L(H) is a bounded linear operator on
H such that

(A) I – A is a Fredholm operator with zero-index;

and f : [, ] ×H×H →H is a function satisfying the following assumptions:
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(A) f (·, x, y) is Lebesgue measurable on [, ] for every (x, y) ∈H×H;
(A) f (t, ·, ·) is continuous on H×H for almost every t ∈ [, ];
(A) for each bounded set � ⊂H×H, the function t �→ ϕ�(t) = sup{‖f (t, x, y)‖H : (x, y) ∈

�} is Lebesgue integrable on [, ], and the set {f (t, x, y) : (x, y) ∈ �} is relatively com-
pact in H, here ‖ · ‖H stands for the norm induced by the scalar product 〈·, ·〉 in H.

Problem (.) is usually written in the following form:

Lx = Nx, (.)

where L and N are operators from a Banach space X to another Banach space Y (here L is
linear). If L is invertible, or ker L = {}, (.) is called non-resonant problem. Otherwise, if
ker L is not a trivial space, then it is called resonant problem. For this problem, we focus on
an important class of resonant problems when L is a Fredholm operator with zero-index,
as a prerequisite for applying coincidence degree theory [].

Different from non-resonant problems being studied for a long time, the solvability of
resonant problems has been extensively studied for the last decade. The reason is that res-
onant problems are rather complicated due to the non-invertibility of L. Non-invertibility
leads to the difficulty of constructing a suitable continuous projection on a complement
of Im L. Due to the fact that constructing that projection becomes more difficult when the
dimension of ker L is large, most of works are investigated mainly for dim ker L = . We
refer the reader to [–] and to the references therein.

For the case that dim ker L can be arbitrary, recently in [], we use the Mawhin con-
tinuation theorem to investigate the existence of solutions for boundary value problems
(briefly, BVPs) at resonance. We consider the following three-point BVP:

⎧
⎨

⎩

x′′(t) = f (t, x(t), x′(t)) a.e. t ∈ (, )

x′() = , x() = Ax(η),
(.)

where A : Rn →R
n is a continuous linear operator satisfying

⎧
⎨

⎩

A = A, or

A = I (here I stands for the identity operator).
(.)

It seems that [] is one of premier papers on the case that dim ker L is arbitrary. Later,
problem (.) in [] was extended to fractional BVP (.) in []. Most recently, the result
in [] was generalized to an infinite-dimensional space l in []. We emphasize that
condition (.) is an essential condition for the techniques in [–], with the note that
in [] the condition is slightly different in order to adapt the boundary conditions.

In our new research [] condition (.) can be omitted completely thanks to the fruit-
ful features of a continuous linear operator on R

n which can be regarded as matrices. The
breakthrough results in [] allow us to ask the first question: For extending problem (.)
from a finite-dimensional space R

n to a Hilbert space H, is omitting condition (.) still
possible or not? The answer is no, for example, let A be the difference of an identity op-
erator and a finite-range operator, problem (.) is unsolvable via Mawhin’s continuation
theorem.
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Our next question is: What is the condition for a Hilbert space? In order to find the
suitable condition for a Hilbert space, we observe that there is no change in the proofs in
[–] if we replace (.) by the following more generalized assumption:

κ(I – A) is idempotent for κ ∈R \ {},

or equivalently,

(I – A) = κ–(I – A) for κ ∈R \ {}. (.)

Clearly, condition (.) can be derived from condition (.) by taking κ =  or κ = 
 . We

remark that condition (.) leads to some useful qualitative properties: Im(I – A) is closed
and ker(I – A) is isomorphic to the complement of Im(I – A). It suggests us to generalize
(.) to the condition for a Hilbert space as follows.

I – A is a Fredholm operator with zero-index on H, (.)

which is actually assumption (A) for operator A. We discover that in this paper condition
(.) is the best generalization on a Hilbert space in the following senses:

() Condition (.) is not only a sufficient condition but also a necessary condition for
that L = Dα is the Fredholm operator with zero-index.

() When H is finite-dimensional, (.) automatically holds, therefore the result in []
is a special case of our result in this paper.

() When H is infinite-dimensional, it is well known that the rank-nullity theorem no
longer holds for an operator A ∈L(H). Condition (.) helps us to overcome this
difficulty by providing another characterization of dimension in a Hilbert space, as
to be seen in (.).

() Condition (.) gives a unified approach and viewpoint for solving this kind of
BVPs, for dimH ≤ ∞ and L = Dα with  < α ≤ .

The structure of the paper is organized as follows. In Section , we introduce some nec-
essary background of fractional calculus as well as coincidence degree theory. In addition,
we establish some essential lemmas needed for our main result later. Section  is devoted
to presenting the statement and the proof of the main result. Finally, we give a specific
example to illustrate.

2 Preliminaries
2.1 Fractional calculus
In this subsection, we recall some definitions and results of the fractional calculus. See [,
, ] for more details.

Definition . Given f : [, ] →H and α > . Then

� The fractional integral of order α of the function f is given by

Iαf (t) :=


�(α)

∫ t


(t – s)α–f (s) ds for t > .
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� The Riemann-Liouville fractional derivative of order α of f is given by

Dαf (t) :=
dm

dtn

(
Im–αf

)
(t) =


�(m – α)

dm

dtm

∫ t


(t – s)m–α–f (s) ds for t > ,

where m = [α] + ,

provided that the terms on the right-hand side of the above equalities are pointwise de-
fined on [, ]. In the above expressions, the sign ‘

∫
’ denotes the Bochner integral.

For k ∈N, we denote by ACk([, ];H) the space of all functions f : [, ] →H which have
absolutely continuous derivative up to order k – . Set

AC
(
[, ];H

)
:= AC([, ];H

)
.

The following lemma concerning basic properties of fractional calculus is needed after-
ward. The proof can be found in [], Lemmas ., ., or [], Theorem ..

Lemma . Let ϕ ∈ L([, ];H) and α > , m = [α] + .
(i) The equality (DαIαϕ)(t) = ϕ(t) holds for almost every t ∈ [, ].

(ii) If Dα–mϕ ∈ ACm([, ];H), then

(
IαDαϕ

)
(t) = ϕ(t) –

m∑

j=

Dα–jϕ()
�(α – j + )

tα–j

for almost every t ∈ [, ].

2.2 Mawhin’s continuation theorem
Let X and Y be two Banach spaces.

Definition . A linear operator L : dom(L) ⊂ X → Y is called Fredholm operator with
zero-index if Im L is closed in Y and

codim Im L = dim ker L < ∞.

It is known that when L is a Fredholm operator with zero-index, there exist a projection
P on X and a projection Q on Y such that

ker L = Im P, Im L = ker Q.

Moreover, the operator LP defined as LP := L|dom(L)∩ker P is invertible. Let KP := L–
P and set

KP,Q := KP(I – Q),

called the generalized inverse of L. On the other hand, for isomorphism J : Im Q → ker L,
the operator KP,Q + JQ : Y → dom(L) is isomorphic. Moreover,

(KP,Q + JQ)–x =
(
L + J–P

)
x

for x ∈ dom(L).
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Definition . Suppose that L is a Fredholm operator with zero-index and � is a bounded
subset of X such that dom(L) ∩ � �= ∅. An operator N : X → Y is called L-compact on � if
the following two conditions hold:

(i) QN : � → Y is continuous and QN(�) is bounded in Y ;
(ii) KP,QN : � → X is completely continuous.

Let L be a Fredholm operator with zero-index and N be L-compact on �. It follows from
Mawhin’s equivalent theorem [] that the equation

Lx = Nx for x ∈ �

is equivalently converted into the fixed point equation

x = 	x for x ∈ �,

where 	 = P + (JQ + KP,QN) is a completely continuous operator. This can be solvable
thanks to the following theorem, called Mawhin’s continuation theorem.

Theorem . Assume that � is a bounded and open subset in X, and L is a Fredholm
operator with zero-index, and N is an L-compact operator on �. Additionally, suppose
that the following three assumptions hold:

(i) Lx �= λNx for x ∈ ∂� ∩ (dom(L)\ker L) and for λ ∈ (, );
(ii) QNx �=  for x ∈ ∂� ∩ ker L;

(iii) for any isomorphism J from Im Q to ker L,

degB(JQN|ker L,� ∩ ker L, ) �= ,

where Q : Y → Y is a projection given as above.
Then the equation Lx = Nx has a solution in � ∩ dom(L).

For a comprehensive treatment on the subject of the coincidence degree theory and
Mawhin’s continuation theorem as well, we refer the reader to [, , ].

Finally, we restate the following compactness criterion on the space of continuous func-
tions C(X, Y ) which is regarded as a generalization of the Arzela-Ascoli theorem [],
Section ...

Lemma . Let X be a compact topological space and Y be a metric space. A subset of
C(X, Y ) is relatively compact if and only if it is pointwise relatively compact and equicon-
tinuous.

2.3 Key lemmas
Let

X =
{

x ∈ C
(
[, ];H

)
: x(t) = Iα–

+ ϕ(t),ϕ ∈ C
(
[, ];H

)}

be the Banach space with the norm

‖x‖ = max
{‖x‖∞,

∥
∥Dα–x

∥
∥∞

}
,
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where ‖ · ‖∞ stands for the usual sup-norm on C([, ];H). Also, let Y = L([, ];H) be
the Banach space with the Lebesgue norm

‖y‖ =
∫ 



∥
∥y(t)

∥
∥
H dt.

Next we define a linear operator L : X → Y by

Lx = Dαx, (.)

in which

x ∈ dom(L) =
{

x = Iα–
+ ϕ ∈ X : ϕ ∈ AC

(
[, ];H

)
, x() = θ , Dα–x() = ADα–x(η)

}
.

Moreover, we define a (nonlinear) operator N : X → Y by

Nx(t) = f
(
t, x(t), Dα–x(t)

)
for almost every t ∈ [, ]. (.)

Clearly, (.) is equivalent to

Lx = Nx,

in which the operators L and N are defined by (.) and (.), respectively.

.. Fredholm property of the fractional differential operator L
We first note that if x ∈ dom(L), then Dαx ∈ Y and I–αx ∈ AC([, ];H). From Lemma .
and x() = θ , it follows that

x(t) = ctα– +
(
IαDαx

)
(t)

for every t ∈ [, ] and some constant element c ∈H. Moreover, in view of

Dα–x() = ADα–x(η),

we deduce that

T(c) = φ
(
Dαx

)
,

where
• T = I – A,
• φ : Y → H is the following bounded linear operator:

φ(y) =


�(α)

(

A
∫ η


y(t) dt –

∫ 


y(t) dt

)

for y ∈ Y . (.)

Thus, for convenience, a function x ∈ dom(L) will be represented equivalently as

x(t) = ctα– + Iαy(t) with T(c) = φ(y). (.)

Note that Dαx = y.
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Remark . Note that φ is a surjective map. Indeed, for each c ∈H, setting

y(t) =
�(α)(η – t)

 – η
c for t ∈ [, ],

we have φ(y) = c, by a straightforward computation.

Due to the definition of L and (.), by some simple calculations, we can indicate the
kernel and the image of L as follows:

ker L =
{

x ∈ X : x(t) = ctα– for c ∈ ker T
} ∼= ker T , (.)

and

Im L =
{

y ∈ Y : φ(y) ∈ Im T
}

= φ–(Im T). (.)

Now let us recall the definition of the Moore-Penrose inverse of linear operators. Suppose
that T is a linear operator on a Hilbert space. Then we call some linear operator T† the
Moore-Penrose inverse of T if

(i) T†TT† = T†;
(ii) TT†T = T ;

(iii) TT† and T†T are self-adjoint operators.
It is well known that if T is bounded and has closed range, then T† uniquely exists and it is
continuous. Moreover, TT† (resp. T†T ) is an orthogonal projection on Im T (resp. Im T†).
For more details, one can see [].

Lemma . Assume that T is a continuous operator with closed range. Then the following
two assertions are true.

(i) There exists a continuous projection Q : Y → Y such that

ker Q = Im L and Y = Im L ⊕ Im Q.

(ii) L is a Fredholm operator with zero-index if and only if so is T .

Proof (i) Define a map Q : Y → Y by setting, for y ∈ Y , that

Qy(t) = q
(
I – TT†

)
φ(y)tα– for t ∈ [, ], (.)

where q = �(α+)
ηα– is a real constant. It is clear that Q is a continuous linear operator. More-

over, Q is also a projection. Indeed, we observe that

(
I – TT†

)
A =

(
I – TT†

)

since

(
I – TT†

)
(I – A) =

(
I – TT†

)
T = T – TT†T = .
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Then, for every r ∈R, we have

(
I – TT†

)
(rA – I) = r

(
I – TT†

)
A –

(
I – TT†

)

= r
(
I – TT†

)
–

(
I – TT†

)

= (r – )
(
I – TT†

)
. (.)

From (.) and (.)-(.), it follows that

Q(Qy)(t) = q
(
I – TT†

)
φ(Qy)tα–

= q
(
I – TT†

)
(

q
(
I – TT†

) (ηαA – I)
α�(α)

φ(y)
)

tα–

= q
(
I – TT†

)
φ(y)tα–

= Qy(t)

for every t ∈ [, ]. Hence Q is a projection as asserted. On the other hand, we have

y ∈ ker Q ⇔ φ(y) ∈ ker
(
I – TT†

)

⇔ φ(y) ∈ Im
(
TT†

)

⇔ φ(y) ∈ Im T

⇔ y ∈ Im L,

due to the fact that TT† and (I – TT†) are projections and Im(TT†) = Im T . This means
that

ker Q = Im L,

and consequently, Y = Im L ⊕ Im Q.
(ii) To prove this part, we start with the observation that

Im Q =
{

y ∈ Y : y(t) = ctα–, t ∈ [, ] for c ∈ ker T†
}

. (.)

Indeed, since TT† is a projection and

ker
(
TT†

)
= ker T†,

the ‘⊆’ inclusion of (.) can be obtained easily. For the converse inclusion, let y(t) = ctα–

for c ∈ ker T†. Then, by the surjectivity of φ, there exists z ∈ Y such that qφ(z) = c. It
follows that

Qz(t) = q
(
I – TT†

)
φ(z)tα– =

(
I – TT†

)
ctα– = ctα– = y(t)

for every t ∈ [, ]. This shows that y ∈ Im Q.
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Now, by (.), we can deduce that Im Q, a complement of Im L in Y , is isomorphic to
ker T†. Besides, since Im T is closed, so is Im L = φ–(Im T), due to the continuity of φ. We
are to prove the main claim of this part. Using the fact that

H = Im
(
TT†

) ⊕ ker
(
TT†

)
= Im T ⊕ ker T†,

we can see that T is a Fredholm operator with zero-index if and only if

dim ker T† = dim ker T < ∞. (.)

This is clear to be a necessary and sufficient condition for which L is a Fredholm operator
with zero-index. Then the proof of lemma is complete. �

Remark . If (.) holds, we can give another expression of Q quite simpler than (.).
Specifically, we set

Qy(t) = q(I – κT)φ(y)tα–.

This also claims that the projection Q as such is in general not unique.

Remark . Lemma . will be no longer true in the general case that H is a Banach
space. If H is a Banach space rather than a Hilbert space, for this lemma to remain true,
we need to add one more assumption to this lemma. Additional assumption is that T has
the Moore-Penrose inverse T† ∈L(H).

Now, we define a linear operator P : X → X by

Px(t) =


�(α)
(
I – T†T

)
Dα–x()tα–, t ∈ [, ], x ∈ X. (.)

Note that P is the continuous operator on X. Moreover, the following lemma provides
some properties of P as well as KP .

Lemma . The following statements are true.
(i) The operator P in (.) is projection and satisfies that

ker L = Im P, X = ker P ⊕ ker L.

(ii) The map KP : Im L → dom(L) ∩ ker P is defined by

KPy(t) = T†φ(y)tα– + Iαy(t) for t ∈ [, ], (.)

satisfying

KP = L–
P and ‖KPy‖ ≤ C‖y‖,

where C = 
�(α) ( + ‖T†‖L(H)( + ‖A‖L(H))).
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Proof (i) We first notice that

⎧
⎨

⎩

Dα–(tα–)(t) = �(α),

Dα(tα–)(t) = 

for every t ∈ [, ]. Since (I – T†T) is a projection, then so is P, by a straightforward com-
putation. Furthermore, P is onto ker L, that is, Im P = ker L. Indeed, because the inclusion
Im P ⊂ ker L can be proved simply, we need only prove the converse one: ker L ⊂ Im P.
Suppose that x(t) = ctα– ∈ ker L, where

c ∈ ker T = Im
(
I – T†T

)
,

or

c =
(
I – T†T

)
c for some c ∈H.

Then, by again using Dα–(tα–)(t) = �(α), we have

Px(t) =
(
I – T†T

)
ctα– =

(
I – T†T

)ctα– =
(
I – T†T

)
ctα– = x(t).

This implies x ∈ Im P. As a consequence, we obtain X = ker P ⊕ ker L.
(ii) Assume that y ∈ Im L. Then φ(y) = Tc for some c ∈ H . From (.)-(.), we have

PKPy(t) =
(
I – T†T

)
T†φ(y) =

(
I – T†T

)
T†Tc =  for all t ∈ [, ],

that means KPy ∈ ker P. Moreover, we get KPy ∈ dom(L) due to the fact that

T
(
T†φ(y)

)
=

(
TT†

)
(Tc) = Tc = φ(y)

combined with (.). Hence KP is well defined.
We next show that KP is the inverse operator of LP . Clearly, it suffices to show that KP is

a left-inverse of LP . Let x ∈ dom(L) ∩ ker P, then

x(t) = ctα– + IαLx(t),

where

T(c) = φ(Lx) for c ∈ ker
(
I – T†T

)
.

Thus

KPLPx(t) = T†φ(Lx)tα– + IαLx(t)

= T†(Tc)tα– + IαLx(t)

= ctα– + IαLx(t)

= x(t), ∀t ∈ [, ].
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The rest of the proof regarding the continuity of KP is quite simple. Noting from (.)
that

(
Dα–KPy

)
(t) = �(α)T†φ(y) +

∫ t


y(s) ds for all t ∈ [, ] (.)

and combining (.), (.)-(.) together, we immediately establish the following esti-
mates:

• ‖φ(y)‖H ≤ 
�(α) ( + ‖A‖L(H))‖y‖,

• ‖KPy‖∞ ≤ 
�(α) ( + ‖T†‖L(H) + ‖A‖L(H)‖T†‖L(H))‖y‖,

• ‖Dα–(KPy)‖∞ ≤ ( + ‖T†‖L(H) + ‖A‖L(H)‖T†‖L(H))‖y‖.
These inequalities lead to ‖KPy‖ ≤ C‖y‖, where C = 

�(α) ( + ‖T†‖L(H)( + ‖A‖L(H))) and
thus finish the proof of the lemma. �

.. L-complete continuity of the nonlinear operator N
Lemma . The operator N is (.) is L-compact.

Proof Assume that � ⊂ X is bounded. By assumption (A) on f , there is a function ϕ� ∈ Y
such that

∥
∥Nx(t)

∥
∥
H =

∥
∥f

(
t, x(t), Dα–x(t)

)∥
∥
H ≤ ϕ�(t) (.)

for almost every t ∈ [, ] and for all x ∈ �. It follows from the equality

QNx(t) = q
(
I – TT†

)
φ(Nx)tα–

and (.) and (.) that QN(�) is bounded. In addition, the continuity of QN is deduced
thanks to the Lebesgue dominated convergence theorem.

Next we prove that KP,QN is completely continuous. Again using the Lebesgue domi-
nated convergence theorem, we can show that KP,QN is continuous. It suffices to prove
that KP,QN is compact. For this purpose, we first observe that, for every x ∈ � and for
every  ≤ t < t ≤ ,

∥
∥KP,QNx(t) – KP,QNx(t)

∥
∥
H

≤ 
�(α)

∫ t



∣
∣(t – s)α– – (t – s)α–∣∣

∥
∥Nx(s)

∥
∥
H ds

+


�(α)

∫ t

t

(t – s)α–∥∥Nx(s)
∥
∥
H ds

+
∥
∥T†φ(Nx)

∥
∥
H|t – t|α–

+
|q|�(α)
�(α)

∥
∥φ(Nx)

∥
∥
H

∣
∣tα–

 – tα–


∣
∣. (.)

Using the inequality that

∣
∣ap – bp∣∣ ≤ |a – b|p for all a, b ≥  and  < p ≤ ,
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we imply from (.) that

∥
∥KP,QNx(t) – KP,QNx(t)

∥
∥
H

≤ 
�(α)

|t – t|α–‖ϕ�‖ +


�(α)
(
 + ‖A‖L(H)

)∥
∥T†

∥
∥
L(H)|t – t|α–‖ϕ�‖

+
|q|

�(α)
(
 + ‖A‖L(H)

)∥
∥T†

∥
∥
L(H)

∣
∣tα–

 – tα–


∣
∣‖ϕ�‖. (.)

In addition, due to (.) we have

∥
∥Dα–(KP,QNx)(t) – Dα–(KP,QNx)(t)

∥
∥
H ≤

∫ t

t

ϕ�(s) ds + C‖ϕ�‖
∣
∣tα

 – tα

∣
∣. (.)

These two estimates (.), (.) show that the families KP,QN(�) and Dα–KP,QN(�) are
equicontinuous in C([, ];H).

On the other hand, in view of (A), the set {Nx(t) : x ∈ �} is relatively compact in H
almost all t ∈ [, ]. Then, due to the Lebesgue dominated convergence theorem, we can
prove that {KP,QNx(t) : x ∈ �} and {Dα–KP,QNx(t) : x ∈ �} are relatively compact in H
for every t ∈ [, ]. Therefore, Lemma . guarantees that KP,QN(�) is relatively compact
in X. This means that the operator KP,QN is compact. The lemma is then proved. �

3 Main result
The main result of this paper is the following theorem.

Theorem . Let (A)-(A) hold, and let the following assumptions (B)-(B) be satisfied.
(B) There exist positive real functions a, b, c ∈ L[, ] with ( 

�(α) + C)(‖a‖L + ‖b‖L ) < 
such that

∥
∥f (t, x, y)

∥
∥
H ≤ a(t)‖x‖H + b(t)‖y‖H + c(t) (.)

for almost every t ∈ [, ], for every (x, y) ∈ H × H , with constant C given in
Lemma ..

(B) There is a constant  >  such that if x ∈ dom(L) and mint∈[,] ‖Dα–x(t)‖H > ,
then

∫ 

η

f
(
t, x(t), Dα–x(t)

)
dt /∈ Im T . (.)

(B) There is a constant  >  together with an isomorphism J : Im Q → ker L satisfying
either

〈
c, JQN

(
ctα–)〉 ≥ , (.)

or

〈
c, JQN

(
ctα–)〉 ≤  (.)

for every c ∈ ker T satisfying ‖c‖H > , and for some t ∈ (, ].
Then problem (.) has at least one solution in X.
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The proof of the theorem needs several auxiliary results. We present them first, in the
next three lemmas.

Lemma . Let � = {x ∈ dom(L) \ ker L : Lx = λNx,  < λ ≤ }. Then � is a bounded
subset in X.

Proof Assume x ∈ �, so Lx = λNx for some  < λ ≤ . We have

Nx =

λ

Lx ∈ Im L,

then, by (.), we have φ(Nx) ∈ Im T . Therefore

∫ 

η

Nx(t) dt = –�(α)φ(Nx) – T
(∫ η


Nx(t) dt

)

∈ Im T .

It follows from (B) that ‖Dα–x(s)‖H ≤  for some s ∈ [, ]. We thus obtain

∥
∥Dα–x()

∥
∥
H ≤ ∥

∥Dα–x(s)
∥
∥
H +

∥
∥
∥
∥

∫ s


Dαx(t) dt

∥
∥
∥
∥
H

≤  + ‖Lx‖ ≤  + ‖Nx‖, (.)

and hence

‖Px‖ ≤ 
�(α)

∥
∥Dα–x()

∥
∥
H ≤ 

�(α)
(
 + ‖Nx‖

)
. (.)

Furthermore, since P is the projection on X, (IdX – P)x ∈ dom(L) ∩ ker P, we have

∥
∥(IdX – P)x

∥
∥ =

∥
∥KPL(IdX – P)x

∥
∥ ≤ ‖KPLx‖ ≤ C‖Nx‖, (.)

where constant C in Lemma . and IdX stands for the identity mapping on X. Combining
(.)-(.) yields

‖x‖ =
∥
∥Px + (IdX – P)x

∥
∥ ≤ ‖Px‖ +

∥
∥(IdX – P)x

∥
∥

≤ 

�(α)
+

(


�(α)
+ C

)

‖Nx‖.

Besides, (B) gives us

‖Nx‖ =
∫ 



∥
∥f

(
t, x(t), Dα–x(t)

)∥
∥
H dt

≤ ‖a‖L‖x‖∞ + ‖b‖L
∥
∥Dα–u

∥
∥∞ + ‖c‖L

≤ (‖a‖L + ‖b‖L
)‖x‖ + ‖c‖L .

Thus

‖x‖ ≤


�(α) + ( 
�(α) + C)‖c‖L

 – ( 
�(α) + C)(‖a‖L + ‖b‖L )

,

that is, � is bounded. The proof is complete. �
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Lemma . Let � = {x ∈ ker L : Nx ∈ Im L}. Then � is a bounded subset in X.

Proof Assume x ∈ �. Then Nx ∈ Im L and there is some c ∈ ker T for which x(t) = ctα–.
Similarly, arguing as in the proof of Lemma ., we also have ‖Dα–x(t)‖H ≤  for some
s ∈ [, ]. This leads to ‖c‖H ≤ 

�(α) , and hence

‖x‖ = ‖x‖∞ = ‖c‖H ≤ 

�(α)
,

that is, � is bounded, or the proof is complete. �

Lemma . Setting

�+
 =

{
x ∈ ker L : λx + ( – λ)JQNx = θ ,  ≤ λ ≤ 

}

and

�–
 =

{
x ∈ ker L : –λx + ( – λ)JQNx = θ ,  ≤ λ ≤ 

}
,

we have
(i) The set �+ is bounded in X if (.) holds.

(ii) The set �– is bounded in X if (.) holds.

Proof (i) Assume x ∈ �+
 . Then x(t) = ctα– for some c ∈ ker T and

( – λ)JQNx(t) = –λx(t) for every t ∈ [, ], for someλ ∈ [, ].

This deduces for the case λ =  that Nx ∈ ker(JQ) = ker Q = Im L, then x ∈ �. Due to
Lemma ., ‖x‖ is bounded.

For the case λ > , we argue by contradiction. Suppose that ‖c‖H > . Then, by (.),
there exists t >  for which

 ≤ ( – λ)
〈
c, JQN

(
ctα–)〉 =

〈
c, –λctα–〉 = –λtα–‖c‖

H < ,

this cannot happen. Hence, we have ‖x‖ = ‖x‖∞ = ‖c‖H ≤ , or �–
 is bounded.

(ii) Similarly, the boundedness of �+
 is established. The lemma is proved. �

Now we focus on proving Theorem ..

Proof of Theorem . Our purpose is to apply Theorem . by verifying all its conditions
(i)-(iii). Firstly, we set � is a bounded and open subset in X for which

⋃
i= �i ⊂ �, where

� =

⎧
⎨

⎩

�+
 if (.) holds,

�–
 if (.) holds.

Simply, assumption (i) and assumption (ii) in Theorem . are satisfied thanks to
Lemma . and Lemma .. It is sufficient to check if assumption (iii) also holds. To do
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this, we use the Brouwer degree property of the invariance with a continuous homotopy.
Namely, consider a homotopy Hλ : X → X defined by

Hλ(x) = ±λx + ( – λ)JQNx for λ ∈ [, ],

in which J : Im Q → ker L is isomorphic assumed in (B). Lemma . gives us that

Hλ(x) �=  for all x ∈ ker L ∩ ∂�, for all λ ∈ [, ].

Therefore,

deg(JQN|ker L,� ∩ ker L, ) = deg(H,� ∩ ker L, )

= deg(H,� ∩ ker L, )

= deg(±Id,� ∩ ker L, )

= ± �= .

Hence, (iii) holds as claimed. The proof of the theorem is complete. �

Remark . If H is a Banach space, assumption (B) needs to be slightly modified. Pre-
cisely, two inequalities (.), (.) are respectively generalized as

〈
c̃, JQN

(
ctα–)〉 ≥ 

and

〈
c̃, JQN

(
ctα–)〉 ≤ ,

in which c̃ ∈H′ (the dual space of H) with 〈c̃, c〉 = ‖c‖
H, and 〈·, ·〉 now stands for the scalar

product for the duality H′, H. Then the proof of Lemma . is modified correspondingly;
the result of Theorem . still holds.

4 Example and discussion
This section is to provide one illustrative example of Theorem .. Before presenting the
example, we should note that giving such a significant example is a challenging task in the
case that H is infinite dimensional. It is caused by two major reasons. The first one is that
it is not trivial to give a suitable nonlinear function f in an infinite dimensional space. The
second one, which is more difficult to overcome, is that so far there has been no effective
method to find the Moore-Penrose inverse of a general bounded linear operator on Hilbert
spaces or of a Fredholm operator with zero-index. For instance, some recent works [,
] for the first time give the examples in an infinite dimensional space. However, to the
best of our knowledge, these examples are still controversial.

Indeed, in [], Section , and also in [], Section , for the case H = l, there is a
gap in setting the expression of f . Namely, the function f(t, u, v) in [], Section , is not
continuous with respect to the third variable at points which ‖v‖l = ‖(yi)∞i=‖l ≥  such
that y = . This means that f is not a Carathéodory function, one assumption must be
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satisfied. Moreover, in [], Section , finding the Moore-Penrose inverse of M is not
much helpful because the given operator M does not need to be Fredholm with zero-
index as a prerequisite. This is derived from another gap in [], Lemma ., that the
condition on A is not sufficient to conclude that Im Q = ker L.

In what follows, we give an example for the case that H is finite dimensional. The exam-
ple in an infinite dimensional space would be presented in our future research with more
careful consideration.

Example . Consider the existence of solutions to the following fractional differential
equations:

D/
+

(
x

x

)

(t) =

(
t+
 (|x(t)| + |x(t)|) + t+

 (|D/
+ x(t)| + |D/

+ x(t)|) +
√

t + 
t+
 (x(t) + x(t)) + t+

 (D/
+ x(t) + D/

+ x(t)) +
√

t+


)

(.)

subject to

(
x

x

)

() =

(



)

and D/
+

(
x

x

)

() =

[
 –
 –

]

D/
+

(
x

x

)(



)

. (.)

Set α = 
 , η = 

 ,

A =

[
 –
 –

]

,

and define f : [, ] ×R
 ×R

 →R
 by setting

f (t, x, y) =
(
f(t, x, y), f(t, x, y)

)
, (.)

where f, f : [, ] ×R
 ×R

 →R are functions given by

f(t, x, y) =
t + 


(|x| + |x|

)
+

t + 


(|y| + |y|
)

+
√

t +  (.)

and

f(t, x, y) =
t + 


(x + x) +

t + 


(y + y) +
√

t + 


(.)

for t ∈ [, ] and x = (x, x), y = (y, y) ∈ R
. Then problem (.)-(.) becomes problem

(.). Our purpose is to apply Theorem . in order to establish the existent result of (.)-
(.).

It is clear that (A)-(A) are satisfied. We need to verify (B)-(B). From (.)-(.) we
have

∥
∥f (t, x, y)

∥
∥
R ≤ a(t)‖x‖R + b(t)‖y‖R + c(t)

for every  ≤ t ≤  and for every x, y ∈ R
, in which

a(t) =
√

(t + )


, b(t) =

√

(t + )


, c(t) =


√

t + .
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Moreover, some direct calculations give us

T =

[
– 
– 

]

and T† =

[
– 

 – 








]

.

It follows that

(


�(α)
+ C

)
(‖a‖L + ‖b‖L

) ≈ . < .

Hence, (B) holds. On the other hand, observe that

f
(
t, x(t), D/

+ x(t)
)

> f
(
t, x(t), D/

+ x(t)
)
, ∀t ∈ [, ],

for all x ∈ dom(L). This implies that

∫ 

η

f
(
t, x(t), D/

+ x(t)
)

dt /∈ Im T

due to the fact that Im T = 〈(, )〉 = {(c, c) : c ∈R}; that is, (B) holds. Finally, to check (B)
we see that

ker L =
{

x : [, ] →R
 : x(t) = c

√
t(, ), t ∈ [, ], c ∈R

}

and

Im Q =
{

y : [, ] →R
 : y(t) = c

√
t(, –), t ∈ [, ], c ∈R

}
,

and J : Im Q → ker L isomorphism defined as

(Jz)(t) =

[
 
 

]

z(t), z ∈ Im Q.

Thus, we get

JQ(z)(t) =

√

π
√

t

√

 – 

[
 –
 –

]

φ(z) (.)

for all z ∈ L([, ],R). By ker T = 〈(, )〉, suppose that γ = (a, a) ∈ ker T for some a ∈R.
Then

N
(
γ t/)(t) =

[
f(t,γ t/,

√
π

 γ )
f(t,γ t/,

√
π

 γ )

]

=
(



(
t + 

)√
t +

√
π


(
t + 

)
)[

|a|
a

]

+
√

t + 


[



]

,
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and hence
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ /
 N(γ t/)(t) dt = ( 

√


 + 
√

π

 )

⎡

⎣
|a|
a

⎤

⎦ + 
√

–


⎡

⎣




⎤

⎦ ,

∫ 
 N(γ t/)(t) dt = ( 

 + 
√

π

 )

⎡

⎣
|a|
a

⎤

⎦ + 
√

–


⎡

⎣




⎤

⎦ .

(.)

It follows from (.) and (.) that

φ
(
N

(
γ t/))

=


�(α)

(

A
∫ /


N

(
γ t/)(t) dt –

∫ 


N

(
γ t/)(t) dt

)

=
√
π

[
( 

√


 – 
 + 

√
π

 )|a| – ( 
√


 + 

√
π

 )a – 
√


 + 

√
+


( 
√


 + 

√
π

 )|a| – ( 
√


 + 

√
π

 + 
 )a + 

√


 –
√

 + 

]

. (.)

Combining (.) and (.), we obtain

JQN
(
γ t/) =

√
t

(
√

 – )
(
( – 

√
 + 

√
π )

(
a – |a|) + 

√


+ 
√

 – 
)
[




]

.

Therefore,

〈
γ , JQN

(
γ tα–)〉 = θ (t)

[
( – 

√
 + 

√
π )

(
a – |a|a)

+ (
√

 + 
√

 – )a
]
,

where θ (t) = 
√

t
(

√
–) ≤  for every  ≤ t ≤ . This deduces that 〈γ , JQN(γ tα–)〉 ≤  for

all t ∈ [, ], for |a| large enough. Hence, (B) holds. Problem (.)-(.) thus has at least
one solution.

Remark . We should comment on the computation of the Moore-Penrose inverse ma-
trix T† in the above example since this step is crucial. Basically, the common method
for computing the Moore-Penrose inverse of matrix is the singular value decomposition
(SVD) method (see []). This method is accurate but time-intensive since it requires a
large amount of computational resources, especially in the case of large scale matrix. An-
other approach for computing the Moore-Penrose inverse of matrix has been proposed
recently, i.e., the method based on Tensor-product matrix (see []). The new method
can be applied for rectangular matrix with full-rank and square matrix with rank-deficient
only. However, the method works well compared to SVD method in some aspects: larger
dimension matrix and less time-consuming.

5 Conclusions
In this work, we have established an existence result for the class of fractional boundary
value problems with a general resonant condition in Hilbert spaces. We have provided a
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sufficient and necessary condition for which some Riemann-Liouville fractional differen-
tial operators associated with three-point boundary condition are Fredholm with zero-
index. This means that we have handled the problem with a wide range of resonant con-
ditions in which Mawhin’s continuation theorem can be applied. Our result is a natural
generalization of some recent ones [–].
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