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Abstract
This paper is mainly devoted to studying one kind of the second order differential
equation. Under periodic-integrable boundary value condition, the existence of the
solutions of this equation is discussed by the method of the operator theory and the
Schauder fixed point theorem.
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1 Introduction and the main results
Recently, the existence of solutions of ordinary differential equation with the periodic-
integral boundary value conditions has been studied in some articles [–]. In [] existence
and uniqueness of solutions of second order periodic-integrable boundary value problems
are discussed by using the lemma on bilinear forms and Schauder’s fixed point theorem.
In [] Cong et al. obtained existence and uniqueness of periodic solutions for (n + )th
order differential equations. In [] the existence of solutions has been presented for the
following second order differential equation:

(
p(t)x′)′ + f (t, x) = .

Based on the above work, the purpose of this paper is to study the following periodic-
integrable boundary value problem of the second order differential equations (denoted as
PIBVP for short):

x′′ = f
(
t, x, x′),

x() = x(π ),
∫ π


x(s) ds = ,

()

where f : [, π ] × R −→ R is continuous. We need the solution of PIBVP (). To this aim,
we introduce the following four assumptions.
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Assumption A There exist two continuous functions a(t) and b(t), and a nonnegative
constant M, such that

 ≤ a(t) ≤ f (t, x, y)
x

≤ b(t), ()

for any (t, x, y) with |x| ≥ M and (t, y) ∈ [, π ] × R.

Assumption A There exist two nonnegative constants M and M such that

∣∣
∣∣
f (t, x, y)

y

∣∣
∣∣ ≤ M, ()

for any (t, x) ∈ [, π ] × R whereas |y| ≥ M.

Assumption A There exist two continuous functions α(t) and β(t) such that

 ≤ α(t) ≤ fx(t, x, y) ≤ β(t), ()

for any (t, x, y) ∈ [, π ] × R.

Assumption A There exists a positive integer M, such that, for all t ∈ [, π ] and (x, y) ∈
R,

∣∣fy(t, x, y)
∣∣ ≤ M. ()

We can now state our two main results by the following theorems.

Theorem  If Assumptions A and A hold, then the PIBVP () has at least one solution.

Theorem  If Assumptions A and A hold, then the PIBVP () has a unique solution.

In Section , we introduce two lemmas which will be used in later sections. In Section ,
the linear problem will be discussed by the theory of ordinary differential equation, thus
the uniqueness of solutions of linear equations is proved. In Sections  and , we apply the
conclusions in Sections  and  and Schauder’s fixed point theorem to proving Theorems 
and . In Section , as applications of the main results, we introduce two examples.

2 Preliminary
Let us first state some lemmas which will be used in the proof of the main results.

Lemma  Let x(t) be a continuous and differentiable function, and

x() = x(π ),
∫ π


x(t) dt = .

Then

∫ π


x(t) dt ≤

∫ π



(
x′(t)

) dt.
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Proof Expand x(t) as a Fourier series and substitute the expressions into the integrals.
Thus, the proof is completed. �

Define

g(t, x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (t,x,y)
x , |x| ≥ M,

f (t,M,y)
M

,  < x < M,
–f (t,–M,y)

M
, –M < x < ,

a(t)+b(t)
 , x = .

()

From Assumption A, we have a ≤ g ≤ b for all (t, x, y) ∈ [, π ] × R. Let

h(t, x, y) = f (t, x, y) – xg(t, x, y). ()

Denote

O =
{

(t, x, y) ∈ [, π ] × R||x| ≥ M
}

.

It is easy to see

h(t, x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (t, x, y) ∈O,

f (t, x, y) – x
M

f (t, M, y),  < x < M,

f (t, x, y) + x
M

f (t, –M, y), –M < x < ,

f (t, , y), x = .

()

Likewise, we define

g(t, x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h(t,x,y)
y , |y| ≥ M,

h(t,x,M)
M

,  < y < M,
–h(t,x,–M)

M
, –M < y < ,

, y = .

()

From Assumption A and (), we have |g| ≤ M for all (t, x, y) ∈ [, π ] × R. Let

h(t, x, y) = h(t, x, y) – yg(t, x, y). ()

Denote

O =
{

(t, x, y) ∈ [, π ] × R||y| ≥ M
}

.

It is obvious that

h(t, x, y)
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (t, x, y) ∈O ∪O,

f (t, x, y) – x
M

f (t, M, y)  ≤ x ≤ M

– y
M

f (t, x, M) + xy
MM

f (t, M, M),  ≤ y ≤ M,

f (t, x, y) + x
M

f (t, –M, y) –M ≤ x ≤ 

– y
M

f (t, x, M) – xy
MM

f (t, –M, M),  ≤ y ≤ M,

f (t, x, y) – x
M

f (t, M, y)  ≤ x ≤ M

+ y
M

f (t, x, –M) – xy
MM

f (t, M, –M), –M ≤ y ≤ ,

f (t, x, y) + x
M

f (t, –M, y) –M ≤ x ≤ 

+ y
M

f (t, x, –M) + xy
MM

f (t, –M, –M), –M ≤ y ≤ .

()

From (), we conclude

∣∣h(t, x, y)
∣∣ ≤  sup

≤t≤π ,|x|≤M,|y|≤M

∣∣f (t, x, y)
∣∣. ()

From the above steps, we can deduce the following lemma.

Lemma  The function f is denoted by f (t, x, y) = h(t, x, y)+xg(t, x, y)+yg(t, x, y), whereas
|h(t, x, y)| ≤  sup

≤t≤π ,|x|≤M,|y|≤M
|f (t, x, y)|, a ≤ g ≤ b and |g| ≤ M.

3 Linear equation
Consider the following linear periodic-integrable boundary value problem:

x′′ = ĝ(t)x′ + ĝ(t)x + ĥ(t),

x() = x(π ),
∫ π


x(s) ds = ,

()

where ĥ, ĝ and ĝ satisfy the inequalities in Lemma . Furthermore, we consider the cor-
responding homogeneous linear equation.

Lemma  If ĝ(t) ≥  and ĝ(t) �≡  on [, π ], then the following problem:

x′′ = ĝ(t)x′ + ĝ(t)x,

x() = x(π ),
∫ π


x(s) ds = ,

()

has only a trivial solution.

Proof Assume that there exists a nontrivial solution x(t), that is, x(t) �= . From the as-
sumption of ĝ(t), we known that x(t) is not constant. So we assert that there exist t and
t, such that t < t, and we have

x(t) >  for all t ∈ (t, t), x′(t) >  and x′(t) = .

Now we prove it. There are two cases:
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Case . x() = η < . Let t = inf{t|t ∈ [, π ] and x(t) = }, which implies that x(t) =
 and x′(t) > . Define t� = inf{t|t ∈ (t, π ] and x(t) = }. If t� = t, then there will exist
the sequences {ti}, x(ti) =  as ti → t (i → ∞). By Rolle’s theorem, there is a number ξ i in
[ti–, ti], such that x′(ξ i) = , meanwhile ξ i → t, so x′(t) = , a contradiction. Therefore
t is the first zero point and t� is the next zero point. By the periodic-integral boundary
conditions, there exists t ∈ [t, t�], such that x(t) > , for t ∈ (t, t), x′(t) = .

Case . x() = η > . By the linear property of the problem, –x(t) is also a solution. Thus,
the case is translated into Case .

Multiplying both sides of () by exp{–∫ t
t

ĝ(s) ds} and integrating from t and t, we
derive

 > –x
′
(t) =

∫ t

t

ĝ(t)x(t)
{

exp
∫ t

t

ĝ(s) ds
}

dt ≥ ,

which leads to a contradiction. This proof of Lemma  is completed. �

Lemma  Problem () has a unique solution.

Proof Let x(t) and x(t) be two linear independent solutions of the linear homogeneous
equation x′′ = ĝ(t)x′ + ĝ(t)x, and x = cx(t) + cx(t) is its general solution. Then, by the
PIBVP condition, we have

⎧
⎨

⎩
((x() – x(π ))c + (x() – x(π ))c = ,
∫ π

 x(s) dsc +
∫ π

 x(s) dsc = .

By Lemma , Problem () has only a trivial solution, which implies

∣∣
∣∣
∣
x() – x(π ) x() – x(π )
∫ π

 x(s) ds
∫ π

 x(s) ds

∣∣
∣∣
∣
�= . ()

Assume that x∗(t) is a special solution of equation x′′ = ĝ(t)x′ + ĝ(t)x + ĥ(t), and x =
cx(t) + cx(t) + x∗(t) is its general solution. By the PIBVP condition, we have

⎧
⎨

⎩
((x() – x(π ))c + (x() – x(π ))c = –x∗() + x∗(π ),
∫ π

 x(s) dsc +
∫ π

 x(s) dsc =
∫ π

 x∗(s) ds.
()

Constants c and c are unique because of () and (), and therefore Problem () has
only one solution. The proof is completed. �

4 The proof of Theorem 1
In this section, we will investigate the existence of the solution of Theorem  by the
Schauder fixed point theorem. Define

C =
{

x
∣
∣∣x ∈ C([, π ], R

)
, x() = x(π ),

∫ π


x(s) ds = 

}
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with the norm ‖ • ‖ defined as follows:

‖x‖ = max
t∈[,π ]

∣
∣x(t)

∣
∣ + max

t∈[,π ]

∣
∣x′(t)

∣
∣.

It is clear that C is a Banach space.
Applying Lemma , for any x ∈ C , consider

y′′ = h
(
t, x, x′) + yg

(
t, x, x′) + y′g

(
t, x, x′),

y() = y(π ),
∫ π


y(s) ds = .

()

Define the linear operator P : C → C . For each x ∈ C , P[x](t) = y(t) is a solution of ().
Thus the existence of the solution of () is equivalent to the existence of the fixed point
of P in Banach space C . We will prove that P is continuous and compact, and P(C) is a
bounded subset of C . The proof is divided into three steps.

Step : P is continuous. For given any convergent sequence {xk} ⊂ C , we have xk → x

as k → ∞. Let yk = Pxk , then

y′′
k = h

(
t, xk , x′

k
)

+ ykg
(
t, xk , x′

k
)

+ y′
kg

(
t, xk , x′

k
)
,

yk() = yk(π ),
∫ π


yk(s) ds = .

()

We assert that {yk} is the bounded sequence in C . Otherwise, there exists a subsequence
of {ykj}, such that ‖ykj‖ → ∞ as j → ∞. Let ωkj =

ykj
‖ykj ‖

. For {ωkj} ⊂ C , then ‖ωkj‖ = . By
Lemma  we have

ω′′
kj

=
h(t, xkj , x′

kj
)

‖ykj‖
+ ωkj g

(
t, xkj , x′

kj

)
+ ω′

kj
g

(
t, xkj , x′

kj

)
,

ωkj () = ωkj (π ),
∫ π


ωkj (s) ds = .

()

So ‖ω′′
kj
‖ ≤ M + max

t∈[,π ]
b(t) + C < ∞, where C is a constant. Thus {ω′′

kj
} is bounded. Ob-

viously,

ω′
kj

(t) = ω′
kj

() +
∫ t


ω′′

kj
(s) ds, ()

ωkj (t) = ωkj () +
∫ t


ω′

kj
(s) ds. ()

Hence, {ω′
kj
} and {ωkj} are both uniformly family bounded degree of equicontinuous func-

tions. By the Ascoli-Arzela theorem, {ωkj} and {ω′
kj
} contain a uniformly convergent sub-

sequence, respectively. For convenience, we use the same notation and we have

ωkj

−→ ω, ω′
kj

−→ υ.
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From () and (), we obtain

ω′
kj

= ω′
kj

() +
∫ t


ω′′

kj
(s) ds

= ω′
kj

() +
∫ t



(h(t, xkj , x′
kj

)

‖ykj‖
+ ωkj g

(
s, xkj , x′

kj

)
+ ω′

kj
g

(
s, xkj , x′

kj

)
)

ds. ()

Let j → ∞. From () and (), we obtain

ω(t) = ω() +
∫ t


υ(s) ds,

υ = υ() +
∫ t


ωg

(
s, x, x′


)

+ υg
(
s, x, x′


)
) ds.

Hence,

ω′′
 = ωg

(
t, x, x′


)

+ ω′
g

(
t, x, x′


)
,

ω() = ω(π ),
∫ π


ω(s) ds = .

By Lemma , we can conclude that ω ≡ , and conflicts with ‖ω‖ = .
Hence, from (), we derive {y′′

k} is bounded. So {yk} and {y′
k} are both uniformly family

bounded degree of equicontinuous functions. By the Ascoli-Arzela theorem, {yk} and {y′
k}

contain a uniformly convergent subsequence, respectively. For the sake of convenience,
we use the same notation, such that

yk
−→ y, y′

k
−→ υ.

Thus,

y′
k = y′

k() +
∫ t


y′′

k (s) ds

= y′
k() +

∫ t



(
h(t, xk , x′

k)
‖yk‖ + ykg

(
s, xk , x′

k
)

+ y′
kg

(
s, xk , x′

k
)
)

ds, ()

yk() = yk(π ),
∫ π


yk(s) ds = , yk = yk() +

∫ t


y′

k(s) ds. ()

Let k → ∞. From () and (), we obtain

y′′
 = h

(
t, x, x′


)

+ yg
(
t, x, x′


)

+ y′
g

(
t, x, x′


)
,

y() = y(π ),
∫ π


y(s) ds = .

Hence, by the uniqueness we know y = Px. Thus the operator T is continuous.
Step : P is compact. For any bounded set S ⊂ C , we assert that P(S) is the bounded set

in C . If not, similar to the proof of step , we will be led to a contradiction. For any x ∈ S,
y = Px is defined by (). Because |y′|, |y|, |fx| and |fx′ | are all bounded, proceeding as the
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proof of step , we show that {yk} and {y′
k} are both uniformly family bounded degree of

equicontinuous. By the Ascoli-Arzela theorem, P is a compact operator.
Step : P(C) is a bounded set. If not, there exists a subsequence {xk}, k = , , . . . , such

that ‖P(xk)‖ → ∞ as k → ∞. Let yk = Pxk , and Problem (.) holds. Let ωk = yk
‖yk‖ , then

‖ωk‖ =  for {ωk} ⊂ C , and (), (), () and () hold. From step , we know {ωk} and
{ω′

k} are both uniformly family bounded degree of equicontinuous functions and contain
a uniformly convergent subsequence, respectively. For the sake of convenience, we use the
same notation, such that

ωk
−→ ω, ω′

k
−→ υ, ‖ω‖ = .

The sequences g(t, xk , x′
k) and g(t, xk , x′

k) are both bounded set in L[, π ] and contain a
weakly convergent subsequence, respectively, such that

g
(
t, xk , x′

k
) ω−→ g(t), g

(
t, xk , x′

k
) ω−→ g(t).

Obviously, as k → ∞,

a(t) ≤ g(t) ≤ b(t),
∣∣g(t)

∣∣ ≤ M, a.e. t ∈ [, π ].

From () and (), for a.e. t ∈ [, π ], we have

v′
(t) = g(t)v(t) + g(t)ω(t), ω′

(t) = v(t).

Hence,

ω′′
(t) = g(t)ω′

(t) + g(t)ω(t),

ω() = ω(π ),
∫ π


ω(s) ds = .

We obtain ω ≡ , this contradicts ‖ω‖ = . Then there exists a constant K > , such that
‖Px‖ ≤ K , where x ∈ C .

Let E = {x ∈ C|‖x‖ ≤ K}. By the fixed point theorem, P : E → E has at least one fixed
point and thus the PIBVP () has at least one solution. The proof of Theorem  is com-
pleted.

5 The proof of Theorem 2
Firstly, we consider the uniqueness of the solutions of Theorem . Let x(t) and x(t) be
any two solutions of the PIBVP (), then u(t) = x(t) – x(t) is a solution of the PIBVP.

u′′ = f
(
t, x, x′


)

– f
(
t, x, x′


)

= fy
(
t, x, x + θ(x – x)

)
u′ + fx

(
t, x + θ(x – x), x′


)
u,

u() = u(π ),
∫ π


u(s) ds = .
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Here  ≤ θ ≤ ,  ≤ θ ≤ . According to Assumption A, we know

 ≤ α(t) ≤ fx
(
t, x + θ(x – x), x′


) ≤ β(t).

Hence, by Lemma , u(t) ≡  on [, π ], that is, x(t) = x(t).
Next, we will prove the existence of Theorem  by the Schauder fixed point theorem.

According to the integral mean value theorem, we rewrite the equation of PIBVP () in
the equivalent form

x′′ = f
(
t, x, x′)

=
(
f
(
t, x, x′) – f (t, x, )

)
+

(
f (t, x, ) – f (t, , )

)
+ f (t, , )

=
∫ 


fx′

(
t, x, θx′)dθx′ +

∫ 


fx(t, θx, ) dθx + f (t, , ).

By Lemma , the following problem () has a unique solution for any x ∈ C :

y′′ =
∫ 


fx′

(
t, x, θx′)dθy′ +

∫ 


fx(t, θx, ) dθy + f (t, , ),

y() = y(π ),
∫ π


y(s) ds = .

()

Define the linear operator T : C → C . For each x ∈ C , T[x](t) = y(t) is the unique solution
of (). Thus, the existence of the solution of Problem () is equivalent to the existence of
the fixed point of T in Banach space C . We will prove that T is continuous and compact,
and T(C) is a bounded subset in C .

Step : T is continuous. Given any convergent sequence {xj} ⊂ C , such that xj → x as
j → ∞. Let yj = Txj, then

y′′
j =

∫ 


fx′

(
t, xj, θx′

j
)

dθy′
j +

∫ 


fx(t, θxj, ) dθyj + f (t, , ),

yj() = yj(π ),
∫ π


yj(s) ds = .

()

We will prove the existence of y, such that yj → y as j → ∞, and

y′′
 =

∫ 


fx′

(
t, x, θx′


)

dθy′
 +

∫ 


fx(t, θx, ) dθy + f (t, , ),

y() = y(π ),
∫ π


y(s) ds = .

We assert that {yj} is the bounded sequence in C . If not, there exists a subsequence of {yj}.
For the sake of convenience, this subsequence is still expressed as {yj}, such that ‖yj‖ → ∞,
as j → ∞. Take ωj = yj

‖yj‖ . Then ‖ωj‖ =  for {ωj} ⊂ C . We have

ω′′
j =

∫ 


fx′

(
t, xj, θx′

j
)

dθω
′
j +

∫ 


fx(t, θxj, ) dθωj +

f (t, , )
‖yj‖ ,

ωj() = ωj(π ),
∫ π


ωj(s) ds = .

()
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So ‖ω′′
j ‖ ≤ M + max

t∈[,π ]
β(t) +  < ∞. Thus {ω′′

j } is bounded. It is easy to see that {ω′
j} and

{ωj} are both uniformly family bounded degree of equicontinuous functions, and

ω′
j(t) = ω′

j() +
∫ t


ω′′

j (s) ds, ()

ωj(t) = ωj() +
∫ t


ω′

j(s) ds. ()

By the Ascoli-Arzela theorem, {ω′
j} and {ωj} contain a uniformly convergent subse-

quence, respectively, and satisfy

ωj
−→ ω, ω′

j
−→ ν.

Obviously ω and ν ∈ C . Let j → ∞. From () and (), we obtain

ω′′
 =

∫ 


fx′

(
t, x, θx′


)

dθω
′
 +

∫ 


fx(t, θx, ) dθω,

ω() = ω(π ),
∫ π


ω(s) ds = .

By Lemma , ω ≡ , this contradicts ‖ω‖ = .
By (), we derive that {y′′

j } is bounded. So {yj} and {y′
j} are both uniformly family

bounded degree of equicontinuous functions. By the Ascoli-Arzela theorem, {yj} and {y′
j}

contain a uniformly convergent subsequence, respectively. For the sake of convenience,
we use the same notation, thus

yj
−→ y, y′

j
−→ ν.

We know

y′
j = y′

j() +
∫ t


y′′

j (s) ds

= y′
j() +

∫ t



(∫ 


fx′

(
s, xj, θx′

j
)

dθy′
j

+
∫ 


fx(s, θxj, ) dθyj + f (s, , )

)
ds, ()

yj() = yj(π ),
∫ π


yj(s) ds = , yj(t) = yj() +

∫ t


y′

j(s) ds. ()

Let j → ∞. From () and (), we obtain

y′′
 =

∫ 


fx′

(
t, x, θx′


)

dθy′
 +

∫ 


fx(t, θx, ) dθy + f (t, , ),

y() = y(π ),
∫ π


y(s) ds = .

Hence, by the uniqueness we know y = Tx. Thus, operator T is continuous.
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Step : T is compact. For any bounded set S ⊂ C , we assert that T(S) is the bounded
set in C . If not, similar to the proof of step , we are led to a contradiction. For any x ∈ S,
y = Tx is defined by (). Because |y′|, |y|, |fx|, and |fx′ | are all bounded, and then ‖y′‖ <
∞. Proceeding as in the proof of step , we show that {yj} and {y′

j} are both uniformly
family bounded degree of equicontinuous. By the Ascoli-Arzela theorem, T is a compact
operator.

Step : T(C) is a bounded set. If not, there exists a subsequence {xj}, j = , , . . . , such that
‖T(xj)‖ → ∞ as j → ∞. Let yj = Txj, and Problem () holds. Take ωj = yj

‖yj‖ , then ‖ωj‖ = 
for {ωj} ⊂ C , and (), (), () and () hold. From step , we know {ωj} and {ω′

j} are
both uniformly family bounded degree of equicontinuous functions and they contain a
uniformly convergent subsequence, respectively. For the sake of convenience, we use the
same notation, such that

ωj
−→ ω, ω′

j
−→ ω, ‖ω‖ = .

The sequences {∫ 
 fx′ (t, xj, θx′

j) dθ}∞k= and {∫ 
 fx(t, θxj, ) dθ}∞k= are both bounded in

L[, π ] and contain a weakly convergence subsequence, respectively, such that

∫ 


fx′

(
t, xj, θx′

j
)

dθ
ω−→ f(t),

∫ 


fx(t, θxj, ) dθ

ω−→ f(t).

Obviously,

∣
∣f(t)

∣
∣ ≤ M, α(t) ≤ f(t) ≤ β(t), a.e. t ∈ [, π ].

Moreover,

ω′
j = ω′

j() +
∫ t


ω′′

j (s) ds

= ω′
j() +

∫ t



(∫ 


fx′

(
s, xj, θx′

j
)

dθω
′
j

+
∫ 


fx(s, θxj, ) dθωj +

f (s, , )
‖yj‖

)
ds, ()

ωj() = ωj(π ),
∫ π


ωj(s) ds = , ωj = ωj() +

∫ t


ω′

j(s) ds. ()

Let j → ∞. From () and (), for a.e. t ∈ [, π ], we have

ν ′
(t) = f(t)ν(t) + f(t)ω(t), ω′

(t) = ν(t).

Hence

ω′′
(t) = f(t)ω′

(t) + f(t)ω(t),

ω() = ω(π ),
∫ π


ω(s) ds = .
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We obtain ω ≡ ; this contradicts ‖ω‖ = . Then there exists a constant K > , such that
‖Tx‖ ≤ K as x ∈ C .

Let E = {x ∈ C|‖x‖ ≤ K}. By the fixed point theorem, T : E → E has one fixed point. The
proof of Theorem  is completed.

6 Examples
In this section, to illustrate significance and effectiveness of the results, we introduce two
examples.

Example  Consider the PIBVP as follows:

x′′ = f
(
t, x, x′),

x() = x(π ),
∫ π


x(s) ds = ,

()

where

f (t, x, y) =

⎧
⎨

⎩
x(t + sin y + ) sin 

x , x �= ,

, x = .

It is clear that f is continuous on [, π ] × R. For |x| ≥ , we have

 ≤ f (t, x, y)
x

=
(
t + sin y + 

)
sin 

x
≤ t + . ()

Notice that x sin 
x is a bounded function, that is, |x sin 

x | ≤ M, where M is a positive
constant, for any x ∈ R. When |y| ≥ , for all t ∈ [, π ], we get

∣∣
∣∣
f (t, x, y)

y

∣∣
∣∣ ≤

∣∣
∣∣
x sin 

x
y

∣∣
∣∣
∣
∣(t + sin y + 

)∣∣ ≤ M
(
t + 

) ≤ M
(
π + 

)
. ()

According to () and (), we derive that f satisfies Assumptions A and A. By Theo-
rem , the PIBVP () has at least one solution.

Example  Consider the following PIBVP:

x′′ = sin x′ sin x + x
(
t + 

)
,

x() = x(π ),
∫ π


x(s) ds = .

()

Let f (t, x, y) = sin y sin x + x(t + ). Because

 ≤ t ≤ fx(t, x, y) = sin y cos x + t +  ≤ t + 

and

∣∣fy(t, x, y)
∣∣ ≤ | cos y sin x| ≤ ,
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we prove that f suits Assumptions A and A. By Theorem , the PIBVP () has a unique
solution.
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